Fynn Förger, M. Sc.

Universitätsklinikum Hamburg-Eppendorf (UKE)
Sektion für Biomedizinische Bildgebung
Lottestraße 55
2ter Stock, Raum 203
22529 Hamburg
- Postanschrift -

Technische Universität Hamburg (TUHH)
Institut für Biomedizinische Bildgebung
Gebäude E, Raum 4.044
Am Schwarzenberg-Campus 3
21073 Hamburg

Tel.: 040 / 7410 25812
E-Mail: fynn.foerger(at)tuhh.de
E-Mail: f.foerger(at)uke.de
ORCID: https://orcid.org/0000-0002-3865-4603

Research Interests

  • Magnetic Particle Imaging

Curriculum Vitae

Fynn Förger studied physics at the University of Hamburg between 2012 and 2018. He received his master's degree with distiction on his thesis "Manipulation und Abbildung ultrakalter Fermigase". Currently, he is a PhD student in the group of Tobias Knopp for experimental Biomedical Imaging at the University Medical Center Hamburg-Eppendorf and the Hamburg University of Technology.

Journal Publications

[164758]
Title: Empirical Study of Magnet Distance on Magneto-Mechanical Resonance Frequency.
Written by: T. Knopp, F. Mohn, F. Foerger, F. Thieben, N. Hackelberg, J. Faltinath, A. Tsanda, M. Boberg, and M. Möddel
in: <em>Current Directions in Biomedical Engineering</em>. 12 (2024).
Volume: <strong>10</strong>. Number: (4),
on pages: 377-380
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI: http://dx.doi.org/10.1515/cdbme-2024-2092
URL: https://www.degruyterbrill.com/document/doi/10.1515/cdbme-2024-2092/html
ARXIVID:
PMID:

[www] [BibTex]

Note: inproceedings, mmr

Abstract: Determining the position and orientation of a medical instrument is essential for accurate procedures in endoscopy, surgery, and vascular interventions. Recently, a novel sensor based on torsional pendulum-like magneto-mechanical motion has been proposed. This sensor is passive, wireless and inductively coupled to a transmit-receive coil array. This setup allows the determination of all 6 degrees of freedom using the characteristic resonance of the sensor. Additional physical quantities such as temperature and pressure can be measured based on the frequency of the sensor, which mainly depends on the distance between the two involved permanent magnets. In this study, we analyze a sensor composed of two magnetic cylinders with variable magnet-to-magnet distance and a basic physical model based on a dipole assumption. Experimental analysis of the resonance frequency and comparison with the model values show both qualitative and quantitative agreement with an average relative error of only 0.8 %. This validates the implemented model and shows the suitability of our magnetic-mechanical resonator made from cylindrical permanent magnets for sensing applications.

Conference Proceedings

[164758]
Title: Empirical Study of Magnet Distance on Magneto-Mechanical Resonance Frequency.
Written by: T. Knopp, F. Mohn, F. Foerger, F. Thieben, N. Hackelberg, J. Faltinath, A. Tsanda, M. Boberg, and M. Möddel
in: <em>Current Directions in Biomedical Engineering</em>. 12 (2024).
Volume: <strong>10</strong>. Number: (4),
on pages: 377-380
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI: http://dx.doi.org/10.1515/cdbme-2024-2092
URL: https://www.degruyterbrill.com/document/doi/10.1515/cdbme-2024-2092/html
ARXIVID:
PMID:

[www] [BibTex]

Note: inproceedings, mmr

Abstract: Determining the position and orientation of a medical instrument is essential for accurate procedures in endoscopy, surgery, and vascular interventions. Recently, a novel sensor based on torsional pendulum-like magneto-mechanical motion has been proposed. This sensor is passive, wireless and inductively coupled to a transmit-receive coil array. This setup allows the determination of all 6 degrees of freedom using the characteristic resonance of the sensor. Additional physical quantities such as temperature and pressure can be measured based on the frequency of the sensor, which mainly depends on the distance between the two involved permanent magnets. In this study, we analyze a sensor composed of two magnetic cylinders with variable magnet-to-magnet distance and a basic physical model based on a dipole assumption. Experimental analysis of the resonance frequency and comparison with the model values show both qualitative and quantitative agreement with an average relative error of only 0.8 %. This validates the implemented model and shows the suitability of our magnetic-mechanical resonator made from cylindrical permanent magnets for sensing applications.