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Abstract

In this thesis, we derive three different classes of spectral inclusion sets,

meaning sets that enclose the spectrum or pseudospectra, of an infinite tri-

diagonal (self-adjoint or non-self-adjoint) matrix A understood as a bounded

linear operator on `2(Z). The first inclusion set is the union of certain pseu-

dospectra of n × n principal submatrices of A (we call that “method 1”).

The second version is a very similar construction but with slightly modified

circulant-type n × n submatrices (we call that “method 1*”). In the third

version, we work with lower bounds on n × ∞ and ∞ × n submatrices of

A−λI, which effectively leads to the study of related n×n matrices (we call

that “method 2”). Our third set not only yields an upper bound but also

sequences of approximations of the spectra and pseudospectrum of A that

are convergent as n→∞.

In chapter 5 we study the particular tridiagonal operator Abvi = bivi−1 +

vi+1 where (bi) is a bounded sequence with bi = 1 or bi = −1 randomly.

Our motivation is that this non-self-adjoint operator, and the corresponding

non-self-adjoint finite random matrices, have been studied extensively in the

mathematical physics literature, starting with work by Feinberg and Zee

[16] who studied a model of a particle hopping asymmetrically on a one

dimensional lattice. We show that the spectrum of Ab is symmetric about

the axes and under 90◦−rotation, the closed unit disk is contained in the

spectrum, the numerical range of Ab is the square with 2,−2, 2i and −2i

as its corners. Further, we apply method 1 to Ab and show that for this

operator, the sequences of approximations that it generates to the spectra

and pseudospectra are convergent as n→∞. We finish with some conjecture

about the spectrum of Ab.
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Chapter 1

Introduction

1.1 A Partial History of Spectral Theory

This thesis is concerned with the study of the spectral theory of infinite tri-

diagonal matrices. Eigenvalues have been one of the most powerful tools in

applied mathematics. They are used in many scientific research fields, for ex-

ample, fluid mechanics, quantum mechanics, economics, functional analysis

and acoustics.

The eigenvalue problem was first introduced by Augustin Louis Cauchy

in the study of quadratic forms and also in the study of extreme values by

Lagrange multiplier methods. The terms “eigenvalue” and “eigenvector” are

sometimes called “characteristic value” and “characteristic vector”, respec-

tively. Those words were coined by Cauchy ( see [27]). In 1846, Carl Gustav

Jacob Jacobi proposed a numerical iterative method for the calculation of the

eigenvalues and eigenvectors of a real Hermitian matrix. Jean d’ Alembert,

a French mathematician, was the pioneer who studied differential equations

using eigenvalues.

At the beginning of the twentieth century, the eigenvalues of integral

operators were studied by David Hilbert. He considered the operator as

infinite dimensional matrix. In 1904, the German word “eigen” was used by

8
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Hilbert to denote eigenvalues and eigenvectors.

The origin of the spectral theory of matrices is the concept of an eigen-

value. Much research work on the eigenvalue problem has been developed.

In 1829, Cauchy published his result, which is a combination between previ-

ously developed results and his own ideas. He showed that real symmetric

matrices have real eigenvalues and that the corresponding quadratic form

can be diagonalized using a linear transformation. In the 1870’s that paper

provided important results which gave motivation to develop many theorems

on the solid spectral theory of matrices.

The important solution of eigenvalue problems for second-order differen-

tial equations was developed by Charl-François Sturm, a Swiss mathemati-

cian, in 1836 and Joseph Liouville, a French mathematician, in 1838. The

so-called Sturm-Liouville theory was an important milestone in the spectral

theory of ordinary differential operators. In 1848, the paper of Cauchy had

influenced Jacobi to determine that the eigenvalues of the quadratic forms

given by
n∑
k=1

akx
2
k − 2

n−1∑
k=1

bk+1xkxk+1

are the roots of the denominator of a limited continued fraction. Nowadays,

we call infinite self-adjoint tridiagonal matrices, Jacobi operators. For some

more details of the history of spectral theory see [30].

The research in this thesis is a contribution, in particular to the part of

spectral theory which deals with the computation of the spectra of infinite

(particularly non-self-adjoint) tridiagonal matrices. This part of spectral

theory has attracted significant interest recently.

Beginning in 1996, motivated by the studies of statistical mechanics of the

magnetic flux lines in superconductors with columnar defect [22, 24], Hatano

and Nelson initiated a study of a non-self-adjoint Anderson model which has

become to be known as the Hatano-Nelson model. They were studying the

eigenvalues of an operator H defined by

(Hf)m = e−gfm−1 + vmfm + egfm+1, m ∈ Z,



CHAPTER 1. INTRODUCTION 10

where g is a fixed real parameter (without loss of generality we may assume

that g is positive), and (vm)m∈Z is a sequence of i.i.d. random variables taking

values in some compact subset of the real line, under the constraint that the

eigenfunction f is periodic, i.e.

fm+n = fm, m ∈ Z,

for some n ∈ N, in which case the eigenvalues of H are the eigenvalues of the

finite random non-normal matrix

An =



v1 eg e−g

e−g v2 eg

. . . . . . . . .

e−g vn−1 eg

eg e−g vn


n×n

.

In the paper [23] they also considered the multidimensional version of H. The

case when the corner entries in An are replaced by zeros is not interesting

because it is similar (via a diagonal transform) to a self-adjoint matrix and

therefore it has purely real spectrum.

In 1998, Goldsheid and Khoruzhenko [19] developed a theory to study

the distribution of eigenvalues in the non-self-adjoint Anderson model. In

this paper they found that the eigenvalues of An are arranged along a curve

in the complex plane and they also derived an equation for that curve. The

curve is sometimes called a ‘bubble with wings’ (see [22, 47, 48]).

In 2001, Davies [11] found that for randomly generated large matrices,

which are far from self-adjoint, their spectra depend sensitively on the en-

tries of the matrix, which is the difficulty in studying the behaviour of non-

self-adjoint operators. For the non-self-adjoint Anderson model of Hatano-

Nelson, the behaviour of the spectrum of a finite n× n matrix when n→∞
does not explain the behaviour of the spectrum of the infinite matrix. The

reason is there are many approximate eigenvalues which are not close to true

eigenvalues of the infinite dimensional matrix. In [12] Davies studied the

spectrum of H as an operator on `2(Z) in the case when (vm)m∈Z is pseudo-

ergodic which holds almost surely if (vm)m∈Z is random. He then found the
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condition which makes 0 ∈ specH. Martinez [37, 38] obtained a sharp bound

on the spectra of many operators and also estimated the size of the hole in

the spectrum of the non-self-adjoint Anderson operator.

Trefethen, Contedini and Embree [48] studied the spectra and pseudospec-

tra of random bidiagonal matrices of the form

An =



x1 1

x2 1
. . . . . .

xn−1 1

xn−1


n×n

,

where each xi is a random variable taking values independently in a compact

subset of C, from some distribution X. They studied the spectral properties

of the “one-way-model” by Brezin, Feinberg and Zee [5, 16, 17]. When the

entries on the main diagonal generate from {±1}, then they obtained the

following matrix

An =



±1 1

±1 1
. . . . . .

±1 1

±1


n×n

.

The spectral behaviour of the bidiagonal case, An, is basically the same as

the non-periodic Hatano-Nelson matrix. However, we can see that it is much

easier to study the bidiagonal case because its resolvent can be computed

immediately. Trefethen et al. also studied the spectrum of the corresponding
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infinite matrix,

A =



. . . . . .

±1 1

±1 1

±1 1

±1
. . .
. . .


.

The main result for a random bidiagonal doubly infinite matrix case is, with

probability 1, that the spectrum of the matrix A is the union of the two

closed unit disks centred at 1 and -1, respectively.

In 2008, Lindner [35] generalizes the above result from the case of one

random and one constant diagonal to the case of two random diagonals, so

that

A =



. . . . . .

σ−1 τ−1

σ0 τ0

σ1 τ1

σ2
. . .
. . .


,

where σk ∈ Σ and τk ∈ T are taken independently from random distributions

on Σ and T , which are arbitrary compact subsets of C, respectively, under

the condition for every ε > 0, σ ∈ Σ and τ ∈ T , that Pr (|σk − σ| < ε) and

Pr (|τk − τ | < ε) are both non-zero. This is a proper generalization of [48]

because the set T may contain zero. In order to say something about his

result, we need the following definition. For ε > 0, let

Σε
∪ :=

⋃
σ∈Σ

U ε(σ) and Σε
∩ :=

⋂
σ∈Σ

Uε(σ)

with Uε(σ) = {λ ∈ C : |λ− σ| < ε} and U ε(σ) = {λ ∈ C : |λ− σ| ≤ ε}. Then

his main result is:
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Theorem 1.1. If A is the above bi-infinite bi-diagonal random matrix then,

with probability 1,

specA = specess A = ΣT
∪ \ Σt

∩,

where T = max {|τ | : τ ∈ T } and t = min {|τ | : τ ∈ T }.

In 1999, Joshua Feinberg and Anthony Zee started studying a model

describing the propagation of a particle hopping on a 1-dimensional lattice.

Feinberg and Zee [16] studied the equation

vk+1 + bk−1vk−1 = λvk (1.1)

where the real numbers bk are generated from some random distribution and

λ is the spectral parameter.

Zee and Feinberg studied the distribution of the eigenvalues of the n× n
matrix Abn defined by

Abn =



0 1

b1 0 1

b2 0 1
. . . . . . . . .

bn−2 0 1

bn−1 0


, (1.2)

which is obtained from (1.1) when v0 = vn+1 = 0 and each bk is ±1, randomly.

They noticed that when n was large, the spectrum has a complicated fractal-

like form.

In 2002, Holz, Orland and Zee [28] studied the spectrum of the infinite

matrix
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Ab =



. . . . . .

. . . 0 1

b−1 0 1

b0 0 1

b1 0 1

b2 0
. . .

. . . . . .


, (1.3)

where bi = ±1, for all 6 possible cases with a 4-periodic sequence, i.e. with

bi+4 = bi, i ∈ Z. They found that the spectrum for each of these 6 patterns

corresponds to a certain curve. They also stated some open questions on

the spectrum of the infinite random matrix e.g. does the spectrum contain a

hole in the complex plane or not? Is the spectrum of the operator localized

or delocalized?

In 2010, Chien and Nakazato [10] studied the numerical range of tri-

diagonal operators A defined by Aej = ej−1 + rjej+1, where r ∈ R, j ∈ N and

{e1, e2, . . .} is the standard orthonormal basis for `2(N). In the third section

of this paper, they emphasised on the case r = −1 and they showed that

W (A) = {z ∈ C : −1 ≤ Re(z) ≤ 1,−1 ≤ Im(z) ≤ 1}

\ {1 + i, 1− i,−1 + i,−1− i} .

A large part of this thesis is concerned with deriving new inclusion sets for

the spectra of tridiagonal bounded linear operators, so that it is appropriate

to briefly review other methods for computing inclusion sets. Firstly, we let

A be any bounded linear operator.

1. A Trivial upper bound on the spectrum of A is {λ : |λ| ≤ ‖A‖}
since |λ| ≤ ‖A‖ if λ ∈ specA. The bound improves as one takes

powers: From λ ∈ specA we get λn ∈ spec (An) for n ∈ N and

hence |λ| = |λn|1/n ≤ ‖An‖1/n, leading to the sharper bound specA ⊆{
λ : |λ| ≤ ‖An‖1/n

}
.
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2. Gershgorin Circle Theorem is a method to compute the upper

bound of the spectrum of an operator. It is introduced, in the ma-

trix case, by Semyon Aranovich Gershgorin in 1931 [18].

Let A = (aij) be an n × n matrix and di =
∑
j 6=i

|aij| for i = 1, . . . , n.

Then the set

Di = {λ ∈ C : |λ− aii| ≤ di} i = 1, . . . , n

is called the ith Gershgorin disc of the matrix A. Gershgorin’s circle

Theorem (see Theorem 2.49 below) says that every eigenvalue of A

lies within at least one of the Gershgorin discs. In Theorem 2.50,

we generalise the Gershgorin circle theorem (see [18, 50]) to infinite

matrices.

3. The Numerical range of A is defined by

W (A) := {(Ax, x) : ‖x‖ = 1}

with (·, ·) denoting the inner product. The closure of W (A) is an upper

bound on specA. Also this bound improves as one takes powers (see

5. below). Hausdorff [26] and Toeplitz [46] proved that W (A) is con-

vex. Moreover, W (A) is invariant under unitary transformation, i.e.,

W (U∗AU) = W (A).

4. The Pseudospectrum has been introduced independently at least 6

times: by J. M. Varah (1967), H. Landau (1975), S. K. Godunov (1982),

L. N. Trefethen (1990), D. Hinrichsen and A. J. Pritchard (1992), and

E. B. Davies (1997). It is a tool to understand the behaviour of the

spectrum of non-normal operators.

Definition 1.2. Let A be a bounded linear operator on a Banach space

X. For ε > 0, the ε-pseudospectrum is

spec εA = {λ ∈ C :
∥∥(λI − A)−1

∥∥ > 1

ε
},

with the convention that ‖(λI − A)−1‖ :=∞ if λ ∈ specA.
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Sometimes, the pseudospectrum is defined as {λ ∈ C : ‖(λI − A)−1‖ ≥
1

ε
}, Chaitin-Chaitelin and Harrabi [7] proved that

specεA =
{
λ ∈ C :

∥∥(A− λI)−1
∥∥ ≥ ε−1

}
is true when A is an operator on Hilbert space and it is not true in

general when A is an operator on any Banach space. Moreover, in [43],

Shargorodsky has given two examples to show that the pseudospectra

of closed densely defined operators on a Hilbert space can jump with

respect to ε.

5. Higher order numerical range is introduced as a better tool than

the numerical range since W (A) is always convex and so does not give

much information about the spectrum even though it is easier to com-

pute W (A). Martinez [38] used this technique to determine the spec-

trum of non-self-adjoint operators completely in many cases.

