Marija Boberg, M. Sc.

Universitätsklinikum Hamburg-Eppendorf (UKE)
Sektion für Biomedizinische Bildgebung
Lottestraße 55
2ter Stock, Raum 213
22529 Hamburg
- Postanschrift -

Technische Universität Hamburg (TUHH)
Institut für Biomedizinische Bildgebung
Gebäude E, Raum 4.044
Am Schwarzenberg-Campus 3
21073 Hamburg

Tel.: 040 / 7410 25813
E-Mail: m.boberg(at)uke.de
E-Mail: marija.boberg(at)tuhh.de
ORCID: https://orcid.org/0000-0003-3419-7481

Research Interests

  • Magnetic Particle Imaging
  • Image Reconstruction
  • Magnetic Fields

Curriculum Vitae

Marija Boberg studied mathematics at the University of Paderborn between 2011 and 2017. She received her master's degree with her thesis on "Analyse von impliziten Lösern für Differential-Algebraische Gleichungssysteme unter Verwendung von Algorithmischem Differenzieren". Currently, she is a PhD student in the group of Tobias Knopp for Biomedical Imaging at the University Medical Center Hamburg-Eppendorf and the Hamburg University of Technology.

Journal Publications

[180972]
Title: Boundary artifact reduction by extrapolating system matrices outside the field-of-view in joint multi-patch MPI.
Written by: K. Scheffler, M. Boberg, and T. Knopp
in: <em>International Journal on Magnetic Particle Imaging</em>. (2022).
Volume: <strong>8</strong>. Number: (1),
on pages: 1-3
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI: 10.18416/IJMPI.2022.2203019
URL: https://journal.iwmpi.org/index.php/iwmpi/article/view/348
ARXIVID:
PMID:

[www]

Note: inproceedings, artifact, multi-patch

Abstract: In multi-patch magnetic particle imaging an artifact-free image can be obtained by using a joint reconstruction and measuring the system matrices not only in the field-of-view but also in a huge overscan. This leads to a long calibration time and heavy memory consumption and therefore an unsuitability of this method for large three-dimensional measurements. In this work we propose to measure the system matrices only in the field-of-view and use a diffusion based extrapolation step to extant the system matrices computationally into the overscan. In this way we massively reduce the calibration time while maintaining a nearly artifact-free image.

Conference Proceedings

[180972]
Title: Boundary artifact reduction by extrapolating system matrices outside the field-of-view in joint multi-patch MPI.
Written by: K. Scheffler, M. Boberg, and T. Knopp
in: <em>International Journal on Magnetic Particle Imaging</em>. (2022).
Volume: <strong>8</strong>. Number: (1),
on pages: 1-3
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI: 10.18416/IJMPI.2022.2203019
URL: https://journal.iwmpi.org/index.php/iwmpi/article/view/348
ARXIVID:
PMID:

[www] [BibTex]

Note: inproceedings, artifact, multi-patch

Abstract: In multi-patch magnetic particle imaging an artifact-free image can be obtained by using a joint reconstruction and measuring the system matrices not only in the field-of-view but also in a huge overscan. This leads to a long calibration time and heavy memory consumption and therefore an unsuitability of this method for large three-dimensional measurements. In this work we propose to measure the system matrices only in the field-of-view and use a diffusion based extrapolation step to extant the system matrices computationally into the overscan. In this way we massively reduce the calibration time while maintaining a nearly artifact-free image.