Dr. rer. nat. Martin Möddel (Hofmann)

Universitätsklinikum Hamburg-Eppendorf (UKE)
Sektion für Biomedizinische Bildgebung
Lottestraße 55
2ter Stock, Raum 212
22529 Hamburg
- Postanschrift -

Technische Universität Hamburg (TUHH)
Institut für Biomedizinische Bildgebung
Gebäude E, Raum 4.044
Am Schwarzenberg-Campus 3
21073 Hamburg

Tel.: 040 / 7410 56309
E-Mail: m.hofmann(at)uke.de
E-Mail: martin.hofmann(at)tuhh.de
ORCID: https://orcid.org/0000-0002-4737-7863

Research Interests

My research on tomographic imaging is primarily focused on magnetic particle imaging. In this context, I am engaged in the study of a number of problems, including:

  • Image reconstruction
    • Multi-contrast imaging
    • Multi-patch imaging
    • Artifact reduction
  • Magnetic field generation and characterisation
  • Receive path calibration

Curriculum Vitae

Martin Möddel is a postdoctoral researcher in the group of Tobias Knopp for experimental Biomedical Imaging at the University Medical Center Hamburg-Eppendorf and the Hamburg University of Technology. He received his PhD in physics from the Universität Siegen in 2014 on the topic of characterizing quantum correlations: the genuine multiparticle negativity as entanglement monotone. Prior to his PhD, he studied physics at the Universität Leipzig between 2005 and 2011, where he received his Diplom On the costratified Hilbert space structure of a lattice gauge model with semi-simple gauge group.

Journal Publications

[178618]
Title: On the Receive Path Calibration of Magnetic Particle Imaging Systems.
Written by: F. Thieben, T. Knopp, M. Boberg, F. Foerger, M.Graeser, and M. Möddel
in: <em>IEEE Transactions on Instrumentation and Measurement</em>. (2023).
Volume: <strong>72</strong>. Number:
on pages: 1-15
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI: 10.1109/TIM.2022.3219461
URL: https://ieeexplore.ieee.org/document/9939022
ARXIVID:
PMID:

[www] [BibTex]

Note: article, instrumentation

Abstract: Magnetic nanoparticles are a valuable tool in many biomedical applications and can be used for diagnostic and therapeutic purposes. In magnetic particle imaging (MPI) and magnetic particle spectroscopy (MPS), the particles are subjected to a dynamic magnetic field and the particle magnetization response is simultaneously measured using one or multiple receive coils. Separating the particle signal from the feed-through signal is commonly done by advanced passive filtering, which distorts the particle signal. To correct this distortion, the transfer function of the receive chain needs to be known. While in principle, the transfer function can be simulated, due to imperfections in the electronic components, it is often more accurate to determine the transfer function in a calibration procedure. Although this system calibration, utilizing a calibration-coil setup has been done by several research groups in the past, a general description of the underlying calibration model and methodology is still missing. In this paper we provide a general multi-channel calibration procedure for inductive receive paths in MPI and a blueprint to investigate model and method uncertainties. We generalized the calibration procedure to also cover non-orthogonal and non-homogeneous receive coils. Finally, we showcase the calibration procedure and uncertainty analysis on our custom MPS system and use the MPI transfer functions of misaligned receive coils to decouple their superimposed receive signals from the receive path. The findings enable the comparison of MPI signals from different devices and can be used to normalize measurements and system functions in devices with exchangeable receive coils.

[178618]
Title: On the Receive Path Calibration of Magnetic Particle Imaging Systems.
Written by: F. Thieben, T. Knopp, M. Boberg, F. Foerger, M.Graeser, and M. Möddel
in: <em>IEEE Transactions on Instrumentation and Measurement</em>. (2023).
Volume: <strong>72</strong>. Number:
on pages: 1-15
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI: 10.1109/TIM.2022.3219461
URL: https://ieeexplore.ieee.org/document/9939022
ARXIVID:
PMID:

[www] [BibTex]