Following [14, 15], if p is a polynomial then Hullp(A) := {z ∈ C :

|p(z)| ≤ ‖p(A)‖} ⊇ specA. The intersection over all polynomials p (of

order at most n ∈ N) of Hullp(A) is the higher order hull of A, denoted

by Hull∞(A) (resp. Hulln(A)). For each polynomial p, put Nump(A) :=

{z ∈ C : p(z) ∈ W (p(A))} ⊇ specA. The intersection over all polyno-

mials p (of order at most n ∈ N) of Nump(A) is the higher order nu-

merical range of A, denoted Num∞(A) (resp. Numn(A)). Higher order

hulls and numerical ranges are related: Clearly Numn(A) ⊆ Hulln(A)

for all n ∈ N. In fact, equality holds for all n! The set Num∞(A) =

Hull∞(A) ⊇ specA coincides with the so-called polynomial convex hull

of specA, which is the complement of the unbounded component of

C \ specA (i.e. it is specA plus everything enclosed by it).

1.2 Overview of Thesis

In this thesis we study the spectrum of infinite tridiagonal matrices with

a bounded set of entries understood as bounded linear operators on `2(Z).
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One particular example of this type to be studied in Chapter 5 is a class

of matrices of the form (1.3). We start in Chapter 3 where we introduce

two methods to approximate the spectrum for arbitrary infinite tridiagonal

matrices of the form

A =



. . . . . .

. . . β−2 γ−1

α−2 β−1 γ0

α−1 β0 γ1

α0 β1 γ1

α1 β2
. . .

. . . . . .


, (1.4)

where the box marks the matrix entry at (0, 0). Here, (αi), (βi), and (γi) are

bounded sequences of complex numbers. We think of A as a linear operator

acting via matrix-vector multiplication on `p(Z). We develop inclusion sets

for specA and specεA in terms of the spectra of finite section operators

An,k : Xn,k → Xn,k defined by An,k := Pn,kA|Xn,k , with matrix representation

An,k =



βk+1 γk+2

αk+1 βk+2 γk+3

. . . . . . . . .

αk+n−2 βk+n−1 γk+n

αk+n−1 βk+n


,

obtaining results reminiscent of the Gershgorin theorem and its generalisa-

tions [50].

Defining Σn
ε (A) :=

⋃
k∈Z

spec εAn,k, we show that, for n ∈ N and ε > 0,

specA ⊆ Σn
εn(A), spec εA ⊆ Σn

ε+εn(A),

where εn is given explicitly as the solution of a nonlinear equation, with

εn < ηn := 2(‖α‖∞ + ‖γ‖∞) sin (π/(2n+ 2)) . In general Σn
εn(A) may be

much larger than specA and does not converge to specA as n→∞, but in

some cases Σn
εn(A) = specA for all n.
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Then we modify our first method to get sharper inclusion sets in certain

cases for the spectrum and pseudospectra of A, in Section 3.3, in terms of

the quasi-circulant matrices

Ân,k =



βk+1 γk+2 αk

αk+1 βk+2 γk+3

. . . . . . . . .

αk+n−2 βk+n−1 γk+n

γk+n+1 αk+n−1 βk+n


.

We obtain the following results: for n ∈ N and ε > 0,

specA ⊆ Πn
εn(A), spec εA ⊆ Πn

ε+εn(A),

where Πn
ε (A) :=

⋃
k∈Z

spec εÂn,k and εn is given explicitly as the solution of a

nonlinear equation, with εn < ηn := 2(‖α‖∞ + ‖γ‖∞) sin (π/2n) .

In Chapter 4, we let Pn,k : `2(Z)→ `2(Z) be the projection operator given

by

(Pn,kx)j =

{
xj, j = k + 1, k + 2, . . . , k + n,

0, otherwise,

and let Xn,k := Pn,k(`
2(Z)) be the n-dimensional range of Pn,k. The method

we propose in Chapter 4 modifies the above methods, with something of the

flavours of [13, 47]. For n ∈ N, η > 0, and λ ∈ C let

B+
n,k(λ) := Pn,k(A−λI)∗(A−λI)

∣∣
Xn,k

, B−n,k(λ) := Pn,k(A−λI)(A−λI)∗
∣∣
Xn,k

,

and let

Γnη (A) :=
⋃
k∈Z

{
λ ∈ C : min

(
min specB+

n,k(λ),min specB−n,k(λ)
)
< η2

}
.

Then we show that, for n ∈ N and ε > 0,

specA ⊆ Γnηn(A), Γnε (A) ⊆ spec εA ⊆ Γnε+ηn(A),

so that Γnηn(A)→ specA in the Hausdorff metric as n→∞.
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In Chapter 5, we focus on a study of the spectrum and pseudospectra

of the operator Ab defined by (1.3), with b a random sequence of ±1’s. We

investigate the symmetries of the spectrum of Ab and compute the numerical

range of Ab. Besides that exploration, our main result is that the spec-

tra and pseudospectra of the finite section matrices Abn, defined by (1.2),

are contained in those of the two-sided infinite matrix Ab. Combining this

result with our results on inclusion sets for tri-diagonal operators (as dis-

cussed in more detail in Chapter 3), we show that, with probability one,

Σn
εn(Ab)→ specAb in the Hausdorff metric as n→∞. Note that for n ∈ N,

Σn
εn(Ab) is the closure of the union of the εn-pseudospectra of all 2n−1 distinct

tridiagonal submatrices of the random operator Ab (2n−1 is the number of

different sequences of ±1’s that can be chosen as the first subdiagonal of Abn)

with εn = 4 sin

(
π

(2n+ 2)

)
. Further, we quantify the rate of convergence by

showing that, with probability one,

specAb ⊆ Σn
εn(Ab) ⊆ spec εnA

b

for n ∈ N. As a consequence of this and related results, we derive also

convergence of spec εnA
b
n to specAb (with probability one) in the Hausdorff

metric as n→∞.



Chapter 2

Preliminaries

In this chapter we introduce the background material needed for this thesis.

Most of the material covered in this chapter is standard and therefore, we

do not include the proofs of all the results. We have included proofs that we

believe contribute to the better understanding of the material that is to be

presented and have given references to the proofs of all other results. The

aim was to make the thesis as self-contained as possible. We begin by setting

forth the basic notation we will use throughout this thesis.

20
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2.1 General Notation and Standard Results

in Linear Operator Theory

Z denotes the set of all integers and N,R and C denote the natural, real

and complex numbers, respectively. Moreover, Cn = C× · · · × C︸ ︷︷ ︸
nterms

. For any

z ∈ C we will write z = x + iy where x = Re (z) is the real part of z and

y = Im (z) is the imaginary part. We will write |z| for the modulus of z. We

will denote by z the complex conjugate of z if z is a complex number and by

A the closure of the set A when A is a subset of a metric space.

The polynomial convex hull of a compact subset K of C is defined to be

the complement of the unbounded component of C \K, i.e. K together with

all open regions enclosed by this set.

Let X, Y be Banach spaces, i.e. complete normed vector spaces. We

define B(X, Y ) as the set of bounded linear operators from X to Y , and we

also define B(X) := B(X,X) as the set of all bounded linear operators on

X. A linear space with an inner product (·, ·) that is complete with respect

to the norm defined by ‖x‖ =
√

(x, x) for every x ∈ X is called a Hilbert

space.

Let `p(Z, U) denote the standard space of U -valued sequences x = (xj)j∈Z

which has p-norm, ‖·‖p defined by ‖x‖p = (|x1|p+|x2|p+. . . )1/p. We omit the

second parameter U in this notation if U = C, i.e. `p(Z) := `p(Z,C). In this

thesis, if we do not specify otherwise, we use X = `2(Z) ,i.e., p = 2, U = C,

therefore X is a Hilbert space with the usual inner product.

Definition 2.1. If X and Y are Banach spaces, we will say that A ∈ B(X, Y )

is invertible if there exists an operator B ∈ B(Y,X) such that

AB = IY , BA = IX ,

where IX and IY denote the identity operators on X and Y , respectively. We

call B the inverse of A and denote it by A−1.

Theorem 2.2. Suppose X is a Banach space and A ∈ B(X) is invertible
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with inverse A−1. Then, for any E ∈ B(X) with ‖E‖ < 1

‖A−1‖
, A + E is

invertible and ∥∥(A+ E)−1
∥∥ ≤ ‖A−1‖

1− ‖E‖ ‖A−1‖
.

Conversely, for any µ >
1

‖A−1‖
, there exists E ∈ B(X) with ‖E‖ < µ such

that A+ E is not invertible (in fact, not injective).

Proof. See [49, Theorem 4.1]

Theorem 2.3. Let X and Y be Hilbert spaces and let A ∈ B(X, Y ). Then

there exists one and only one A∗ ∈ B(Y,X) with the property

(Ax, y) = (x,A∗y) (2.1)

for all x ∈ X, y ∈ Y . This operator A∗ is called the adjoint operator to A.

Proof. See [31].

Theorem 2.4. Let X and Y be Hilbert spaces and let A ∈ B(X, Y ) and A∗

be the adjoint of A. Then A∗ ∈ B(Y,X) and ‖A‖ = ‖A∗‖. Further, A∗ is

invertible iff A is invertible, and if they are both invertible then (A∗)−1 =

(A−1)∗ and so ‖A−1‖ = ‖(A∗)−1‖.

Definition 2.5. Let X be a Hilbert space and A ∈ B(X). A is said to be

normal if A commutes with its adjoint A∗, i.e, AA∗ = A∗A.

Definition 2.6. Let X be a Hilbert space and A ∈ B(X). A is said to be

unitary if the adjoint of A is its inverse, i.e, AA∗ = A∗A = I, the identity

operator.

Definition 2.7. Let X be a Hilbert space and A ∈ B(X). A is said to be

self-adjoint (or Hermitian) if A∗ = A.

Theorem 2.8. Let A ∈ B(X, Y ).

1. (A∗)∗ = A.
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2. (A+B)∗ = A∗ +B∗.

3. (AB)∗ = B∗A∗.

4. (cA)∗ = cA∗ for any c ∈ C.

Note that unitary operators and self-adjoint operators are examples of

normal operators.

Lemma 2.9. Let S be a linear subspace of a Hilbert space X. Then S is

dense in X if and only if

x ∈ X, (x, z) = 0, ∀z ∈ S ⇒ x = 0. (2.2)

Proof. (⇒) If S is dense in X, then for all x ∈ X, ε > 0, there exists a y ∈ S
such that ‖x− y‖ < ε. So if (x, z) = 0,∀z ∈ S then (x, y) = 0 ⇔ (x, x) =

(x, x− y). Thus, by Cauchy-Schwarz inequality,

‖x‖2 ≤ ‖x‖ ‖x− y‖ < ‖x‖ ε

which implies that ‖x‖ ≤ ε, since ‖x‖ ≥ 0.

(⇐) Next, we show that if (2.2) holds then S is dense in X. Note that S

is a closed linear subspace of X. If S is not dense in X then S 6= X. Let

x∗ ∈ X \ S. Then, by the projection theorem, x∗ = s + x where s ∈ S and

x ∈ S⊥, i.e. (x, z) = 0 for all z ∈ S, and, since x∗ /∈ S, x 6= 0.

Theorem 2.10. Let X and Y be Hilbert spaces and A ∈ B(X, Y ). Then

A∗ ∈ B(Y,X) is injective if and only if A(X) is dense in Y .

Proof. First note that A∗ is injective if and only if

y ∈ Y,A∗y = 0⇒ y = 0.

This is equivalent to

y ∈ Y, (A∗y, x) = 0 for all x ∈ X ⇒ y = 0

⇔y ∈ Y, (y, Ax) = 0 for all x ∈ X ⇒ y = 0

⇔y ∈ Y, (y, z) = 0 for all z ∈ A(X)⇒ y = 0.

The required result follows from Lemma 2.9.
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Theorem 2.11. Let X and Y be Banach spaces. Then A ∈ B(X, Y ) is

invertible iff A is bijective.

Proof. See [42, Corollary 2.12].

The main statement of Theorem 2.11 is that the inverse map B : Ax 7−→ x

from Y to X is automatically bounded and linear if A is bounded, linear and

bijective. This fact requires X and Y to be Banach spaces.

Corollary 2.12. Let X and Y be Hilbert spaces and A ∈ B(X, Y ). If A is

not invertible then

(a) A is not injective,

(b) A∗ is not injective,

or (c) A(X) is not closed.

Proof. Suppose that A and A∗ are injective and A(X) is closed. By Theorem

2.10, A(X) is dense in X. Hence, A is surjective. Since A is both injective

and surjective, it follows that A is invertible by Theorem 2.11.

Lemma 2.13. (Lax-Milgram) Let X be a Hilbert space. If an operator

A ∈ B(X) has a constant c > 0 such that Re(Ax, x) ≥ c ‖x‖2 for all x ∈ X
then A is invertible and ‖A−1‖ ≤ c−1.

Proof. See [31].

Definition 2.14. Let X be a Banach space and A ∈ B(X). Then

ν(A) := inf
x∈X\{0}

‖Ax‖
‖x‖

= inf
‖x‖=1

‖Ax‖

is referred to as the lower norm of A. We will say that A is bounded below

if ν(A) > 0.

Proposition 2.15. Let X be a Banach space. An operator A ∈ B(X) is

bounded below if and only if A is injective and has a closed range.

Proof. See [33, Lemma 2.32].
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Note that, if A has closed range then Y = A(X) is a Banach space

and, provided also that A is injective, then A : X → Y is bijective, and so

invertible. Therefore, this proposition is a corollary of Theorem 2.11.

Theorem 2.16. If X is a Hilbert space then A ∈ B(X) is invertible iff

ν(A) > 0 and ν(A∗) > 0. Furthermore, if A is invertible, then A∗ is also

invertible, and

ν(A) = ν(A∗) =
1

‖A−1‖
=

1

‖(A∗)−1‖

Proof. See [33, Lemma 2.35], and Theorem 2.4.

