Open Access Publications

The Institute's work is published in both traditional journals (e.g. the prestigious imaging journal IEEE Transactions on Medical Imaging) and open access journals. For traditional journals, a preprint is uploaded to ArXiv whenever possible to make the research results freely available.

In addition, Tobias Knopp, as Editor-in-Chief, has founded a new scientific Open Access journal, which makes all articles available under the Creative Commons License (CC-BY-4.0). The International Journal on MagneticParticle Imaging (IJMPI) was founded in 2015 and publishes new research developments within the MPI community.

Open Access Publications

[110741]
Title: Moving table magnetic particle imaging: a stepwise approach preserving high spatio-temporal resolution.
Written by: P. Szwargulski, N. Gdaniec, M. Graeser, M. Möddel, F. Griese, K. M. Krishnan, T. M. Buzug, and T. Knopp
in: <em>Journal of Medical Imaging</em>. (2018).
Volume: <strong>5</strong>. Number: (4),
on pages: 046002
Chapter:
Editor:
Publisher:
Series:
Address:
Edition:
ISBN:
how published:
Organization:
School:
Institution:
Type:
DOI: doi.org/10.1117/1.JMI.5.4.046002
URL: https://arxiv.org/abs/1812.04075
ARXIVID:
PMID:

[www]

Note: article, multi-patch, openaccess

Abstract: Magnetic particle imaging (MPI) is a highly sensitive imaging method that enables the visualization of magnetic tracer materials with a temporal resolution of more than 46 volumes per second. In MPI, the size of the field of view (FoV) scales with the strengths of the applied magnetic fields. In clinical applications, those strengths are limited by peripheral nerve stimulation, specific absorption rates, and the requirement to acquire images of high spatial resolution. Therefore, the size of the FoV is usually a few cubic centimeters. To bypass this limitation, additional focus fields and/or external object movements can be applied. The latter approach is investigated. An object is moved through the scanner bore one step at a time, whereas the MPI scanner continuously acquires data from its static FoV. Using a 3-D phantom and dynamic 3-D in vivo data, it is shown that the data from such a moving table experiment can be jointly reconstructed after reordering the data with respect to the stepwise object shifts and heart beat phases.