Note: article, instrumentation

Abstract: Magnetic nanoparticles are a valuable tool in many biomedical applications and can be used for diagnostic and therapeutic purposes. In magnetic particle imaging (MPI) and magnetic particle spectroscopy (MPS), the particles are subjected to a dynamic magnetic field and the particle magnetization response is simultaneously measured using one or multiple receive coils. Separating the particle signal from the feed-through signal is commonly done by advanced passive filtering, which distorts the particle signal. To correct this distortion, the transfer function of the receive chain needs to be known. While in principle, the transfer function can be simulated, due to imperfections in the electronic components, it is often more accurate to determine the transfer function in a calibration procedure. Although this system calibration, utilizing a calibration-coil setup has been done by several research groups in the past, a general description of the underlying calibration model and methodology is still missing. In this paper we provide a general multi-channel calibration procedure for inductive receive paths in MPI and a blueprint to investigate model and method uncertainties. We generalized the calibration procedure to also cover non-orthogonal and non-homogeneous receive coils. Finally, we showcase the calibration procedure and uncertainty analysis on our custom MPS system and use the MPI transfer functions of misaligned receive coils to decouple their superimposed receive signals from the receive path. The findings enable the comparison of MPI signals from different devices and can be used to normalize measurements and system functions in devices with exchangeable receive coils.

Conference Proceedings

[178618]
Title: On the Receive Path Calibration of Magnetic Particle Imaging Systems.
Written by: F. Thieben, T. Knopp, M. Boberg, F. Foerger, M.Graeser, and M. Möddel
in: <em>IEEE Transactions on Instrumentation and Measurement</em>. (2023).
Volume: <strong>72</strong>. Number:
on pages: 1-15
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI: 10.1109/TIM.2022.3219461
URL: https://ieeexplore.ieee.org/document/9939022
ARXIVID:
PMID:

[www] [BibTex]

Note: article, instrumentation

Abstract: Magnetic nanoparticles are a valuable tool in many biomedical applications and can be used for diagnostic and therapeutic purposes. In magnetic particle imaging (MPI) and magnetic particle spectroscopy (MPS), the particles are subjected to a dynamic magnetic field and the particle magnetization response is simultaneously measured using one or multiple receive coils. Separating the particle signal from the feed-through signal is commonly done by advanced passive filtering, which distorts the particle signal. To correct this distortion, the transfer function of the receive chain needs to be known. While in principle, the transfer function can be simulated, due to imperfections in the electronic components, it is often more accurate to determine the transfer function in a calibration procedure. Although this system calibration, utilizing a calibration-coil setup has been done by several research groups in the past, a general description of the underlying calibration model and methodology is still missing. In this paper we provide a general multi-channel calibration procedure for inductive receive paths in MPI and a blueprint to investigate model and method uncertainties. We generalized the calibration procedure to also cover non-orthogonal and non-homogeneous receive coils. Finally, we showcase the calibration procedure and uncertainty analysis on our custom MPS system and use the MPI transfer functions of misaligned receive coils to decouple their superimposed receive signals from the receive path. The findings enable the comparison of MPI signals from different devices and can be used to normalize measurements and system functions in devices with exchangeable receive coils.

[178618]
Title: On the Receive Path Calibration of Magnetic Particle Imaging Systems.
Written by: F. Thieben, T. Knopp, M. Boberg, F. Foerger, M.Graeser, and M. Möddel
in: <em>IEEE Transactions on Instrumentation and Measurement</em>. (2023).
Volume: <strong>72</strong>. Number:
on pages: 1-15
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI: 10.1109/TIM.2022.3219461
URL: https://ieeexplore.ieee.org/document/9939022
ARXIVID:
PMID:

[www] [BibTex]

Note: article, instrumentation

Abstract: Magnetic nanoparticles are a valuable tool in many biomedical applications and can be used for diagnostic and therapeutic purposes. In magnetic particle imaging (MPI) and magnetic particle spectroscopy (MPS), the particles are subjected to a dynamic magnetic field and the particle magnetization response is simultaneously measured using one or multiple receive coils. Separating the particle signal from the feed-through signal is commonly done by advanced passive filtering, which distorts the particle signal. To correct this distortion, the transfer function of the receive chain needs to be known. While in principle, the transfer function can be simulated, due to imperfections in the electronic components, it is often more accurate to determine the transfer function in a calibration procedure. Although this system calibration, utilizing a calibration-coil setup has been done by several research groups in the past, a general description of the underlying calibration model and methodology is still missing. In this paper we provide a general multi-channel calibration procedure for inductive receive paths in MPI and a blueprint to investigate model and method uncertainties. We generalized the calibration procedure to also cover non-orthogonal and non-homogeneous receive coils. Finally, we showcase the calibration procedure and uncertainty analysis on our custom MPS system and use the MPI transfer functions of misaligned receive coils to decouple their superimposed receive signals from the receive path. The findings enable the comparison of MPI signals from different devices and can be used to normalize measurements and system functions in devices with exchangeable receive coils.