2.2 Spectral Theory

Definition 2.17. Let X be a Banach space and A ∈ B(X). Let

specA = {λ ∈ C : A− λIis not an invertible operator on X}

be the (invertibility) spectrum of A,

spec pointA = {λ ∈ C : (A− λI) is not an injective operator on X}

be the point spectrum of A and

spec essA = {λ ∈ C : (A− λI) is not Fredholm on X}

be the essential spectrum of A.

Note that Definition 2.45 below explains what we mean by Fredholmness.

In the special case X = `p(Z), we write spec pA, spec ppointA and spec pessA for

specA, spec pointA and spec essA, respectively, to underline the dependence on

p. However, for any banded operator A (see Definition 2.46), spec pA and

spec pessA do not depend on the choice of p ∈ [1,∞] (see [32, 34]), which is

why we will simply write specA and specess A in that case.
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Definition 2.18. Let A be a bounded linear operator on a Banach space X.

For ε > 0, the ε-pseudospectrum is

spec εA = {λ ∈ C :
∥∥(λI − A)−1

∥∥ > 1

ε
},

with the convention that ‖(λI − A)−1‖ :=∞ if λ ∈ specA.

From the definition, it follows that the ε-pseudospectra associated with

various ε are nested sets,

spec ε1A ⊆ spec ε2A, 0 < ε1 ≤ ε2.

Theorem 2.19. Let X be a Banach space and A ∈ B(X) and ε > 0 be

arbitrary. The ε-pseudospectrum spec ε(A) of A is the set of λ ∈ C defined

equivalently by any of the conditions

a.)
∥∥(A− λI)−1

∥∥ > ε−1. (2.3)

b.)λ ∈ spec (A+ E) for some E ∈ B(X) with ‖E‖ < ε. (2.4)

c.)λ ∈ spec (A) or ‖(A− λI)x‖ < ε for some x ∈ X with ‖x‖ = 1. (2.5)

If ‖(A− λI)x‖ < ε as in (2.5), then λ is said to be an ε-pseudoeigenvalue of

A and x the corresponding ε-pseudoeigenvector (or pseudoeigenfunction or

pseudomode).

Proof. See [47, page 16]

Theorem 2.20. For any matrix A,

spec εA ⊇ specA+Bε(0) ∀ε > 0,

and if A is normal and ‖·‖ = ‖·‖2, then

spec εA = specA+Bε(0) ∀ε > 0.

Proof. See [47, page 19].
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Proposition 2.21. Let X be a Hilbert space. For any A ∈ B(X), λ ∈ C,

and ε > 0, we have
∥∥∥(A∗ − λI)−1

∥∥∥ =
∥∥(A− λI)−1

∥∥. Therefore, specA∗ ={
λ : λ ∈ specA

}
and spec εA

∗ =
{
λ : λ ∈ spec εA

}
.

Proof. See Theorem 2.16.

Theorem 2.22. For any A ∈ B(X), where X is a Hilbert space, if A is

self-adjoint, then specA ⊆ R.

Theorem 2.23. Let X, Y be Hilbert spaces and A ∈ B(X, Y ). Then, A∗A

is Hermitian and

‖A∗A‖ = ‖A‖2 .

Proof. Since (A∗A)∗ = A∗A, it follows that A∗A is Hermitian. Consider

‖A‖2 = sup {(Ax,Ax) : x ∈ X, ‖x‖ = 1}

= sup {(A∗Ax, x) : x ∈ X, ‖x‖ = 1}

≤ sup {‖A∗Ax‖ : x ∈ X, ‖x‖ = 1}

= ‖A∗A‖ ,

and we can see that ‖A∗A‖ ≤ ‖A∗‖ ‖A‖ = ‖A‖2.

Theorem 2.24. For any A ∈ B(X, Y ), where X and Y are Hilbert spaces,

ν(A∗A) = min spec (A∗A) = {ν(A)}2 = inf
φ∈X
‖φ‖=1

(A∗Aφ, φ).

Proof. We firstly show that ν(A∗A) = {ν(A)}2 by considering 3 cases,

ν(A) 6= 0 and ν(A∗) 6= 0, ν(A) = 0, and ν(A) 6= 0 but ν(A∗) = 0.

Case 1 : ν(A) 6= 0 and ν(A∗) 6= 0. In this case, A,A∗ and A∗A are all

invertible and, by Theorem 2.16 and Theorem 2.23, ν(A∗A) = ‖(A∗A)−1‖ =

‖A−1(A−1)∗‖ = ‖A−1‖2
= (ν(A))2.

Case 2 : ν(A) = 0. We can see that ν(A∗A) ≤ ‖A∗‖ ν(A) = 0 and so

ν(A∗A) = {ν(A)}2.

Case 3 : ν(A) 6= 0 and ν(A∗) = 0. In this case define Ã : X → A(X)

by Ãx = Ax. We know that ν(Ã) = ν(A) > 0. From Proposition 2.15, Ã
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is injective and Ã(X) is closed. It is obvious that Ã is surjective. Hence Ã

is a bijection. From Theorem 2.11, Ã is invertible. Thus, from Proposition

2.16,
∥∥∥Ã−1

∥∥∥ =
1∥∥∥ν(Ã)
∥∥∥ < ∞, i.e. Ã has bounded inverse. Further, for

x ∈ X, y ∈ A(X),

(Ax, y) = (x,A∗y),

so Ã∗y = A∗y, y ∈ A(X), and so Ã∗Ãx = A∗Ax, x ∈ X, so that

ν(Ã∗Ã) = ν(A∗A).

By Theorem 2.23, we have then that∥∥∥Ã−1
∥∥∥2

=
∥∥∥Ã−1

(
Ã−1

)∗∥∥∥
=

∥∥∥∥Ã−1
(
Ã∗
)−1
∥∥∥∥

=

∥∥∥∥(Ã∗Ã)−1
∥∥∥∥ .

Thus, and by Theorem 2.16,(
ν
(
Ã
)2
)

= ν
(
Ã∗Ã

)
.

Therefore, (
ν (A)2) = ν (A∗A)

Now we are showing that inf spec (A∗A) = ν(A∗A). If µ < ν(A∗A) then

((A∗A− µI)x, x) = (A∗Ax, x)− µ(x, x)

= (Ax,Ax)− µ(x, x)

= ‖Ax‖2 − µ ‖x‖2

≥
(
(ν(A))2 − µ

)
‖x‖2

= (ν(A∗A)− µ) ‖x‖2 ,

so A∗A − µI is invertible by Lemma 2.13. So inf spec (A∗A) ≥ ν(A∗A). If

µ = ν(A∗A) then, for every ε > 0, there exists x ∈ X with ‖x‖ = 1 such that

‖A∗Ax‖ < ν(A∗A) + ε,
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and then

‖(A∗A− µ)x‖2 = ((A∗A− µ)x, (A∗A− µ)x)

= (A∗Ax,A∗Ax)− µ (A∗A, x)− µ (x,A∗Ax) + µ2(x, x)

= ‖A∗Ax‖2 − 2µ ‖Ax‖2 + µ2 ‖x‖2

= ‖A∗Ax‖2 − µ ‖Ax‖2 + µ2.

Now

‖Ax‖ ≥ ν(A) ‖x‖ = ν(A),

so

‖(A∗A− µ)x‖2 < (ν(A∗A) + ε)2 − 2µ (ν(A))2 + µ2

=
(
2εν(A∗A) + ε2

)
+ (ν(A∗A)− µ)2

= 2εν(A∗A) + ε2.

Since ε > 0 is arbitrarily small, we have shown that ν(A∗A − µI) = 0, so

that µ = ν(A∗A) ∈ spec (A∗A).

Thus inf spec (A∗A) = ν(A∗A).

Corollary 2.25. For any A ∈ B(X), where X is a Hilbert space, spec (A∗A) ⊆
[0,∞).

Proof. It is obvious that A∗A is self-adjoint. From Theorem 2.22, we can

see that spec (A∗A) ⊆ R. By Theorem 2.24,

min spec (A∗A) = {ν(A)}2 ≥ 0.

Therefore, if λ ∈ spec (A∗A) then λ ≥ 0.

By Theorem 2.16 we have then that

Theorem 2.26. If X is a Hilbert Space and A ∈ B(X) then

specA = {λ : ν(λI − A) = 0 or ν ((λI − A)∗) = 0}
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and, for ε > 0,

spec εA = specA
⋃
{λ : ν(λI − A) < ε}

= specA
⋃
{λ : ν ((λI − A)∗) < ε}

= {λ : ν(λI − A) < ε} ∪ {λ : ν ((λI − A)∗) < ε}

=
{
λ : ν ((λI − A)∗(λI − A)) < ε2

}
∪
{
λ : ν ((λI − A)(λI − A)∗) < ε2

}
=
{
λ : min spec ((λI − A)∗(λI − A)) < ε2

}
∪
{
λ : min spec ((λI − A)(λI − A)∗) < ε2

}
=

{
λ : inf

φ∈X
((λI − A)∗ (λI − A)φ, φ) < ε2

}
∪
{
λ : inf

φ∈X
((λI − A) (λI − A)∗ φ, φ) < ε2

}
.

Definition 2.27. For a bounded operator A on a Hilbert space X, the nu-

merical range of A is

W (A) = {(Ax, x) : x ∈ X, ‖x‖ = 1}

Theorem 2.28. (Toeplitz-Hausdorff) Let X be a Hilbert space and A ∈
B(X). The numerical range of the operator A is a convex set, and

specA ⊆ W (A) ⊆ {λ : |λ| ≤ ‖A‖} .

Proof. See [13].

Definition 2.29. Let X be a topological space, and f is a function from X

into the extended real number R∗; f : X → R∗. Then f is said to be upper

semicontinuous if f−1 ([−∞, α)) = {x ∈ X : f(x) < α} is an open set in X

for all α ∈ R.

Definition 2.30. Let U ⊆ Rn. f : U → R is said to be harmonic if it

satisfies Laplace’s equation, i.e.

∂2f

∂x2
1

+
∂2f

∂x2
2

+ · · ·+ ∂2f

∂x2
n

= 0

everywhere on U .
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Definition 2.31. Let G ⊆ Rn and let ϕ : G → R ∪ {−∞} be an upper

semicontinuous function. Then ϕ is said to be subharmonic if for every

x ∈ G and r > 0 such that Br(x) ⊆ G, and every real-valued continuous

function h on Br(x) that is harmonic in Br(x) and satisfies ϕ(x) ≤ h(x) for

all x in the boundary of Br(x), it holds that ϕ(x) ≤ h(x) for all x ∈ Br(x).

Note that the resolvent norm RA : λ 7−→
∥∥(A− λI)−1

∥∥ is a subharmonic

function on C\specA (see [2] and [47, Theorem 4.2]) subject to the following

maximum principle due to Daniluk (see [21, Theorem 3.32] or [3, Theorems

7.5, 7.6] but also [43, 44]):

Theorem 2.32. If U ⊆ C \ specA is open and RA(λ) ≤ M for all λ ∈ U
then RA(λ) < M for all λ ∈ U .

Definition 2.33. Let S and T be two non-empty subsets of C. We define

their Hausdorff distance dH(S, T ) by

dH(S, T ) = max

{
sup
s∈S

inf
t∈T
|s− t| , sup

t∈T
inf
s∈S
|s− t|

}
,

= max

{
sup
s∈S

d(s, T ), sup
t∈T

d(t, S)

}
,

where, for a ∈ C and a non-empty set C ⊆ C, d(a, C) := inf
c∈C
|a− c|.

Theorem 2.32 implies the following corollary.

Corollary 2.34. Suppose A ∈ B(X) where X is a Hilbert space. Then, for

every ε > 0,

specεA =
{
λ ∈ C :

∥∥(A− λI)−1
∥∥ ≥ ε−1

}
. (2.6)

For ε ≥ 0

dH (specεA, spec ηA)→ 0 (2.7)

as η → ε+, and

dH (specA, specεA)→ 0 (2.8)

as ε→ 0.
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Proof. See [7] for the proof of (2.6). In order to prove (2.7), let ε > 0. We

will show that for every r > 0 there exists a δ > 0 such that spec ε+δA ⊆
Br(spec εA),where Br(S) for a set S is the union of all Br(s) with s in S(i.e.

the r-neighbourhood of S).

Suppose the converse is true. So there is a r > 0 such that for every δ > 0

there is a λ ∈ spec ε+δA with d(λ, specεA) > r. In particular, putting δ = 1/n

with n = 1, 2, ..., there is a sequence λ1, λ2, ... such that RA(λn) > 1/(ε+1/n)

and Ur(λn) is disjoint from specεA. Since RA(λ)→ 0 as |λ| goes to infinity,

this sequence must be bounded and therefore have a convergent subsequence.

Call its limit λ0. It follows that RA(λ0) ≥ 1/ε =: M and that the disk

U := Br(λ0) is disjoint from specεA, so that RA(λ) ≤ 1/ε = M for all λ ∈ U .

By Theorem 2.32 it follows that RA(λ) < M = 1/ε for all λ ∈ U = Br(λ0)

but this contradicts RA(λ0) ≥M .

(2.8) can be shown by a similar, slightly simpler argument (putting ε = 0).

2.3 Finite and Infinite Matrices

2.3.1 Classical Matrix Algebra

Let X and Y be finite dimensional vector spaces (over the field C) , i.e.

X ∼= Cn and Y ∼= Cm for some m,n ∈ N. Let T ∈ B(X, Y ) and (e1, . . . , en)

and (f1, . . . , fm) be ordered bases of X and Y , respectively. We can write

T (ej) =
m∑
i=1

aijfi

for every j = 1, . . . , n and aij ∈ C. From elementary linear algebra, there

exists an associated m×n matrix A, defined by A = (aij), such that Tx = Ax

for every x ∈ X. Note that the matrix representation depends on the bases

of the vector space and also the order of elements in bases.

