Conference on
Mathematics of Machine Learning 2025

September 22 - 25, 2025

Hamburg University of Technology (TU Hamburg)

 

Poster Session 1

September 23, 2025

1. Arzu Ahmadova (University of Duisburg-Essen, Germany)
   Certifying PINNs: A Posteriori Error Bounds for Dynamical Systems

2. Emma Andersdotter (Umeå University, Sweden)
    A Geometric Framework for NODEs on Homogeneous Spaces

3. Marta Aparicio Rodriguez (Imperial College London, United Kingdom)
    Clustering Dynamics in Transformers

4. Wiebke Bartolomaeus (LMU Munich, Germany)
    Convergence and Implicit Bias in Gradient Descent Algorithms

5. Maxim Beketov (HSE University, Russia)
    Topology-aware subsampling from point clouds

6. Jan Benad (Hamburg University of Technology, Germany)
    Shared dynamic model aligned hypernetworks for contextual Reinforcement Learning

7. Erik Lien Bolager (Technical University of Munich, Germany)
    Data-informed distributions for sampling neural network weights

8. Jonas Bresch (TU Berlin, Germany)
    Unsupervised Ground Metric Learning

9. Jonas Cassel (Heidelberg University, Germany)
    Gauge Theory Meets Data

10. Javier Castro (TU Berlin, Germany)
    Thermodynamics-informed Neural Networks (THINNs)

11. Pattarawat Chormai (TU Berlin, Germany)
      A Perspective on Relevant Dimensions of Artificial Neural Networks

12. Adwait Datar (Hamburg University of Technology, Germany)
     Does the Natural Gradient Really Outperform the Euclidean Gradient?

13. Naima Elosegui Borras (TU Berlin, Germany)
     The Rényi divergence in Variational Continual Learning

14. Hannaneh Fahimi (Max Planck Institute for Mathematics in the Sciences, Germany)
      IsUMap: Manifold Learning and Data Visualization leveraging Vietoris-Rips Filtrations

15. Timm Faulwasser (Hamburg University of Technology, Germany)
      The Optimal Control Perspective on Deep Neural Networks – Early Exits, Insights, and Open Problems

16. Johannes Grün (DESY, Germany)
      Near-Field Holo-Tomography Reconstruction Using Neural Radiance Fields

17. Kanan Gupta (University of Pittsburgh, United States)
      Accelerated Optimization in ML: Challenges of Non-Convexity and Noisy Gradients

18. Utku Gurcuoglu (Turkish-German University, Türkiye)
      Uncertainty-Aware Surface Roughness Estimation Using Focus Variation Profilometry

19. Moritz Hollenberg (Hamburg University of Technology, Germany)
     Physics-Informed Neural Networks for Heat Flux Reconstruction in Electrical Impedance Tomography

20. Francesco Iafrate (University of Hamburg, Germany)
      Learning Continuous-Time Network Dynamics via Network and Sheaf SDEs

21. Jürgen Kampf (University Hospital of Essen, Germany)
      Predicting mortality from echocardiographies: A comparison of various machine learning algorithms

22. Filip Kovačević (Institute of Science and Technology Austria, Austria)
      Spectral Estimators for Multi-Index Models: Precise Asymptotics and Optimal Weak Recovery

23. Gitte Kremling (University of Hamburg, Germany)
      Non-asymptotic convergence guarantees for probability flow ODEs under weak log-concavity

24. Manish Krishan Lal (TU Munich, Germany)
      From blocks to manifolds: Neural inference as an L2 projection

25. Aleksei Kroshnin (WIAS, Berlin, Germany)
      On complexity of accelerated gradient methods for optimizing locally smooth convex functions

26. Sara-Viola Kuntz (TU Munich, Germany)
      The Influence of the Network Architecture on the Universal Approximation Capability

27. Jonghyeon Lee (California Institute of Technology, United States)
      KROM: Kernelized Reduced Order Model

28. Max Lewerenz (University of Hamburg, Germany)
      Kernel-Based Reconstruction in Magnetic Particle Imaging

29. Jannis Lübsen (Hamburg University of Technology, Germany)
      Accelerating Safe Bayesian Optimization with Simulations

30. Yannick Lunk (Universität Würzburg, Germany)
      Sparse training for neural networks based on linearized Bregman iterations

31. Floor Maarschalkerwaart (University of Twente, Netherlands)
      Perturbation-Aware Distributionally Robust Optimization for Inverse Problems

32. Gregor Maier (University of Bonn, Germany)
      The Sample Complexity of Learning Lipschitz Operators with respect to Gaussian Measures

33. Levin Maier (University Heidelberg, Germany)
      From probability simplices to reinforcement learning: a journey through ℓP-information geometry

34. Md Rasel Mandol (National Institute of Technology, India)
      Efficient Medical Image Segmentation on Edge Devices

35. Álvaro Márquez (Universidad de Chile, Chile)
      Construction of stellar atmospheres models throught the use of PINNs

36. Eloi Martinet (JMU Würzburg, Germany)
      Meshless Shape Optimization using Neural Networks and Partial Differential Equations on Graphs

37. Hannes Matt (Katholische Universität Eichstätt-Ingolstadt, Germany)
      Linear regression with overparameterized linear neural networks: Tight upper and lower bounds for implicit ℓ1-regularization

38. Philipp Misof (Chalmers University of Technology, Sweden)
      Equivariant Neural Tangent Kernels

39. Ionut-Vlad Modoranu (Institute of Science and Technology Austria, Austria)
      How to reduce the memory usage of Adam optimizer?

40. Ali Mohaddes (University of Hamburg, Germany)
      Signature Lasso for Fractional Brownian Motion Processes