Open Access Publications

The Institute's work is published in both traditional journals (e.g. the prestigious imaging journal IEEE Transactions on Medical Imaging) and open access journals. For traditional journals, a preprint is uploaded to ArXiv whenever possible to make the research results freely available.

In addition, Tobias Knopp, as Editor-in-Chief, has founded a new scientific Open Access journal, which makes all articles available under the Creative Commons License (CC-BY-4.0). The International Journal on MagneticParticle Imaging (IJMPI) was founded in 2015 and publishes new research developments within the MPI community.

Open Access Publications

[122486]
Title: Human-sized Magnetic Particle Imaging for Brain Applications.
Written by: M. Graeser, F. Thieben, P. Szwargulski, F. Werner, N. Gdaniec, M. Boberg, F. Griese, M. Möddel, P. Ludewig, D. van de Ven, O.M. Weber, O. Woywode, B. Gleich, and T. Knopp
in: <em>Nature Communications</em>. (2019).
Volume: <strong>10</strong>. Number: (1936),
on pages: 1-9
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI: 10.1038/s41467-019-09704-x
URL: https://www.nature.com/articles/s41467-019-09704-x
ARXIVID:
PMID:

[www]

Note: article, brainimager, openaccess

Abstract: Determining the brain perfusion is an important task for diagnosis of vascular diseases such as occlusions and intracerebral haemorrhage. Even after successful diagnosis, there is a high risk of restenosis or rebleeding such that patients need intense attention in the days after treatment. Within this work, we present a diagnostic tomographic imager that allows access to brain perfusion quantitatively in short intervals. The device is based on the magnetic particle imaging technology and is designed for human scale. It is highly sensitive and allows the detection of an iron concentration of 263 pmol(Fe)/ml, which is one of the lowest iron concentrations imaged by MPI so far. The imager is self-shielded and can be used in unshielded environments such as intensive care units. In combination with the low technical requirements this opens up a variety of medical applications and would allow monitoring of stroke on intensive care units.