Note that if X = Cn and Y = Cm are equipped with the 2-norm, where

m,n ∈ N then Cn and Cm are Hilbert spaces and the associated linear
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mapping T : Cn → Cm is a bounded linear operator. Moreover, by Theorem

2.3 there exists an adjoint operator T ∗ ∈ B(Cm,Cn) and an adjoint matrix

associated with T ∗ can be defined as the following.

Definition 2.35. Let T : Cn → Cm be a bounded linear operator. The

adjoint of the n × m matrix A = (aij) is an m × n matrix AH = (aHij )

defined by aHij = aji, i.e. AH is the conjugate transpose of A. It holds that

T ∗x = AHx

for every x ∈ Cm. If A is a matrix with real entries, AH is equal to AT , the

transpose of the matrix A.

Adjoints satisfy the following identities:

(a)
(
AH
)H

= A.

(b) (A+B)H = AH +BH .

(c) (AB)H = BHAH

(d) (cA)H = cAH for any c ∈ C.

Definition 2.36. A matrix A is self-adjoint (or Hermitian) if it equals

its complex conjugate transpose AH .

Definition 2.37. A matrix A is unitary if A has its inverse equal to its

complex conjugate transpose AH .

Definition 2.38. A matrix A is normal if it commutes with its adjoint, i.e.

AAH = AHA.

An equivalent characterization is that A is normal if it has a complete set

of orthogonal eigenvectors, that is, if it is unitarily diagonalizable:

A = UDUH ,

where U is a unitary matrix and D is a diagonal matrix. Since A and AH

have the same eigenvalues; they are simultaneously diagonalizable (see [48]).
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Proposition 2.39. The eigenvalues of a Hermitian matrix are real.

Definition 2.40. A real number λ is said to be a singular value of an

operator A if it is the square root of one of the eigenvalues of A∗A.

Definition 2.41. Suppose A is an m × n matrix whose entries come from

the set of complex numbers C. Then there exists a factorization of the form

A = UΣV ∗,

where U is an m × m unitary matrix over C, the matrix Σ is an m × n

diagonal matrix with nonnegative real numbers on the diagonal, and V is an

n × n unitary matrix over C. This factorization is said to be a singular

value decomposition of A.

2.3.2 Matrix Representation of Operators and Sequence

Space

Let p ∈ [1,∞], X = `p(Z) and A ∈ B(X). For k ∈ Z let Ek : C →
X and Rk : X → C be extension and restriction operators, defined by

Ekx = (. . . , 0, x, 0, . . .) for x ∈ C, with the x standing at the kth place

in the sequence, and by Rkx = xk, for x = (xj)j∈Z ∈ X. Then, the matrix

entries of [A] are defined as

aij := RiAEj ∈ B(C) ∼= C, i, j ∈ Z, (2.9)

and [A] is called the matrix representation of A.

Conversely, given a matrix M = [mij]i,j∈Z with entries in C, we will say

that M induces the operator

(Bx)i =
∞∑

j=−∞

mijxj, i ∈ Z, (2.10)

if the sum converges in C for every i ∈ Z and every x = (xj)j∈Z ∈ `
p(Z) and

if the resulting operator B is a bounded mapping on `p(Z)
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It is not hard to see that if M is an infinite matrix and B is induced,

via (2.10), by M then the matrix representation [B] from (2.9) is equal to

M . It does not work quite like that the other way round: For p =∞, there

are operators A ∈ B(`p(Z))(e.g. see Example 1.26 c in [33]) for which the

matrix representation M := [A] induces an operator B that is different from

A. However, for every A ∈ B(`p(Z)) with p ∈ [1,∞), the matrix M := [A]

with entries (2.9) induces the operator B = A.

Definition 2.42. If b = (bi)i∈Z is a bounded sequence of bi ∈ C, then by Mb

we will denote the multiplication operator, acting on every x ∈ `p(Z) by

(Mbx)i = bixi ∀i ∈ Z.

Definition 2.43. For every k ∈ Z, a shift operator is defined by

(Vkx)i = xi−k i ∈ Z,

for every x ∈ `p(Z).

Lemma 2.44. For every k ∈ Z and b ∈ `∞(Z)

VkMb = MVkbVk.

Proof. Let x ∈ `p(Z) be given.

(VkMbx)i = (Mbx)i−k = bi−kxi−k = (Vkb)i (Vkx)i = (MVkbVkx)i .

Definition 2.45. Let X be any Banach space and A ∈ B(X). Define α :=

dim kerA and β := dim coker A, where coker A := X/ im A. A is called a

Fredholm operator if both numbers α and β are finite, in which case its image

is closed.

Definition 2.46. An operator A on `p(Z) is called a band operator of

band-width w if it can be written in the form

A =
∑
|γ|≤w

Mb(γ)Vγ

with b(γ) ∈ `∞(Z) for every shift operator γ ∈ Z involved in the summation.
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The matrix representation [A] of a band operator A consequently is as

the following:

Definition 2.47. We call [aij]i,j∈Z a band matrix of band-width w if all

entries aij with |i− j| > w vanish, or, what is equivalent, if the matrix is

only supported on the k − th diagonals with |k| ≤ w.

Throughout this thesis, we use the notation ‖·‖ as the 2-norm, i.e.,

‖A‖ = ‖A‖2 = sup
‖v‖2=1

‖Av‖2 .

Moreover, when mentioning “the norm” we mean the 2-norm also. The norm

of a finite dimensional matrix A is its largest singular value and the norm of

the inverse is the inverse of the smallest singular value. This is most easily

seen by looking at the singular value decomposition with unitary matrices

U, V and S = diag (s1, s2, . . . , sn) of A. Indeed, since unitary matrices are

isometries, ‖A‖ = ‖USV ∗‖ = ‖S‖ = max |sk| and∥∥A−1
∥∥ =

∥∥(V ∗)−1S−1U−1
∥∥ ,

=
∥∥S−1

∥∥
=

∥∥∥∥diag(
1

s1

,
1

s2

, . . . ,
1

sn
)

∥∥∥∥
=

1

min |sk|
.

Hence ‖(A− λI)−1‖ = (smin(A− λ))−1 where smin(A − λI) denotes the

smallest singular value of A − λI, suggesting a fourth definition of the ε-

pseudospectrum in the case of a finite matrix A:

spec ε(A) = {λ ∈ C : smin(A− λI) < ε}. (2.11)

Proposition 2.48. Let A be the matrix representation of a bounded linear

operator on a finite-dimensional Hilbert space X and λmin denote the smallest

eigenvalue of the Hermitian matrix AHA. Then

ν(A) =
√
λmin(AHA).



CHAPTER 2. PRELIMINARIES 37

Proof. Note that, if λ is an eigenvalue of AHA and x is a corresponding

eigenvector, i.e., AHAx = λx, then

λ =
(AHAx, x)

(x, x)
=

(Ax,Ax)

(x, x)
=
‖Ax‖2

‖x‖2 .

We can observe that,

λmin(AHA) = inf
x6=0

‖Ax‖2
2

‖x‖2
2

=

(
inf
x 6=0

‖Ax‖2

‖x‖2

)2

= (ν(A))2 .

Let A = (aij) be an n×n matrix and di =
∑
j 6=i

|aij| for i = 1, . . . , n. Then

the set

Di = {λ ∈ C : |λ− aii| ≤ di} i = 1, . . . , n

is called the ith Gershgorin disc of the matrix A.

Theorem 2.49. (Gershgorin Circle Theorem) Every eigenvalue of A

lies within at least one of the Gershgorin discs.

Proof. See [50].

Gershgorin’s original proof can be adapted to infinite matrices hence

yielding a spectral inclusion set that we can use as a benchmark for compar-

ison with the results of our methods 1, 1* and 2 in Chapter 3 and Chapter

4.

Theorem 2.50. Let A be the bounded linear operator which operates on all

spaces `p(Z), p ∈ [1,∞], via multiplication by (1.4). Putting

ri := max
(
|αi−1|+ |γi+1| , |αi|+ |γi|

)
(2.12)

for every i ∈ Z, it holds that

specA ⊂
⋃
i∈Z

(βi + riD), (2.13)

where βi + riD = {z ∈ C : |z−βi| ≤ ri} is the closed disk (Gershgorin circle)

with radius ri ≥ 0 around βi ∈ C.
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Proof. Suppose λ ∈ C is not contained in the right-hand side of (2.13), i.e.

|βi − λ| > ri for all i ∈ Z and

δ := inf
i∈Z

(
|βi − λ| − ri

)
> 0.

We show that A − λI is invertible on all spaces `p(Z), i.e. λ 6∈ specA. We

do this in three steps:

1. Let x ∈ `∞(Z) nonzero and ε > 0 be arbitrary and put y := (A−λI)x.

Write x = (xi)i∈Z and y = (yi)i∈Z, and fix i ∈ Z s.t. |xi| > ‖x‖∞ − ε.
From (βi − λ)xi = yi − αi−1xi−1 − γi+1xi−1 we get

|βi − λ||xi| ≤ |yi| + (|αi−1|+ |γi+1|)‖x‖∞ ≤ |yi| + ri‖x‖∞

by (2.12) and hence

‖y‖∞ ≥ |yi| ≥ |βi − λ||xi| − ri‖x‖∞
≥ (|βi − λ| − ri)‖x‖∞ − |βi − λ|ε

≥ δ‖x‖∞ − |βi − λ|ε.

Since this inequality holds for every ε > 0 (with i dependent on ε but

|βi − λ| bounded) it follows that ‖y‖∞ ≥ δ‖x‖∞, so that A − λI is

bounded below by δ > 0 and hence is injective with closed range as a

mapping `∞(Z) → `∞(Z). Consequently, A − λI is also injective on

`1(Z) ⊂ `∞(Z).

2. Now let B be the operator that acts on `p(Z), p ∈ [1,∞], via multipli-

cation by the transpose matrix A> = (aji) of (1.4) .Puttingy:=(B-λI)x

with x ∈ `∞ and arguing as in 1. (note that now |αi−1| + |γi+1| ≤ ri

is replaced by |αi| + |γi| ≤ ri), one gets that also B − λI is bounded

below by δ as a mapping `∞ → `∞(Z). So again, B − λI is injective

with closed range on `∞(Z) and hence injective on `1(Z).

3. Via the duality (u, v) :=
∑

i∈Z uivi between `1(Z) and `∞(Z), A− λI :

`∞(Z)→ `∞(Z) is the adjoint operator of B − λI : `1(Z)→ `1(Z), and

B − λI : `∞(Z) → `∞(Z) is the adjoint operator of A − λI : `1(Z) →
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`1(Z). By 1. and 2. we conclude that both A − λI and B − λI are

invertible (injective with closed and dense range) on `∞(Z) and their

inverses are bounded above by 1/δ. Consequently, their pre-adjoints

B− λI and A− λI are invertible on `1(Z) with their inverses bounded

above by 1/δ. By Riesz-Thorin interpolation (e.g. [32, section 1.5.11]),

it follows that A − λI is invertible, with the inverse bounded by 1/δ,

on all spaces `p(Z) with p ∈ [1,∞].

From ‖(A−λI)−1‖`p(Z)→`p(Z) ≤ 1/δ for all p ∈ [1,∞], we imply dist(λ, specA) ≥
δ. Recall that δ is, by its definition, the distance of λ from the right-hand

side of (2.13).

Theorem 2.50 can be generalised in different directions:

Firstly, it is clear that one can pass from two-sided infinite matrices

(aij)i,j∈Z to one-sided infinite matrices (aij)i,j∈N by replacing Z with N in

(2.13), where r2, r3, ... are as defined in (2.12) but r1 := max(|α1|, |γ2|) (i.e.

(2.12) with i = 1, α0 := 0 and γ1 := 0). Of course one can also pass to finite

matrices (aij)
n
i,j=1 and thereby recover Gershgorin’s theorem (in a somewhat

weaker form than usual since, instead of (2.12), ri := |αi−1| + |γi+1| and

ri := |αi| + |γi| are both already enough for (2.13) in the finite matrix case,

see [50]).

Secondly, our proof shows that one can go away from the tridiagonal case

(1.4) to infinite matrices with more than three (even infinitely many) nonzero

diagonals as long as the diagonal suprema are summable. So if A is given by

a matrix (aij)i,j∈I (with I = Z or N) such that∑
k∈Z

dk < ∞ with dk := sup
i, j ∈ I
i− j = k

|aij|, k ∈ Z,

in which case we say that A belongs to the Wiener algebra, then (2.13) holds

with

ri := max

 ∑
j∈I\{i}

|aij| ,
∑
j∈I\{i}

|aji|

 ≤
∑

k∈Z\{0}

dk, i ∈ I
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instead of (2.12).

2.4 Limit Operator and Pseudoergodicity

Throughout this thesis, we need the concept of limit operators. For p ∈
[1,∞], let A ∈ B(`p(Z)) be a band operator, i.e., A is induced by a band

matrix, say M . From the boundedness of A we get that every diagonal dk of

M is a bounded sequence of elements in `p(Z). We then put

‖A‖W :=
+∞∑

k=−∞

‖dk‖∞ =
+∞∑

k=−∞

sup
j∈Z
|aj+k,j|

and denote by W the closure of the set of all band operators on `p(Z) in

the norm ‖·‖W . The set W , equipped with the norm ‖·‖W turns out to be a

Banach algebra and is called the Wiener algebra.

Definition 2.51. Let A ∈ W. We will call B a limit operator of A with

respect to the sequence h = (hm)m∈N ⊆ Z with |hm| → ∞ if, entrywise,

[V−hmAVhm ]→ [B] as m→∞.

The set of all limit operators of A ∈ W is denoted by σop(A).

Proposition 2.52. Let A ∈ W. If A is a band operator then each limit

operator of A is also a band operator.

Proof. See Proposition 3.6 [33].

