Open Access Publications

The Institute's work is published in both traditional journals (e.g. the prestigious imaging journal IEEE Transactions on Medical Imaging) and open access journals. For traditional journals, a preprint is uploaded to ArXiv whenever possible to make the research results freely available.

Furthermore, Tobias Knopp, in his capacity as Editor-in-Chief, has established a novel scientific Open Access journal, which makes all articles available under the Creative Commons License (CC-BY-4.0). The International Journal on Magnetic Particle Imaging (IJMPI) was established in 2015 with the objective of publishing new research developments within the MPI community.

Publications

[192095]
Title: Natural Frequency Dependence of Magneto-Mechanical Resonators on Magnet Distance.
Written by: J. Faltinath, F. Mohn, F. Foerger, M. Möddel, and T. Knopp
in: <em>IEEE Sensors Journal</em>. (2025).
Volume: <strong>25</strong>. Number: (20),
on pages: 38073-38081
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI: https://doi.org/10.1109/JSEN.2025.3600007
URL: https://ieeexplore.ieee.org/document/11139087
ARXIVID:
PMID:

[www]

Note: article, openaccess, mmr

Abstract: The precise derivation of physical quantities like temperature or pressure at arbitrary locations is useful in numerous contexts, e.g., medical procedures or industrial process engineering. The novel sensor technology of magneto-mechanical resonators (MMRs), based on the interaction of a rotor and stator permanent magnet, allows for the combined tracking of the sensor position and orientation while simultaneously sensing an external measurand. Hence, the quantity is coupled to the torsional oscillation frequency, e.g., by varying the magnet distance. In this article, we analyze the (deflection angle-independent) natural frequency dependence of MMR sensors on the rotor-stator distance and evaluate the performance of theoretical models. The three presented sensors incorporate magnets of spherical and/or cylindrical geometry and can be operated at adjustable frequencies within the range of 61.9–307.3 Hz. Our proposed method to obtain the natural frequency demonstrates notable robustness to variations in the initial deflection amplitudes and quality factors, resulting in statistical errors on the mean smaller than 0.05%. We find that the distance–frequency relationship is well-described by an adapted dipole model accounting for material and manufacturing uncertainties. Their combined effect can be compensated by an adjustment of a single parameter, which drives the median model deviation generally below 0.2%. Our depicted methods and results are important for the design and calibration process of new sensor types utilizing the MMR technique.