Torben Frey, M.Sc.

2019 - 2023        Research Fellow at the IMS

Research Expertise

Simulation and Modeling of Static Mixers within the framework of KoPPonA 2.0


Research

Continuous Polymerization in Modular, Intelligent Reactors Resistant to the Formation of Deposits (KoPPonA 2.0)

The main objective of the ENPRO 2.0 initiative is to increase energy efficiency of new production processes. A number of energy demanding and inefficient processes are allocated within the German chemical industry, especially the production of pharmaceutical, fine and special chemicals. The concerned products are mostly produced utilizing multi-product plants and small batch processes due to small throughput. During the first phase of the ENPRO 1.0 initiative (2014-2017) the project partners have developed flexible, scalable and modular plant concepts. Micro-structured devices have been proven to suit requirements for the combined product and process development. However, one drawback of micro-structured mixers, reactors and heat exchangers for continuous processes is the formation of gel or solid particles leading to fouling and blocking of the device.

The KoPPonA 2.0 project drives the development of continuous process concepts for polymer production which are sensitive to fouling. A conglomerate of plant operators, equipment and sensor suppliers, material scientists and process engineers work together in KoPPonA 2.0 to research causes and preventive measures of fouling. KoPPonA 2.0 uses innovative approaches in plant design, surface modification, and reaction control are used to allow efficient and safe operation of continuous polymerization processes. By investigating basic fouling mechanisms in continuous polymerization processes a universal comprehension of fouling is to be derived.

The Institute of Multiphase Flows (V-5) generates a comprehensive computational fluid dynamics (CFD) model of the process components that are prone to fouling. The model incorporates hydrodynamic flow phenomena, mass transfer, kinetics and different fouling mechanisms. The models are validated by means of Confocal Laser Scanning Microscopy (CLSM) to visualize three-dimensional concentration distribution at micro scale (resolution down to 1 μm) with Laser-Induced Fluorescence (LIF). Furthermore, reactive models are validated by means of the novel imaging UV/Vis spectroscopy developed at the IMS.

Education

Graduate Teaching Assistant

  • Process Design Course WiSe 19/20

  • Computional Fluid Dynamics in Process Engineering SoSe 20, SoSe 21, SoSe 22, and SoSe 23

  • Lagrangian Transport in Turbulent Flows SoSe 20 and SoSe 21

  • Turbulent Flows SoSe 22 and SoSe 23

Supervised Theses

  • "Education 4.0: Development of an Extended Reality Tool for CFD-aided Design and Development of a Shell-Tube Heat Exchanger (working title)", Jeswin Kannampuzha Francis, Master thesis, ongoing

  • "Experimentelle Bestimmung der Löslichkeit von Stickstoffmonixid in Methanol mithilfe einer chemischen Reaktion", Xuan My Le, Project thesis, 2023

  • "Experimentelle Untersuchung der laminaren Mikrovermischung in einem Kaskadenmischer durch konfokale LIF-Messung einer reaktiven Strömung", Anna-Christin Menzel, Master thesis, 2023

  • "Analysis of Transport Barriers in Continuous Mixers by means of Lagrangian Coherent Structures", Christoph Wigger, Master thesis, 2023

  • "Experimenteller Vergleich der bildgebenden und globalen UV/Vis-Spektroskopie zur Charakterisierung der Mikromischung in einem Kaskadenmischer", Xuan My Le, Master thesis, 2023

  • "Comparison of the Lattice-Boltzmann Method and Finite Volume Method in continuously operated static mixers - a CFD benchmark study", Roman Neubauer, Master thesis, 2023

  • "Erstellung einer 1D- und 3D-CFD Methodik zur Berechnung und Optimierung einer neuen innovativen Wärmetauscher-Technologie im Motorsport", Hendrik Doß, Master thesis, 2022

  • "Experimentelle Untersuchung des Mischverhaltens in einem Milli-Kaskadenmischer bei kleinen Reynoldszahlen mit Hilfe der konfokalen Laserscanning-Mikroskopie", Sabrina Bauschmann, Bachelor thesis, 2022

  • "Effect of a Chemical Reaction on Grid Convergence of a Direct Numerical Simulation", Chandrahas Rao Sampelli, Project thesis, 2022

  • "Experimental Investigations of Mixing in a Split and Recombine Mixer using Confocal Laser Scanning Microscopy", Nithin Thonakkara James, Project Work, 2021

  • "Numerische Simulation der Mischleistung in einem strukturierten Rohrreaktor bei einem hohen Viskositätsverhältnis der Teilströme", Vincent Bernemann, Master thesis, 2021

  • "Experimentelle Untersuchung der Übertragbarkeit eines Mischprozesses vom Labordissolver auf eine duale asymmetrische Zentrifuge bei wässrigen Lacksystemen", Gerrit Spiller, Master thesis, 2021

  • „Numerische Simulation einer parallel-kompetitiven chemischen Reaktion mit steifem Differentialgleichungssystem in einem mikro-strukturierten Strömungskanal bei kleinen Reynoldszahlen", Tobias Freund, Master thesis, 2021

  • "Comparison of Active and Passive Micro Mixers Designed for Asymmetric Mixing Tasks", Kayla Reata Dittmer, Bachelor thesis, 2020

  • "Experimental Analysis of the Mixing Performance in Micro Channels at High Volume Flow Ratios and Low Reynolds Numbers", Rieke Schlütemann, Bachelor thesis, 2020

Oral and Poster Presentation

Lectures

  • Frey, T., Hoffmann, M., Schlüter, M.: "Experimental and CFD Study on Local Selectivity Distributions in a Stiff Reactive System", 14th ECCE and 7th ECAB, Berlin, 2023, lecture.