The following proposition is a very useful statement.

Proposition 2.53. Suppose A ∈ W. Then the following statements are

equivalent:

(FC) All limit operators of A are injective on `∞(Z).

(i) All limit operators of A are invertible on one of the spaces `p(Z) where

p ∈ [1,∞].
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(ii) All limit operators of A are invertible on the space `p(Z) for all p ∈
[1,∞] and

sup
p∈[1,∞]

sup
B∈σop(A)

∥∥B−1
∥∥
B(`p(Z))

<∞.

Further, on every `p(Z) space it holds that

specess (A) =
⋃

B∈σop(A)

spec (B) =
⋃

B∈σop(A)

spec∞point (B).

Proof. See [8].

Definition 2.54. Let D be a closed subset of C. A bounded sequence b =

(bi) ⊆ `p(Z) is said to be pseudo-ergodic with respect to D if, for every

finite set S ⊆ Z, every function c : S → D and every ε > 0, there is a γ ∈ Z
such that

sup
α∈S
|bγ+α − cα| < ε.

Moreover, we call the sequence b pseudo-ergodic if it is pseudo-ergodic with

respect to D = {bi : i ∈ Z}.

For example, a sequence (bi) ∈ {±1}Z is pseudoergodic iff every finite

pattern of ±1’s can be found somewhere in the sequence b. There is some

connection between pseudoergodicity and limit operators, which is one of the

key ingredients for studying spectral theory of random operators.

Proposition 2.55. Suppose b = (bi) ∈ `∞(Z). Then b is pseudo-ergodic

if and only if

σop(Mb) =
{
Mc : c = (ci) ⊆ {bi : i ∈ Z}

}
Proof. see [33].



Chapter 3

Spectral and Pseudospectral

Inclusion Sets for Infinite

Tridiagonal Matrices

In this chapter, we aim to compute optimal upper bounds (inclusion sets)

for the spectrum and pseudospectrum of the operator corresponding to the

infinite tri-diagonal matrix

A =



. . . . . .

. . . β−2 γ−1

α−2 β−1 γ0

α−1 β0 γ1

α0 β1 γ1

α1 β2
. . .

. . . . . .


, (3.1)

where the box marks the matrix entry at (0, 0). Here, (αi), (βi), and (γi) are

bounded sequences of complex numbers, and the operator acts by multipli-

cation by the matrix A, i.e., if x = (xj)j∈Z then y = Ax has ith entry given

by

yi = αi−1xi−1 + βixi + γi+1xi+1, i ∈ Z.

42
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The operator A is a bounded linear operator on many Banach spaces, in

particular on `p(Z) for 1 ≤ p ≤ ∞.

There are two inclusion sets to be discussed in this chapter. For n ∈ N
and k ∈ Z, let An,k and Ân,k denote the order n tri-diagonal matrices

An,k =



βk+1 γk+2

αk+1 βk+2 γk+3

. . . . . . . . .

αk+n−2 βk+n−1 γk+n

αk+n−1 βk+n


and

Ân,k =



βk+1 γk+2 αk

αk+1 βk+2 γk+3

. . . . . . . . .

αk+n−2 βk+n−1 γk+n

γk+n+1 αk+n−1 βk+n


.

Define

Σn
ε (A) :=

⋃
k∈Z

spec εAn,k and Πn
ε (A) :=

⋃
k∈Z

spec εÂn,k.

We will compute upper bounds for the spectrum and pseudospectrum of A

using the ordinary finite submatrices, An,k and the periodised submatrices,

Ân,k, calling these method 1 and method 1*, respectively. For method 1 a

main result that we will show is that, for ε > 0, n ∈ N,

spec εA ⊆ Σn
ε+f(n)(A) and specA ⊆ Σn

f(n)(A), (3.2)

where

f(n) = 2 sin

(
θ

2

)
(‖α‖∞ + ‖γ‖∞) ,

and θ is the unique solution in the range

[
π

2n+ 1
,

π

n+ 1

)
of the equation

2 sin

(
t

2

)
cos

((
n+

1

2

)
t

)
+

‖α‖ ‖γ‖
(‖α‖+ ‖γ‖)2

sin ((n− 1) t) = 0.
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In particular, if ‖α‖∞ = 0 or ‖γ‖∞ = 0 then (3.35) holds with

f(n) = 2 (‖α‖∞ + ‖γ‖∞) sin

(
π

4n+ 2

)
.

The corresponding result for method 1* is that, for ε > 0, n ∈ N,

spec εA ⊆ Πn
ε+f(n)(A) and specA ⊆ Πn

f(n)(A), (3.3)

where

f(n) = 2 sin
( π

2n

)
(‖α‖∞ + ‖γ‖∞) .

To prove the theorems in this chapter, we need the following inequality:

Lemma 3.1. For a, b ∈ R and θ > 0, we have the following inequality

(a+ b)2 ≤ a2(1 + θ) + b2(1 + θ−1),

where equality holds iff aθ = b.

Proof.

(a2 + b2) = (a2 + b2) + (aθ
1
2 − bθ−

1
2 )2 − (aθ

1
2 − bθ−

1
2 )2 (3.4)

≤ (a2 + b2) + (aθ
1
2 − bθ−

1
2 )2

= a2(1 + θ) + b2(1 + θ−1)− 2ab.

It follows that

(a+ b)2 ≤ a2(1 + θ) + b2(1 + θ−1).

Obviously, from (3.4), equality holds if and only if (aθ
1
2 − bθ− 1

2 ) = 0 if and

only if aθ = b.

For k ∈ Z define χ(n,k) ∈ `∞(Z) by

χ
(n,k)
i =

{
1 if i = k + 1, k + 2, . . . , k + n

0 otherwise.
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3.1 Inclusion sets in terms of finite section

matrices

In this section we will compute inclusion sets in terms of the finite section

matrices

An,k :=



βk+1 γk+2

αk+1 βk+2 γk+3

. . . . . . . . .

αk+n−2 βk+n−1 γk+n

αk+n−1 βk+n


, (3.5)

for n ∈ N, k ∈ Z.

Theorem 3.2. If ε > 0, n ∈ N, wj > 0, for j = 1, . . . , n, and w0 = wn+1 =

0, then

spec εA ⊆ Σn
ε+f(n)(A),

where

f(n) = ‖α‖∞

√
T−n
Sn

+ ‖γ‖∞

√
T+
n

Sn
,

Sn =
n∑
i=1

w2
i , T

−
n =

n∑
i=1

(wi−1 − wi)2, and T+
n =

n∑
i=1

(wi+1 − wi)2.

Proof. Let λ ∈ specεA. Then either there exists x ∈ `2(Z) with ‖x‖ = 1 and

‖(A− λI)x‖ < ε, or the same holds with A replaced by its adjoint. In the

first case, let y = (A− λI)x, so ‖y‖ < ε. For k ∈ Z, define e(k) ∈ `∞(Z) by

e
(k)
i =

{
wi−k if i = k + 1, k + 2, . . . , k + n,

0 otherwise,

and let

E+
i,k :=


∣∣∣e(k)
i+1 − e

(k)
i

∣∣∣ if i = k + 1, . . . , k + n,

0 otherwise,

(3.6)
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E−i,k :=


∣∣∣e(k)
i−1 − e

(k)
i

∣∣∣ if i = k + 1, . . . , k + n,

0 otherwise.

(3.7)

Then, for k ∈ Z, ∑
k∈Z

(e
(k)
i )2 = Sn. (3.8)

Further, for k ∈ Z,

∑
k∈Z

(E−i,k)
2 =

i−1∑
k=i−n

(e
(k)
i−1 − e

(k)
i )2 = T−n (3.9)

and ∑
k∈Z

(E+
i,k)

2 =
i−1∑

k=i−n

(e
(k)
i+1 − e

(k)
i )2 = T+

n . (3.10)

For k ∈ Z, let

Pk :=
∥∥Mχ(n,k)(A− λI)Mχ(n,k)Me(k)x

∥∥ = ‖(An,k − λIn)x̃n,k‖ ,

where x̃n,k := (w1xk+1, w2xk+2, . . . , wnxk+n)T , and let Qk := ‖Me(n,k)x‖ =

‖x̃n,k‖. We will prove that Pk < (ε + f(n))Qk for some k ∈ Z, which will

show that λ ∈ spec ε+f(n)An,k.

Note first that, using (3.6) and (3.7),

P 2
k =

k+n∑
i=k+1

∣∣∣yie(k)
i + αi−1(e

(k)
i−1 − e

(k)
i )xi−1 + γi+1(e

(k)
i+1 − e

(k)
i )xi+1

∣∣∣2
≤

k+n∑
i=k+1

(
|yi| e(k)

i + E−i,k |αi−1xi−1|+ E+
i,k |γi+1xi+1|

)2

.
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So, for all θ > 0 and φ > 0, by Lemma 3.1,

P 2
k ≤

k+n∑
i=k+1

[(
|yi| e(k)

i

)2

(1 + θ) + (1 + θ−1)
(
E−i,k |αi−1xi−1|+ E+

i,k |γi+1xi+1|
)2
]

≤
k+n∑
i=k+1

[(
|yi| e(k)

i

)2

(1 + θ)

+ (1 + θ−1)
(

(1 + φ)
(
E−i,k

)2 |αi−1xi−1|2 + (1 + φ−1)
(
E+
i,k

)2 |γi+1xi+1|2
)]

=
∑
i∈Z

[(
|yi| e(k)

i

)2

(1 + θ)

+ (1 + θ−1)
(

(1 + φ)
(
E−i,k

)2 |αi−1xi−1|2 + (1 + φ−1)
(
E+
i,k

)2 |γi+1xi+1|2
)]
.

Thus, and using (3.8), (3.9) and (3.10),

∑
k∈Z

P 2
k ≤ (1 + θ)

∑
i∈Z

|yi|2
∑
k∈Z

(e
(k)
i )2 + (1 + θ−1)

[
(1 + φ) ‖α‖2

∞

∑
i∈Z

|xi−1|2
∑
k∈Z

(E−i,k)
2

+(1 + φ−1) ‖γ‖2
∞

∑
i∈Z

|xi+1|2
∑
k∈Z

(E+
i,k)

2

]
= (1 + θ) ‖y‖2 Sn + (1 + θ−1)

(
(1 + φ) ‖α‖2

∞ T
−
n + (1 + φ−1) ‖γ‖2

∞ T
+
n

)
.

Similarly,
∑
k∈Z

Q2
k = Sn ‖x‖2 = Sn. Now, by Lemma 3.1,

inf
φ>0

(
(1 + φ) ‖α‖2

∞ T
−
n + (1 + φ−1) ‖γ‖2

∞ T
+
n

)
=
(
‖α‖∞

√
T−n + ‖γ‖∞

√
T+
n

)2

.

Thus,∑
k∈Z

P 2
k ≤

[
(1 + θ) ‖y‖2 +

1

Sn
(1 + θ−1)

(
‖α‖∞

√
T−n + ‖γ‖∞

√
T+
n

)2
]
Sn

=
[
(1 + θ) ‖y‖2 + (1 + θ−1) [f(n)]2

]∑
k∈Z

Q2
k.

Applying Lemma 3.1 again, we see that

inf
θ>0

[
(1 + θ) ‖y‖2 + (1 + θ−1)[f(n)]2

]
= (‖y‖+ f(n))2,
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so that ∑
k∈Z

P 2
k ≤ (‖y‖+ f(n))2

∑
k∈Z

Q2
k < (ε+ f(n))2

∑
k∈Z

Q2
k.

Thus, for some k ∈ Z,
Pk < (ε+ f(n))Qk,

so that λ ∈ spec ε+f(n)An,k.

In the case when there exists x ∈ `2(Z) with ‖x‖ = 1 and ‖(A− λI)∗x‖ < ε,

the same argument shows that λ ∈ spec ε+f(n)A
∗
n,k, for some k ∈ Z, so that

λ ∈ spec ε+f(n)An,k.

Corollary 3.3. spec A ⊆ Σn
f(n)(A).

Proof. We can see that, if

λ ∈ specA =
⋂
ε>0

spec εA ⊆
⋂
ε>0

(⋃
k∈Z

spec ε+f(n)An,k

)
,

so that for all ε > 0 there is a k ∈ Z with
∥∥(An,k − λIn)−1

∥∥ > 1

ε+ f(n)
, then

s := sup
k∈Z

∥∥(An,k − λIn)−1
∥∥ ≥ 1

f(n)
. If s >

1

f(n)
then there exists a k ∈ Z

with λ ∈ spec f(n)An,k ⊆ Σn
f(n)(A). If s =

1

f(n)
then putD :=Diag{An,k : k ∈ Z},

so that ∥∥(D − λI)−1
∥∥ = sup

k∈Z

∥∥(An,k − λIn)−1
∥∥ = s =

1

f(n)
.

Take r > 0 small enough that λ + rD ⊆ ρ(D) := C \ specD. By Theorem

2.32, there are µ1, µ2, . . . ∈ ρ(D) with |µm − λ| <
r

m
and

∥∥(D − µmI)−1
∥∥ >∥∥(D − λI)−1

∥∥ =
1

f(n)
for m = 1, 2, . . .. Hence, λ is in the closure of

spec f(n)D =
⋃
k∈Z

spec f(n)An,k = Σn
f(n)(A).

Take wk = 1, k = 1, . . . , n. Then it is obvious that Sn = n and T+
n =

T−n = 1 in Theorem 3.2 and Theorem 3.3, giving the following corollary.

Corollary 3.4. If ε > 0, n ∈ N, then

spec εA ⊆ Σn
ε+f(n)(A) and specA ⊆ Σn

f(n)(A),
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where

f(n) = (‖α‖α + ‖γ‖∞)

√
1

n
.

