Florian Thieben, M.Sc.

Universitätsklinikum Hamburg-Eppendorf (UKE)
Sektion für Biomedizinische Bildgebung
Lottestraße 55
2ter Stock, Raum 202
22529 Hamburg
- Postanschrift -

Technische Universität Hamburg (TUHH)
Institut für Biomedizinische Bildgebung
Gebäude E, Raum 4.044
Am Schwarzenberg-Campus 3
21073 Hamburg

Tel.: 040 / 7410 56355
E-Mail: f.thieben(at)uke.de
E-Mail: florian.thieben(at)tuhh.de
ORCID: https://orcid.org/0000-0002-2890-5288

Research Interests

  • Magnetic Particle Imaging
  • Low noise electronics
  • Inductive sensors and filters
  • Magnetic Particle Imaging scanner characterization

Curriculum Vitae

Florian Thieben is a PhD student in the group of Tobias Knopp for experimental Biomedical Imaging at the University Medical Center Hamburg-Eppendorf and the Hamburg University of Technology. In 2017 he graduated with a master's degree thesis on Entwicklung eines kompakten Magnet Partikel Spektrometers mit gradiometrischer Empfangskette".

Journal Publications

[183658]
Title: Safe and Rapid 3D Imaging: Upgrade of a Human-Sized Brain MPI System.
Written by: F. Thieben, F. Mohn, F. Foerger, N. Hackelberg, J.-P. Scheel, M. Graeser, and T. Knopp
in: <em>International Journal on Magnetic Particle Imaging IJMPI</em>. mar (2023).
Volume: Number:
on pages: 9.(1).
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI: 10.18416/IJMPI.2023.2303045
URL: https://journal.iwmpi.org/index.php/iwmpi/article/view/611
ARXIVID:
PMID:

[www]

Note: inproceedings, brainimager

Abstract: Magnetic Particle Imaging hardware has reached human scale and thus patient safety questions and clinical application scenarios are in the focus of current research. In this work, we present a safe real-time 3D MPI system for cerebral applications. High voltages are avoided to ensure patient safety by a low voltage-high current transmit coil design. The developed 2D drive-field generator generates a field-free-point trajectory in the sagittal xz-plane that is shifted by a dynamic selection-field sequence along the y-axis. The scanner generates 3D images with 4 frames/second and allows for direct visualization of the clinically preferred transversal yz-plane, which is crucial for future brain examinations. Advanced reconstruction techniques reach a system sensitivity of 4 μgFe with respect to the iron mass in a sensitivity study.

Conference Proceedings

[183658]
Title: Safe and Rapid 3D Imaging: Upgrade of a Human-Sized Brain MPI System.
Written by: F. Thieben, F. Mohn, F. Foerger, N. Hackelberg, J.-P. Scheel, M. Graeser, and T. Knopp
in: <em>International Journal on Magnetic Particle Imaging IJMPI</em>. mar (2023).
Volume: Number:
on pages: 9.(1).
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI: 10.18416/IJMPI.2023.2303045
URL: https://journal.iwmpi.org/index.php/iwmpi/article/view/611
ARXIVID:
PMID:

[www] [BibTex]

Note: inproceedings, brainimager

Abstract: Magnetic Particle Imaging hardware has reached human scale and thus patient safety questions and clinical application scenarios are in the focus of current research. In this work, we present a safe real-time 3D MPI system for cerebral applications. High voltages are avoided to ensure patient safety by a low voltage-high current transmit coil design. The developed 2D drive-field generator generates a field-free-point trajectory in the sagittal xz-plane that is shifted by a dynamic selection-field sequence along the y-axis. The scanner generates 3D images with 4 frames/second and allows for direct visualization of the clinically preferred transversal yz-plane, which is crucial for future brain examinations. Advanced reconstruction techniques reach a system sensitivity of 4 μgFe with respect to the iron mass in a sensitivity study.