Florian Thieben, M.Sc.

Universitätsklinikum Hamburg-Eppendorf (UKE)
Sektion für Biomedizinische Bildgebung
Lottestraße 55
2ter Stock, Raum 202
22529 Hamburg
- Postanschrift -

Technische Universität Hamburg (TUHH)
Institut für Biomedizinische Bildgebung
Gebäude E, Raum 4.044
Am Schwarzenberg-Campus 3
21073 Hamburg

Tel.: 040 / 7410 56355
E-Mail: f.thieben(at)uke.de
E-Mail: florian.thieben(at)tuhh.de
ORCID: https://orcid.org/0000-0002-2890-5288

Research Interests

  • Magnetic Particle Imaging
  • Low noise electronics
  • Inductive sensors and filters
  • Magnetic Particle Imaging scanner characterization

Curriculum Vitae

Florian Thieben is a PhD student in the group of Tobias Knopp for experimental Biomedical Imaging at the University Medical Center Hamburg-Eppendorf and the Hamburg University of Technology. In 2017 he graduated with a master's degree thesis on Entwicklung eines kompakten Magnet Partikel Spektrometers mit gradiometrischer Empfangskette".

Journal Publications

[191085]
Title: Trade-off between Power Consumption and Receive Signal Strength for Inductively Coupled Transmit-Receive Circuits in MPI.
Written by: F. Mohn, F. Förger, F. Thieben, M. Möddel, T. Knopp and M. Graeser
in: (2024).
Volume: <strong>10</strong>. Number: (1 Suppl 1),
on pages:
Chapter:
Editor:
Publisher: [object Object]:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI: 10.18416/IJMPI.2024.2403021
URL:
ARXIVID:
PMID:

Note: inproceedings, instrumentation

Abstract: The signal chain of a Magnetic Particle Imaging system can be designed to include a dedicated receive-only coil or to combine transmit and receive coils. More common are circuits with separate transmit and receive chains, using dedicated receive coil(s) that cancel the excitation feedthrough. However, combined transmit-receive systems may prove to have several benefits, such as reducing the system complexity, providing a lower resistive noise contribution due to larger copper cross-section, facilitating a transition from 1D to multidimensional signal generation and acquisition, and implementing an embedded band-stop filter. In this work, a matching condition that governs inductors for resonant combined transmit-receive systems is investigated. To tap the signal, a compromise between the obtained signal strength and power consumption is considered, caused by the chosen circuit topology, that balances both signal loss and power consumption at a -3 dB benchmark.

Conference Proceedings

[191085]
Title: Trade-off between Power Consumption and Receive Signal Strength for Inductively Coupled Transmit-Receive Circuits in MPI.
Written by: F. Mohn, F. Förger, F. Thieben, M. Möddel, T. Knopp and M. Graeser
in: (2024).
Volume: <strong>10</strong>. Number: (1 Suppl 1),
on pages:
Chapter:
Editor:
Publisher: [object Object]:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI: 10.18416/IJMPI.2024.2403021
URL:
ARXIVID:
PMID:

[BibTex]

Note: inproceedings, instrumentation

Abstract: The signal chain of a Magnetic Particle Imaging system can be designed to include a dedicated receive-only coil or to combine transmit and receive coils. More common are circuits with separate transmit and receive chains, using dedicated receive coil(s) that cancel the excitation feedthrough. However, combined transmit-receive systems may prove to have several benefits, such as reducing the system complexity, providing a lower resistive noise contribution due to larger copper cross-section, facilitating a transition from 1D to multidimensional signal generation and acquisition, and implementing an embedded band-stop filter. In this work, a matching condition that governs inductors for resonant combined transmit-receive systems is investigated. To tap the signal, a compromise between the obtained signal strength and power consumption is considered, caused by the chosen circuit topology, that balances both signal loss and power consumption at a -3 dB benchmark.