Note that, with this “cut-off” truncation, our function f(n) = O(n−
1
2 ) as

n→∞. Taking wk = 1−
2|n+1

2
− k|

n+ 1
, k = 1, . . . , n, a hat-function, we obtain

the following corollary:

Corollary 3.5. If ε > 0, n ∈ N, then

spec εA ⊆ Σn
ε+f(n)(A) and specA ⊆ Σn

f(n)(A),

where

f(n) =



2
√

3(‖α‖∞ + ‖γ‖∞)√
(n+ 1)(n+ 2)

, if n is even,

2
√

3(‖α‖∞ + ‖γ‖∞)√
n2 + 2n+ 3

, if n is odd.

Proof. Straightforward computations yield

Sn =


n(n+ 2)

3(n+ 1)
if n is even,

n2 + 2n+ 3

3(n+ 1)
if n is odd,

and

T+
n = T−n =


4n

(n+ 1)2
if n is even,

4

(n+ 1)
if n is odd.

Thus the conclusion follows by Theorem 3.2.

We see, by comparing Corollary 3.4 and Corollary 3.5, that careful choice

of the weights wn can reduce the value of f(n) significantly. This suggests

as a new challenging problem how to choose w1, w2, . . . , wn to minimise f(n)

in Theorem 3.2. In the following subsections we will solve this problem,

computing the minimum f(n) for:

• an operator A which has ‖γ‖∞ = 0
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• an operator A which has ‖γ‖∞ = ‖α‖∞

• an arbitrary tridiagonal operator A.

3.1.1 The Optimal Bound For the Bi-diagonal Case

Let A be a matrix of the form (3.1) which has ‖γ‖∞ = 0. Then, in Theorem

3.2,

f(n) = ‖α‖∞

√
T−n
Sn

,

and, from the definitions of Sn and T−n , we see that, where w = (w1, . . . , wn)T ,

Sn = ‖w‖2
2

and

T−n = ‖Bnw‖2
2

where

Bn =


1

−1 1

−1 1

−1 1

−1 1

 .

Thus

BT
nBn =


1 −1

1 −1

1 −1

1 −1

1




1

−1 1

−1 1

−1 1

−1 1

 =



2 −1

−1 2 −1
. . . . . . . . .

−1 2 −1

−1 1


.

We can notice that BT
nBn is symmetric. Moreover, from Corollary 2.25 we

know that all eigenvalues of BT
nBn are non-negative real numbers. From
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Proposition 2.48, we can see that

λmin(BT
nBn) = (ν(Bn))2 =

(
inf
x 6=0

‖Bnx‖2

‖x‖2

)2

=

inf

√
T−n
Sn

2

= inf
T−n
Sn

.

(3.11)

where λmin(BT
nBn) denotes the smallest eigenvalue of BT

nBn.

Suppose that w = (w1, w2, . . . , wn)T 6= 0, λ ∈ C and BT
nBnw = λw. Thus,

we have

− wj−1 + (2− λ)wj − wj+1 = 0 for j = 1, . . . , n− 1, (3.12)

and

−wn−1 + wn = 0,

where w0 = 0. Now, (3.12) holds iff

wj = Dmj
1 + Emj

2, j = 0, 1, . . . , n,

where m1,m2 are the roots of m2 − (2 − λ)m + 1 = 0, and D and E are

constants. Note that, m1m2 = 1 and m1 +m2 = 2− λ.

Put m1 = eiθ, for some θ ∈ C, giving

λ = 2− (eiθ + e−iθ) = 2− 2 cos θ = 4 sin2

(
θ

2

)
.

Since

wj = D(eiθ)j + E(e−iθ)j,

it follows that

wj = B cos(jθ) + C sin(jθ), j = 1, 2, . . . , n,

for some constant B and C. Since w0 = 0, we have B = 0 so that wj =

C sin(jθ), with C 6= 0. We can see that θ is not a multiple of 2π because this

would make wj = 0 for all j = 1, 2, . . . , n. Since −wn−1 + (1− λ)wn = 0, we

obtain

cos

((
n+

1

2

)
θ

)
sin(

θ

2
) = 0,
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so that θ =
(2r − 1)π

2n+ 1
where r = 1, . . . , n. That means the smallest eigen-

value of BT
nBn is 4 sin2(

π

4n+ 2
) with the corresponding eigenvector being

wj = sin

(
jπ

2n+ 1

)
, j = 1, . . . , n.

Thus, from (3.11), we see that we have shown that

inf
w∈Rn 6=0

√
T−n
Sn

=
√
λmin(BT

nBn) = 2 sin

(
π

4n+ 2

)
.

Thus, in the bidiagonal case, Theorem 3.2 has the following corollary.

Corollary 3.6. Let A be a matrix of the form (3.1) with ‖γ‖∞ = 0. If ε > 0,

n ∈ N , then

spec εA ⊆ Σn
ε+f(n)(A) and specA ⊆ Σn

f(n)(A),

where

f(n) = 2 sin

(
π

4n+ 2

)
‖α‖∞ .

3.1.2 The Optimal Bound For the case ‖α‖∞ = ‖γ‖∞

Let A be a matrix of the form (3.1) which has ‖α‖∞ = ‖γ‖∞. From Theorem

3.2 we have that, for n ∈ N,

f(n) = ‖α‖∞

√
T−n
Sn

+ ‖γ‖∞

√
T+
n

Sn
,

where Sn =
n∑
i=1

w2
i , T

−
n =

n∑
i=1

(wi−1 − wi)2, and T+
n =

n∑
i=1

(wi+1 − wi)2,

where w0 = wn+1 = 0. We will minimise f(n) under the constraint, which

seems appropriate for symmetry reasons when ‖α‖∞ = ‖γ‖∞, that wj =

wn+1−j for j = 1 . . . , n, which implies that

T+
n = T−n . (3.13)
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Since ‖α‖∞ = ‖γ‖∞ and (3.13) holds, it follows that our f(n) can be written

of the form

f(n) = 2 ‖α‖∞

√
T−n
Sn

.

We will consider the case when n is even and odd separately. Firstly, if

n = 2k for some k ∈ N, it follows that

T−n
Sn

=

n∑
i=1

(wi−1 − wi)2

n∑
i=1

w2
i

=
1
2
w2

1 + (w2 − w1)2 + · · ·+ (wk − wk−1)2

w2
1 + · · ·+ w2

k

=
‖Ckw‖2

2

‖w‖2
2

where w = (w1, . . . , wk)
T and

C =



1√
2

−1 1

−1 1
. . . . . .

−1 1


k×k

,

so that

CCT =



1
2
− 1√

2

− 1√
2

2 −1

−1 2
. . .

. . . . . . −1

−1 2


k×k

.

From Proposition 2.48, we have

inf

√
T−n
Sn

= ν(C) = smin(C) =
√
λmin(CCT ).
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We know that λ is an eigenvalue of CCT with eigenvector v =


vk
...

v1

 iff



1
2
− λ − 1√

2

− 1√
2

2− λ −1
. . . . . . . . .

−1 2− λ −1

−1 2− λ





vk

vk−1

...

v2

v1


= 0. (3.14)

From equation (3.14) we have that (CCT − λI)v = 0 iff

(
1

2
− λ)vk −

1√
2
vk−1 = 0, (3.15)

− 1√
2
vk + (2− λ)vk−1 − vk−2 = 0, (3.16)

− vj+1 + (2− λ)vj − vj−1 = 0 for j = 1, 2, . . . , k − 2, (3.17)

where

v0 := 0. (3.18)

Equation (3.17) has general solutions

vj = A cos(jθ) +B sin(jθ) for j = 1, 2, . . . , k − 1

where A and B are constants and

λ = 2(1− cos θ) = 4 sin2

(
θ

2

)
.

Since v0 = 0, it follows that A = 0. Thus, taking B = 1,

vj = sin(jθ),

for j = 1, . . . , k − 1. From equation (3.16), we can see that

− 1√
2
vk + (2− λ)vk−1 − vk−2 = 0

⇔ − 1√
2
vk + 2 cos θ sin [(k − 1)θ]− sin [(k − 2)θ] = 0

⇔ − 1√
2
vk + sin(kθ) = 0.
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Thus vk =
√

2 sin(kθ). Note that θ is not a multiple of 2π since the eigen-

vector v is not the zero vector. Using equation (3.15) we see that λ is an

eigenvalue iff

(
1

2
− λ)(

√
2 sin(kθ))− 1√

2
(sin(k − 1)θ) = 0

⇔ (1− 2λ) sin(kθ)− sin((k − 1)θ) = 0

⇔ (4 cos θ − 3) sin(kθ)− sin((k − 1)θ) = 0

⇔ 3(cos θ − 1) sin(kθ) + cos(kθ) sin θ = 0

⇔ −6 sin2(
θ

2
) sin(kθ) + 2 cos(kθ) sin(

θ

2
) cos(

θ

2
) = 0.

Since θ is not a multiple of 2π, this implies that

− 3 sin(
θ

2
) sin(kθ) + cos(kθ) cos(

θ

2
) = 0

⇔ 2 cos((k +
1

2
)θ)− cos((k − 1

2
)θ) = 0.

It follows that

λmin(CkC
T
k ) = 4 sin2(

θ∗

2
),

where θ∗ is the smallest positive solution of F (θ) = 0, and

F (θ) = 2 cos((k +
1

2
)θ)− cos((k − 1

2
)θ).

To locate the solution θ∗ of equation F (θ) = 0, it is helpful to show that

there exists a ∈ R+ such that θ∗ ∈ (0, a) and F is also a monotonic function

on (0, a). Note that

F (0) = 1 > 0 and F

(
π

2(k + 1
2
)

)
= − cos

(
(k − 1

2
)

(k + 1
2
)

π

2

)
= − sin

(
π

(2k + 1)

)
< 0.

(3.19)

Further,

F ′(θ) = −
[
(2k + 1) sin((k +

1

2
)θ)− (k − 1

2
sin((k − 1

2
)θ)

]
= −

[
(k +

3

2
) sin((k +

1

2
)θ) + (k − 1

2
)

(
sin((k +

1

2
)θ)− sin((k − 1

2
)θ)

)]
.
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From the fact that the function sinx is an increasing function for x ∈ (0,
π

2
),

it follows that sin((k+ π
2
)θ)− sin((k− 1

2
)θ) > 0. Therefore F ′(θ) < 0, i.e., F

is a monotonic function, on the interval

(
0,

π

2(k + 1
2
)

)
. Therefore, θ∗ is the

unique solution of F (θ) = 0 in the interval

(
0,

π

2k + 1

)
. Moreover, we can

also notice that

F

(
π

2k + 3

)
= 2 cos

(
π

2
− π

2k + 3

)
− cos

(
π

2
− 2π

2k + 3

)
= 2 sin

(
π

2k + 3

)
− sin

(
2π

2k + 3

)
= 2 sin

(
π

2k + 3

)
− 2 sin

(
π

2k + 3

)
cos

(
π

2k + 3

)
> 0.

Hence and from (3.19), we know that θ∗ ∈
(

π

2k + 3
,

π

2k + 1

)
.

Now we are now considering the second case when n = 2k + 1 for some

k ∈ N. We have then that

T−n
Sn

=
1
2
w2

1 + (w1 − w2)2 + · · ·+ (wk − wk+1)2

w2
1 + · · ·+ w2

k + 1
2
w2
k+1

=
‖Dw‖2

2

‖w‖2
2

where w = (w1, . . . , wk,
1√
2
wk+1)T and

D =



1√
2

−1 1
. . . . . .

−1 1

−1
√

2


(k+1)×(k+1)

,

so that

DDT =



1
2
− 1√

2

− 1√
2

2 −1
. . . . . . . . .

−1 2 −1

−1 3


.
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We know that λ is an eigenvalue of DDT with eigenvector v =


vk+1

...

v1

 iff



1

2
− λ − 1√

2

− 1√
2

2− λ −1

. . . . . . . . .

−1 2− λ −1

−1 3− λ





vk+1

vk
...

v2

v1


= 0. (3.20)

From equation (3.14), we have that (DDT − λI)v = 0 iff

(
1

2
− λ)vk+1 −

1√
2
vk = 0, (3.21)

− 1√
2
vk+1 − (2− λ)vk − vk−1 = 0, (3.22)

− vj+1 + (2− λ)vj − vj−1 = 0 for j = 2, . . . , k − 1, (3.23)

and

− v2 + (3− λ)v1 = 0. (3.24)

Equation (3.23) has the general solution

vj = A cos((j − 1)θ) +B sin((j − 1)θ), j = 2, . . . , k,

where A and B are constants and

λ = 2(1− cos θ) = 4 sin2

(
θ

2

)
.

Obviously, we have v1 = A. From equation (3.24), we have

− v2 + (3− λ)v1 = 0

⇔ −[A cos θ +B sin θ] + [1 + 2 cos θ]A = 0

⇔ B =
(1 + cos θ)A

sin θ
.
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Thus, we can see that the constant B depends on A. We choose A = 1 then

B =
1 + cos θ

sin θ
. We have then that

vj = cos((j − 1)θ) +

(
1 + cos θ

sin θ

)
sin((j − 1)θ)

=
cos((j − 1)θ) sin θ

sin θ
+

sin((j − 1)θ)

sin θ
+

cos(θ) sin((j − 1)θ)

sin θ

=
sin θ cos((j − 1)θ) + cos θ sin((j − 1)θ)

sin θ
+

sin((j − 1)θ)

sin θ

=
sin(jθ) + sin((j − 1)θ)

sin θ

=
2 sin((j − 1

2
)θ) cos( θ

2
)

2 sin( θ
2
) cos( θ

2
)

,

for j = 1, 2, . . . , k From equation (3.21), it follows that

vj =
sin((j − 1

2
)θ)

sin( θ
2
)

, j = 1, . . . , k,

and

vk+1 =

√
2 sin((k + 1

2
)θ)

sin( θ
2
)

.