  • Frey, T., Grabellus, M., Le, X. M., Hoffmann, M., Herbstritt, F., Grünewald, M., Schlüter, M.: "Local interpretation of micro mixing through the Villermaux-Dushman reaction and the imaging UV-Vis spectroscopy", 17th European Conference on Mixing, Porto, 2023, lecture.

  • Schwarz, S.; Grünewald, M.; Biessey, P.; Frey, T.; Schlüter, M.; Hoffmann, M.: "CFD-based compartment modeling approach for continuous polymer reactors by means of the Mean-Age theory". (Bio)Process Engineering - a Key to Sustainable Development, joint event of ProcessNet, DECHEMA-BioTechNet Jahrestagungen 2022, 13th ESBES Symposium, Aachen, 2022, lecture.

  • Frey, T.; Hoffmann, M.; Schlüter, M.: "Visualizing Reactive Mixing Phenomena with the Novel Imaging UV/Vis Spectroscopy in Asymmetric and Transient Flows". (Bio)Process Engineering - a Key to Sustainable Development, joint event of ProcessNet, DECHEMA-BioTechNet Jahrestagungen 2022, 13th ESBES Symposium, Aachen, 2022, lecture.

  • Frey, T.; Hoffmann, M.; Schlüter, M.: "Visualizing Reactive Mixing Phenomena in Milli and Micro Channels". NAMF Mixing XXVII, virtual, 2022, lecture.

  • Frey, T.; Schwarz, S.; Biessey, P.; Hoffmann, M.; Grünewald, M; Schlüter, M.: "Modeling Polymer Fouling with an Euler-Lagrangian Approach in a Milli-Reactor with Static Mixing Elements". 13th ECCE, virtual, 2021, lecture.

Poster Presentations

  • Frey, T.; Schwarz, S.; Hoffmann, M.; Grünewald, M.; Schlüter, M.: "CFD unterstützte Auslegung und Compartment modellierung eines kontinuierlich betriebenen Reaktorsystems für Polymerisationsreaktionen". Jahrestreffen der ProcessNet-Fachgemeinschaft "Prozess-, Apparate- und Anlagentechnik", Frankfurt a. M., 2022, poster presentation.

  • Schwarz, S.; Frey, T.; Hoffmann, M.; Biessey, P.; Schlüter, M.; Grünewald, M: "CFD-based compartment modeling of static mixing elements for continuous polymer reactors by means of the Mean-Age theory". Annual Meeting on Reaction Engineering and ProcessNet Subject Division Heat and Mass Transfer 2022, Würzburg, 2022, poster presentation.

  • Frey, T.; Hoffmann, M.; Schlüter, M.: "A DNS Approach to high-Schmidt-Number problems in Reactive Micro- and Milli Systems". NAMF Mixing XXVII, virtual, 2022, poster presentation.

  • Schwarz, S.; Frey, T.; Hoffmann, M.; Biessey, P.; Schlüter, M.; Grünewald, M: "Compartmentmodellierung von statischen Mischelementen mithilfe der Mean-Age Theorie". Jahrestreffen der ProcessNet-Fachgemeinschaft "Prozess-, Apparate- und Anlagentechnik", virtual, 2021, poster presentation.

  • Frey, T.; Schwarz, S.; Seithümmer, V.; Bissey, P.; Hoffmann, M.; Grünewald, M.; Schlüter, M.: "Numerische Strömungssimulation zum Einfluss auf den Umsatz und die Selektivität einer Polymerisationsreaktion". Jahrestreffen der ProcessNet-Fachgemeinschaft "Prozess-, Apparate- und Anlagentechnik", virtual, 2020, poster presentation.

Publications

[177301]
Title: CFD-based compartment modeling approach for continuous polymer reactors by means of the mean-age theory.
Written by: Schwarz, S.;, Grünewald, M.; Biessey, P.; Frey, T.; Schlüter, M.; Hoffmann, M.
in: <em>Chemie Ingenieur Technik</em>. (2022).
Volume: <strong>94</strong>. Number: (9),
on pages: 1343
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI: https://doi.org/10.1002/cite.202255090
URL:
ARXIVID:
PMID:

Note:

Abstract: The KoPPonA 2.0 project focuses on the translation of the continuous mode of operation for polymerizations inside milli-structured apparatuses with mixing elements. Such reactions with multiple consecutive reactions are strongly affected by the local hydrodynamics. Dead zones as well as regions close to the wall promote higher local residence times and thus the formation of fouling deposits, which leads to blocking. Hence, the description of the local hydrodynamics and flow phenomena is crucial for a suitable reactor model. The compartment modeling approach offers a promising way to describe such problems with complex geometries and kinetics. Based on the results of a CFD simulation with the mean-age theory, the CFD cells are clustered with respect to the local mean-age to convert the CFD mesh into a cascade of CSTRs, which still represents the spatial resolution but lowers the computational demand significantly. The derived compartment model is compared with the CFD in terms of mixing characteristics for single mixing elements. A comparison with respect to the results of an oligomerization in both models is executed. The derived method is applicated to a larger geometry and a parameter study is performed.