Conference on
Mathematics of Machine Learning 2025

September 22 - 25, 2025

Hamburg University of Technology (TU Hamburg)

 

Poster Session 2

September 24, 2025

1. Oleksii Molodchyk (Hamburg University of Technology, Germany)
    Kernel Regression Meets System Identification

2. Johannes Müller (TU Berlin, Germany)
    Optimal Rates of Convergence for Entropy Regularization in Discounted Markov Decision Processes

3. Paul Navas (TU Dortmund, Germany)
    A Hilbert statistical manifold based on the Sinkhorn divergence

4. Hoang Khang Nguyen (University of California Los Angeles, United States)
    Revisiting Over-smoothing and Over-squashing Using Ollivier-Ricci Curvature

5. Oskar Nordenfors (Umeå University, Sweden)
    Neural Network Ensembles Provably Learn Symmetries

6. Elias Nyholm (Chalmers University of Technology, Sweden)
    Unifying Transformers and Convolutional Networks as Equivariant Maps

7. Guanru Pan (Hamburg University of Technology, Germany)
    Data-driven stochastic modeling and prediction with residual disturbance

8. Moritz Piening (TU Berlin, Germany)
    Slicing the Gaussian Mixture Wasserstein Distance

9. Md Ashfaqur Rahman (University of Arkansas at Little Rock, United States)

10. Konstantin Riedl (University of Oxford, United Kingdom)
      Convergence Analysis of Nonlinear Parabolic PDE Models with Neural Network Terms Trained with Gradient Descent

11. Frank Röder and Pradeep Banerjee (Hamburg University of Technology, Germany)
      Dynamics-Aligned Latent Imagination in Contextual World Models

12. Tim Roith (DESY, Germany)
      Gullible networks and the mathematics of adversarial attacks

13. Daniel Ruprecht (Hamburg University of Technology, Germany)
      Neural operators as coarse models for parallel-in-time integration methods

14. Melanie Schaller (Institut für Informationsverarbeitung, Germany)
      ModeConv: A Novel Convolution for Distinguishing Anomalous and Normal Structural Behavior

15. Darius Schaub (University Medical Center Hamburg-Eppendorf, Germany)
      2D Tissue reassembly with E(2)-equivariant graph neural cellular automata

16. Lucas Schmitt (Julius-Maximilians-Universität Würzburg, Germany)
      Adversarial Training as a Primal-Dual Problem

17. Henning Schwarz (Hamburg University of Technology, Germany)
      Convolutional Autoencoder based Prediction of Ditching Loads with Disentangled Latent Space

18. Sebastian Scott (University of Würzburg, Germany)
      On Optimal regularisation parameters via bilevel learning

19. Mariia Seleznova (LMU Munich, Germany)
      Neural Tangent Kernel Alignment as a Lens on Trained Neural Networks

20. Pradeep Kumar Sharma (University of Delhi, India)
      Stackelberg games for federated learning

21. Zakhar Shumaylov (University of Cambridge, United Kingdom)
      Lie Algebra Canonicalization: Equivariant Neural Operators under arbitrary Lie Groups

22. Rishi Sonthalia (Boston College, United States)
      Identification of Mean-Field Dynamics using Transformers

23. Martin Spindler (University of Hamburg, Germany)
      DoubleMLDeep: Estimation of Causal Effects with Multimodal Data

24. Maximilian Steffen (Karlsruhe Institute of Technology, Germany)
      Statistical guarantees for stochastic Metropolis-Hastings

25. Florin Suciu (Université Paris Dauphine-PSL, France)
      Motion planning, rough controls, and deep neural networks

26. Diaaeldin Taha (Max Planck Institute for Mathematics in the Sciences, Germany)
      Demystifying Topological Message-Passing with Relational Structures: A Case Study on Oversquashing in Simplicial Message-Passing

27. Mahsa Taheri (University of Hamburg, Germany)
      Regularization can make diffusion models more efficient

28. Alessandro Tamai (SISSA, Italy)
      Testing the Algebraicity Hypothesis

29. Johanna Tengler (University of Twente, Netherlands)
      Manifold limit for the training of shallow graph convolutional neural networks

30. Lucia Testa (University Medical Center Hamburg Eppendorf, Germany)
      Stability of graph convolutional networks under small random topology perturbations

31. Nicolás Valenzuela (University of Chile, Chile)
      Bounds on the approximation error for deep neural networks applied to dispersive models: nonlinear waves

32. Antonis Vasileiou (RWTH Aachen University, Germany)
      Covered Forest: Fine-grained generalization analysis of graph neural networks

33. Viktor Vigren Näslund (Umeå University, Sweden)
      Extending neural ODEs to encoder-decoder architectures via compressing vector fields

34. Lukas Weigand (Helmholtz Imaging, Germany)
      A gradient flow interpretation of Adversarial Attacks

35. Tak Ming Wong (Helmholtz-Zentrum Hereon, Germany)
      Self-supervised and physics-informed generative networks for the phase retrieval problem

36. Zusen Xu (Weierstrass Institute, Germany)
      Wasserstein Fisher-Rao Proximal Sampler

37. Hossein Zakerinia (Institute of Science and Technology Austria, Austria)
      Deep Multi-Task Learning Has Low Amortized Intrinsic Dimensionality

38. Konstantin Zörner (Hamburg University of Technology, Germany)
      Improving Computational Hypergraph Discovery through Gaussian Process-Based Parameter Optimization

39. Giulio Zucal (Max Planck Institute of Molecular Cell Biology and Genetics, Germany)
      Graph and Hypergraph limits: new tools for Machine Learning

40. Alexander Klemps (Hamburg University of Technology, Germany)
      Generating Arbitrary Temporal Laser Shapes with Wasserstein Autoencoders