Note that θ is not a multiple of 2π since the eigenvector v is not the zero

vector. Using equation (3.21),

(
1

2
− λ)vk+1 −

1√
2
vk = 0

⇔ (
1

2
− 2 + 2 cos θ)

√
2 sin((k + 1

2
)θ)

sin( θ
2
)

−
sin((k − 1

2
)θ)

√
2 sin( θ

2
)

= 0.

Multiplying both sides by
√

2 sin( θ
2
), we see that

⇔ (4 cos θ − 3) sin((k +
1

2
)θ)− sin((k − 1

2
)θ) = 0

⇔ 3(cos θ − 1) sin((k +
1

2
)θ) + cos((k +

1

2
)θ) sin θ = 0

⇔ −6 sin2(
θ

2
) sin((k +

1

2
)θ) + 2 cos((k +

1

2
)θ) sin(

θ

2
) cos(

θ

2
) = 0.
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Since θ is not a multiple of 2π, this implies that

− 3 sin(
θ

2
) sin((k +

1

2
)θ) + cos((k +

1

2
)θ) cos(

θ

2
) = 0

⇔ 2 cos((k + 1)θ)− cos(kθ) = 0.

Let

F (θ) = 2 cos((k + 1)θ)− cos(kθ).

Similarly to the first case, we will show that there exists a unique solution

θ∗ ∈
(

0,
π

2(k + 1)

)
to the equation F (θ) = 0. We can see that

F (0) = 1 > 0 and F

(
π

2(k + 1)

)
= − cos

(
kπ

2(k + 1)

)
= − sin

(
π

2(k + 1)

)
< 0.

(3.25)

Further,

F ′(θ) = − [2(k + 1) sin((k + 1)θ)− (k sin(kθ)]

= − [(k + 1) sin((k + 1)θ) + k(sin((k + 1)θ)− sin(kθ))] .

From the fact that the function sin x is an increasing function when x ∈
(0,

π

2
), it follows that sin((k + 1)θ)− sin(kθ) > 0 for every θ on the interval(

0,
π

2(k + 1)

)
. Therefore F ′(θ) < 0, i.e. F is a monotonic function on the

interval

(
0,

π

2(k + 1)

)
.

Therefore θ∗ is the smallest positive solution of 2 cos((k+1)θ)−cos(kθ) =

0 which is the unique solution in the interval (0,
π

2(k + 1)
). Moreover, we can

also see that

F (
π

2(k + 2)
) = 2 cos

((
(k + 1)π

2k + 4

))
− cos

(
kπ

2k + 4

)
= 2 cos

((
k + 1

k + 2
· π

2

))
− cos

(
k

k + 2
· π

2

)
= 2 cos

(
π

2
− π

k + 2

)
− cos

(
π

2
− 2π

k + 2

)
= 2 sin

(
π

k + 2

)
− sin

(
2π

k + 2

)
> 0.
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Hence, from equation (3.25) and F (
π

2(k + 2)
) > 0, we know that θ∗ ∈(

π

2(k + 2)
,

π

2(k + 1)

)
. Hence, λmin(DDT ) = 4 sin2

(
θ∗

2

)
.

As a consequence, we can see that, from Theorem 3.2, for ε > 0, n ∈ N ,

spec εA ⊆ Σn
ε+f(n)(A) and specA ⊆ Σn

f(n)(A),

where

f(n) =


2(‖α‖∞ + ‖γ‖∞) sin(

θ1

2
) if n = 2m+ 1

2(‖α‖∞ + ‖γ‖∞) sin(
θ2

2
) if n = 2m

where θ1 is the unique solution, in the interval

(
π

2(m+ 2)
,

π

2(m+ 1)

)
, of

the equation

2 cos((m+ 1)θ)− cos(mθ) = 0,

and θ2 is the unique solution, in the interval

(
π

2m+ 3
,

π

2m+ 1

)
, of the

equation

2 cos((m+
1

2
)θ)− cos((m− 1

2
)θ) = 0.

We can rewrite these results more neatly as the following corollary:

Corollary 3.7. If ε > 0, n ∈ N and ‖α‖∞ = ‖γ‖∞, then

spec εA ⊆ Σn
ε+f(n)(A) and specA ⊆ Σn

f(n)(A),

where

f(n) = 2(‖α‖∞ + ‖γ‖∞) sin(
θ

2
)

where θ is the unique solution, in the interval

(
π

n+ 3
,

π

n+ 1

)
, of the equa-

tion

2 cos((
n+ 1

2
)θ)− cos((

n− 1

2
)θ) = 0.
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3.1.3 The optimal bound for an arbitrary Tridiagonal

matrix.

Let A be a matrix of the form (3.1). From Theorem 3.2 we have that, for

n ∈ N,

f(n) = ‖α‖∞

√
T−n
Sn

+ ‖γ‖∞

√
T+
n

Sn
,

where Sn =
n∑
i=1

w2
i , T

−
n =

n∑
i=1

(wi−1 − wi)2, and T+
n =

n∑
i=1

(wi+1 − wi)2. Let

r = ‖α‖∞ and s = ‖γ‖∞. By lemma 3.1 we have then that,

(f(n))2 = min
θ>0

[
r2(1 + θ)

T−n
Sn

+ s2(1 + θ−1)
T+
n

Sn

]
.

Let

Bn =



1

−1 1
. . . . . .

−1 1

−1 1


.

Note that B∗n = BT
n , since Bn is real. We have

T−n = ‖Bnw‖2 = (Bnw)∗Bnw = w∗B∗nBnw

while

T+
n =

∥∥BT
nw
∥∥2

= w∗BnB
∗
nw.

So

r2(1 + θ)
T−n
Sn

+ s2(1 + θ−1)
T+
n

Sn
=
w∗Dnw

w∗w
(3.26)

where Dn = r2(1 + θ)B∗nBn + s2(1 + θ−1)BnB
∗
n. It is easy to see that Dn is

symmetric, real and positive definite. In fact,

w∗Dnw ≥
[
r2(1 + θ) + s2(1 + θ−1)

]
λ1

where λ1 is the smallest eigenvalue of B∗nBn and BnB
∗
n.
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For 0 ≤ φ ≤ 1, let

En(φ) = φB∗nBn + (1− φ)BnB
∗
n

so En(φ) is the matrix

En(φ) =



1 + φ −1

−1 2 −1
. . . . . . . . .

−1 2 −1

−1 2− φ


.

Let µ(φ) = λmin (En(φ)), the smallest eigenvalue of a self-adjoint matrix

En(φ). From equation (3.26), we have

Dn =
(
r2(1 + θ) + s2(1 + θ−1)

)( r2(1 + θ)

r2(1 + θ) + s2(1 + θ−1)
B∗nBn

+
s2(1 + θ−1)

r2(1 + θ) + s2(1 + θ−1)
BnB

∗
n

)
=
(
r2(1 + θ) + s2(1 + θ−1)

)
En

(
r2(1 + θ)

r2(1 + θ) + s2(1 + θ−1)

)
. (3.27)

We know that λ is an eigenvalue of En(φ) with an eigenvector v = (vn, . . . , v1)T

iff 

1 + φ −1

−1 2 −1
. . . . . . . . .

−1 2 −1

−1 2− φ





vn

vn−1

...

v2

v1


= 0. (3.28)

From equation (3.28),we have that (En(φ)− λ)v = 0 iff

[(1 + φ)− λ] vn − vn−1 = 0 (3.29)

− vj+1 + (2− λ)vj − vj−1 = 0, for j = 2, . . . , n− 1, (3.30)

and

− v2 + [(2− φ)− λ] v1 = 0. (3.31)
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Equation (3.30) implies that

vj = A cos ((j − 1)θ) +B sin ((j − 1)θ) , j = 1, . . . , n, (3.32)

for some constants A and B where λ = 2− 2 cos θ = 4 sin2

(
θ

2

)
. In equation

(3.32), arbitrarily set A = sin θ, so that v1 = sin θ. Then equation (3.31) is

satisfied if and only if

− sin θ cos θ −B sin θ + (2 cos θ − φ) sin θ = 0

i.e. if and only if

B = cos θ − φ.

Therefore if v is an eigenvector of En(φ), then, to within multiplication by a

constant,

vj = sin θ cos [(j − 1)θ] + (cos θ − φ) sin [(j − 1)θ]

= sin(jθ)− φ sin ((j − 1)θ) , j = 1, . . . , n. (3.33)

Substituting vj in equation (3.33) into equation (3.29), we see that λ is an

eigenvalue of En(φ) iff λ = 4 sin2

(
θ

2

)
with θ 6= 0 and

F (θ) = 0,

where F (t) = (2 cos t−1) sin(nt)−sin [(n− 1)t]+φ(1−φ) sin [(n− 1)t] , t ≥ 0.

Note that

F (t) = 2 cos t sin(nt)− 2 cos

(
t

2

)
sin

((
n− 1

2

)
t

)
+ φ(1− φ) sin ((n− 1) t)

= cos t sin(nt)− sin(nt) + sin t cos(nt) + φ(1− φ) sin ((n− 1) t)

= sin ((n+ 1) t)− sin(nt) + φ(1− φ) sin ((n− 1) t)

= 2 sin

(
t

2

)
cos

((
n+

1

2

)
t

)
+ φ(1− φ) sin ((n− 1) t) (3.34)

Clearly,

µ(φ) = 4 sin2

(
θ

2

)
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where θ is the smallest positive solution of the equation F (t) = 0. It is

obvious to see that µ(φ) = µ(1− φ). Now

F

(
π

n+ 1

)
= 2 sin

(
π

2n+ 2

)
cos

(
(2n+ 1)π

2n+ 2

)
+ φ(1− φ) sin

(
(n− 1)π

n+ 1

)
= 2 sin

(
π

2n+ 2

)
cos

(
π − π

2n+ 2

)
+ φ(1− φ) sin

(
π − 2π

n+ 1

)
= −2 sin

(
π

2n+ 2

)
cos

(
π

2n+ 2

)
+ φ(1− φ) sin

(
2π

n+ 1

)
= − sin

(
π

n+ 1

)
+ φ(1− φ) sin

(
2π

n+ 1

)
< − sin

(
π

n+ 1

)
+ 2φ(1− φ) sin

(
π

n+ 1

)
= sin

(
π

n+ 1

)
(2φ(1− φ)− 1) < 0

and

F

(
π

2n+ 1

)
= 2 sin

(
π

2(2n+ 1)

)
cos

(
(2n+ 1)π

2(2n+ 1)

)
+ φ(1− φ) sin

(
(n− 1)π

2n+ 1

)
= 2 sin

(
π

2(2n+ 1)

)
cos
(π

2

)
+ φ(1− φ) sin

(
(n− 1)π

2n+ 1

)
> 0

Also, from (3.34),

F ′(t) = −(2n+ 1) sin

(
t

2

)
sin

[(
n+

1

2

)
t

]
+ cos

(
t

2

)
cos

[(
n+

1

2

)
t

]
+ φ(1− φ)(n− 1) cos ((n− 1)t)

= −(2n+ 1) sin

(
t

2

)
sin

[(
n+

1

2

)
t

]
+ cos

(
t

2

)
cos

[(
n+

1

2

)
t

]
+ φ(1− φ)(n− 1)

{
cos

[(
n+

1

2

)
t

]
cos

(
3t

2

)
+ sin

[(
n+

1

2

)
t

]
sin

(
3t

2

)}
= A(t) cos

[(
n+

1

2

)
t

]
+B(t) sin

[(
n+

1

2

)
t

]
where

A(t) = cos

(
t

2

)
+ φ(1− φ)(n− 1) cos

(
3t

2

)
,
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and

B(t) = φ(1− φ)(n− 1) sin

(
3t

2

)
− (2n+ 1) sin

(
t

2

)
.

Since t ∈
[

π

2n+ 1
,

π

n+ 1

)
, it follows that

π

2
≤ (2n+ 1)t

2
≤ π

2

(
2n+ 1

n+ 1

)
< π.

Therefore,

cos

[(
n+

1

2

)
t

]
< 0 and sin

[(
n+

1

2

)
t

]
> 0.

In order to show that F ′(t) < 0, , it suffices to prove that A(t) > 0 and B(t) <

0. Note that if t ∈
[

π

2n+ 1
,

π

n+ 1

)
then

3t

2
∈
[

3π

2(2n+ 1)
,

3π

2(n+ 1)

)
. Thus,

cos

(
3t

2

)
> 0 and, hence, A(t) > 0. We can see that

B(t) = φ(1− φ)(n− 1)

[
sin t cos

(
t

2

)
+ sin

(
t

2

)
cos t

]
− (2n+ 1) sin

(
t

2

)
= sin

(
t

2

)
[φ(1− φ)(n− 1) cos t− (2n+ 1)] + φ(1− φ)(n− 1)2 sin

(
t

2

)
cos2

(
t

2

)
≤ sin

(
t

2

){
1

4
(n− 1) cos t− (2n+ 1) +

1

2
cos2

(
t

2

)}
< 0,

since cos t ≤ 1. Thus, F ′(t) < 0 for t ∈
[

π

2n+ 1
,

π

n+ 1

)
. So θ, defined

initially as the smallest positive solution of F (t) = 0 in

[
π

2n+ 1
,

π

n+ 1

)
, is

the unique solution in this interval.

To show that θ ∈
[

π

2n+ 1
, θ∗
]

where θ∗ <
π

n+ 1
is the smallest positive

solution of F (t) = 0 in the case φ =
1

2
, it is equivalent to prove (since

π

2n+ 1
is the solution of F (t) = 0 in the case φ = 0) that

µ(0) ≤ µ(φ) ≤ µ

(
1

2

)
.
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Since En(φ) = φEn(1) + (1− φ)En(0), it follows that

µ(φ) = min
‖w‖=1

(φw∗B∗nBnw + (1− φ)φw∗BnB
∗
nw)

≥ φµ(1) + (1− φ)µ(0) = µ(0) since µ(1) = µ(0).

Also 2En(
1

2
) = En(φ) + En(1− φ), so that

µ(
1

2
) =

1

2

[
min
‖w‖=1

(φw∗En(φ)w + w∗En(1− φ)w)

]
≥ 1

2
[µ(φ) + µ((1− φ)) = µ(φ)] since µ(φ) = µ(1− φ).

From equation (3.27), we have

(f(n))2 = min
τ>0

λmin(Dn)

= min
τ>0

(
r2(1 + τ) + s2(1 + τ−1)

)
µ

(
r2(1 + τ)

r2(1 + τ) + s2(1 + τ−1)

)
.

Let φ =
r2 (1 + τ)

r2 (1 + τ) + s2 (1 + τ−1)
, then τ =

s2φ

r2(1− φ)
, so that

(f(n))2 = inf
0<φ<1

{(
r2

φ
+

s2

1− φ

)
µ(φ)

}
.

Theorem 3.8. For ε > 0, n ∈ N,

spec εA ⊆ Σn
ε+f(n)(A) and specA ⊆ Σn

f(n)(A), (3.35)

where

f(n) = 2 inf
0<φ<1

√‖α‖2

φ
+
‖γ‖2

1− φ
sin

(
θ

2

) , (3.36)

and θ is the unique solution in the range

(
π

2n+ 1
,

π

n+ 1

)
of the equation

2 sin

(
t

2

)
cos

((
n+

1

2

)
t

)
+ φ(1− φ) sin ((n− 1) t) = 0.
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Taking φ =
r

r + s
in equation (3.36), so that τ :=

s2φ

r2(1− φ)
=
r

s
, we get

Corollary 3.9. If ε > 0, n ∈ N, then

spec εA ⊆ Σn
ε+f(n)(A) and specA ⊆ Σn

f(n)(A),

where

f(n) = 2 sin

(
θ

2

)
(‖α‖∞ + ‖γ‖∞) ,

and θ is the unique solution in the range

[
π

2n+ 1
,

π

n+ 1

)
of the equation

2 sin

(
t

2

)
cos

((
n+

1

2

)
t

)
+

‖α‖ ‖γ‖
(‖α‖+ ‖γ‖)2

sin ((n− 1) t) = 0.

In particular, if ‖α‖∞ = 0 or ‖γ‖∞ = 0 then (3.35) holds with

f(n) = 2 (‖α‖∞ + ‖γ‖∞) sin

(
π

4n+ 2

)
.

Taking φ =
1

2
in equation (3.36), then τ =

s2φ

r2(1− φ)
=
s2

r2
, and we get

Corollary 3.10. If ε > 0, n ∈ N, then

spec εA ⊆ Σn
ε+f(n)(A) and specA ⊆ Σn

f(n)(A),

where

f(n) = 2
√

2 sin

(
θ

2

)√
‖α‖2

∞ + ‖γ‖2
∞,

and θ is the unique solution in the range

(
π

n+ 1
− 2π

(n+ 1)(n+ 3)
,

π

n+ 1

)
of the equation

2 cos

((
n+ 1

2

)
t

)
− cos

((
n− 1

2

)
t

)
= 0. (3.37)

Proof. We need to show that

2 sin

(
t

2

)
cos

((
n+

1

2

)
t

)
+

1

4
sin ((n− 1) t) = 0. (3.38)



3.2 NUMERICAL EXAMPLES FOR METHOD 1 68

and (3.37) are equivalent. Since

2 cos

((
n+ 1

2

)
t

)
− cos

((
n− 1

2

)
t

)
= 0,

multiplying both sides by 2 sin
(n+ 1)t

2
− sin

(n− 1)t

2
, we have

sin ((n+ 1)t)− sin(nt) +
1

4
sin ((n− 1)t) = 0,

which is equivalent to (3.38).

3.2 Numerical Examples for Method 1

3.2.1 Shift Operator

Corollary 3.3 and Corollary 3.6 tell us that in the bidiagonal case, ‖γ‖∞ = 0,

spec εA ⊆ Σn
ε+f(n)(A) and specA ⊆ Σn

f(n)(A). (3.39)

for all ε > 0 and n ∈ N, where

f(n) = 2 sin

(
π

4n+ 2

)
‖α‖∞ . (3.40)

We will look at the simplest example of this type, the so-called right shift

operator

A = V1 :=



. . . . . .

. . . 0 0

1 0 0

1 0
. . .

. . . . . .


(3.41)

and check how sharp (or how generous) the inclusions (3.39) are in this case.

In other words, we ask by what function f∗(n) one could replace f(n) in (3.39)
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so that the inclusions still hold for the case of the shift operator (3.41). Note

that every principal submatrix of size n× n, An,k, is the same, i.e.,

An,k = An,1 = An :=



0 0

1 0 0
. . . . . . . . .

1 0 0

1 0


n×n

. (3.42)

Obviously, the spectrum (set of eigenvalues) of An is {0}. We will show that

in this case

f∗(n) = f(n) = 2 sin

(
π

4n+ 2

)
i.e. (3.39) with f(n) given by (3.40) is already the sharpest approximation

for the inclusion sets. In order to prove this, we will show that

spec f(n)An = B1(0). (3.43)

so that specA = T would not be covered by spec f(n)An if we chose f(n) any

smaller.

Proposition 3.11. Let

g(λ) := ν (λ− An)2 = min spec [(λ− An)∗(λ− An)] .

Then the following hold:

1. g(1) = [f(n)]2

2. g(λ) < g(µ) for 0 ≤ λ < µ

3. g(reiθ) = g(r) for r ≥ 0, θ ∈ R

where f(n) = 2 sin

(
π

4n+ 2

)
.

As a consequence of Proposition 3.11, we get (3.43) and hence the sharp-

ness of (3.39). In order to prove the above proposition, we need to prove the

following useful lemma.
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Lemma 3.12. If x = (x1, . . . , xn)T ∈ Cn, with ‖x‖2 = 1 and x̃ = (x̃1, . . . , x̃n)T ∈
Cn defined by x̃j = e−ijθxj, j = 1, . . . , n, then ‖x̃‖2 = 1 and for r ≥ 0,

‖(r − An)x‖2 =
∥∥(reiθ − An)x̃

∥∥
2
.

Thus, ν(r − An) = ν(reiθ − An).

Proof.

‖x̃‖2 =

√
|x1e−iθ|2 + |x2e−2iθ|2 + . . .+ |xne−niθ|2

=

√
|x1|2 + |x2|2 + . . .+ |xn|2

= ‖x‖2 = 1.

For r ≥ 0 we can see that

(reiθ − An)x̃ =


rx1

(−x1 + rx2)e−iθ

...

(−xn−1 + rxn)e−(n−1)iθ

 .

So,∥∥(reiθ − An) x̃∥∥2
=

√
|rx1|2 + |(−x1 + rx2)e−iθ|2 + . . .+ |(−xn−1 + rxn)e−(n−1)iθ|2

=

√
|rx1|2 + |(−x1 + rx2)|2 + . . .+ |(−xn−1 + rxn)|2

= ‖(r − Vn)x‖2 .

Therefore,

ν(r − An) = min
‖x‖=1

‖(r − An)x‖2 = min
‖x̃‖=1

∥∥(reiθ − An)x̃
∥∥

2
= ν(reiθ − An).

We are now ready to prove Proposition 3.11.

Proof. [1.] From Theorem 2.16 and Proposition 2.48,

g(1) = [ν(1− An)]2 =

inf

√
T−n
Sn

2

= [f(n)]2.
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[2.] Note that

(λ−An)∗(λ−An) =



λ −1

λ −1

λ
. . .
. . . −1

λ


n×n



λ

−1 λ

−1
. . .
. . . λ

−1 λ


n×n

i.e.

(λ− An)∗(λ− An) =



λ2 −λ
−λ λ2 + 1 −λ

. . . . . . . . .

−λ λ2 + 1 −λ
−λ λ2 + 1


n×n

Note that λ̂ is an eigenvalue of (λ − An)∗(λ − An) with an eigenvector w =

(wn, wn−1, . . . , w1)T iff

(λ− An)∗(λ− An)w = λ̂w,

which can be written as follows[
λ2 − λ̂

]
wn − λwn−1 = 0 (3.44)

−λwj+1 +
[
(λ2 + 1)− λ̂

]
wj − λwj−1 = 0 j = 1, . . . , n− 1 (3.45)

w0 = 0. (3.46)

Equation (3.45) implies that

wj = Dmj
1 + Emj

2 j = 1, . . . , n

where m1 and m2 are roots of λm2 − (1 + λ2 − λ̂)m + λ = 0 i.e. m1m2 = 1
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and m1 +m2 = −1

λ
(1 + λ2 − λ̂). Thus, put m1 = eiθ

λ̂ = (λ2 + 1) + λ(m1 +m2)

= (λ2 + 1) + λ(eiθ + e−iθ)

= (λ2 + 1) + 2λ cos θ. (3.47)

Next, we want to show that if λ1 < λ2 then λ̂1 < λ̂2. Since wj = B cos(jθ) +

C sin(jθ) and w0 = 0, it follows that B = 0. Hence, from equation (3.44)

and (3.47), we obtain

−λ sin[(n− 1)θ] +
(
λ2 − λ̂

)
sin(nθ) = 0

−λ sin[(n− 1)θ] + (1 + 2λ cos θ) sin(nθ) = 0

λ sin[(n+ 1)θ] + sin(nθ) = 0.

Therefore,

λ = − sin(nθ)

sin[(n+ 1)θ]
.

Note that

λ1 < λ2 ⇔ −
sin(nθ1)

sin[(n+ 1)θ1]
< − sin(nθ2)

sin[(n+ 1)θ2]

⇔ sin(nθ1)

sin[(n+ 1)θ1]
>

sin(nθ2)

sin[(n+ 1)θ2]
.

We can show by mathematical induction that sin kθ < k sin θ for k ∈ N and

note that

f ′(θ) =
n sin[(n+ 1)θ] cos(nθ)− (n+ 1) sin(nθ) cos[(n+ 1)θ]

sin2[(n+ 1)θ]

=
n sin θ − sin(nθ) cos[(n+ 1)θ]

sin2[(n+ 1)θ]

≥ n sin θ − sin(nθ)

sin2[(n+ 1)θ]

> 0,

where

f(θ) =
sin(nθ)

sin[(n+ 1)θ]
.
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Hence, f(θ) is an increasing function. Hence, λ1 < λ2 ⇔ θ1 > θ2. Therefore,

from equation (3.47),

λ1 < λ2 ⇒ θ1 > θ2 ⇒ cos θ1 < cos θ2 ⇒ λ̂1 < λ̂2,

i.e. g(λ) < g(µ) for 0 ≤ λ < µ.

[3.] From Lemma 3.12, we have

g(reiθ) = [ν(reiθ − An)]2 = [ν(r − An)]2 = g(r).

3.2.2 1 Dimensional Schrödinger Operator

We are now considering the Laurent operator A := V1 + V−1, where Vn is

defined as in Definition 2.43, which is a discrete 1D Schrödinger operator

with potential zero. The corresponding spectrum is just the curve

specA = {t−1 +t : t ∈ T} = {e−iθ+eiθ : θ ∈ R} = {2 cos θ : θ ∈ R} = [−2, 2].

Again, the finite submatrices An,k do not depend on k:

An,k = An :=



0 1

1 0 1
. . . . . . . . .

1 0 1

1 0


n×n

. (3.48)

We can see that An is a self-adjoint matrix, so specAn ⊆ R. Moreover, λ is

an eigenvalue of An iff Anv = λv where v is the corresponding eigenvector,

i.e. 

−λ 1

1 −λ 1
. . . . . . . . .

1 −λ 1

1 −λ





v1

v2

...

vn−1

vn


= 0. (3.49)
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From equation (3.49), we have that (An − λI)v = 0 iff

vj+1 − λvj + vj−1 = 0 for j = 1, . . . , n, (3.50)

where we put v0 := 0 and vn+1 := 0. The characteristic equation is

t2 − λt+ 1 = 0.

Denote the two solutions by t1, t2 ∈ C. Since x ∈ R, we have t1 = t2. We

have 1 = t1t2 = t1t1 = |t1|2. So, put t1 = eiθ and t2 = e−iθ for some θ ∈ [0, π].

Then

vj = A cos(jθ) +B sin(jθ), j = 0, 1, 2, . . . ,

where A and B are arbitrary constants. Since v0 = 0 and vn+1 = 0, it follows

that A = 0 and hence

sin ((n+ 1)θ) = 0⇒ θ =
rπ

n+ 1
, r ∈ Z.

Under the condition θ ∈ [0, π] and v is not a zero vector, we know that

θ ∈ (0, π). Therefore,

θ =
rπ

n+ 1
, r = 1, . . . , n.

So we can see that specAn is the set of n points, λr = 2 cos

(
rπ

n+ 1

)
where

r = 1, . . . , n. As in Section 3.2.1, we are again asking by what function f∗(n)

one could replace f(n) such that (3.2) still holds. Or in other words, for

every n ∈ N, what is the smallest number εn for which it holds that

specA ⊆
⋃
k∈Z

specεnAn,k. (3.51)

Since we know that An,k is normal, by Theorem 2.20, (3.51) holds iff

[−2, 2] = specA ⊆
⋃
k∈Z

specεnAn,k =

{
2 cos

(
rπ

n+ 1

)
: r = 1, . . . , n

}
+Bεn(0).

(3.52)
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Equation (3.52) holds iff the interval [−2, 2] is covered by the union of n

closed balls of radius εn centred at the eigenvalues of An. The smallest εn

for which this is true is

εn = max {|2− λ1| , ε∗n, |2 + λn|} ,

where

ε∗n = max

{∣∣∣∣12 |λ2 − λ1| ,
1

2
|λ3 − λ2| , . . . ,

1

2
|λn − λn−1|

}
= max

r=1,...,n

{∣∣∣∣cos

(
(r − 1)π

n+ 1

)
− cos

(
rπ

n+ 1

)∣∣∣∣} . (3.53)

Next, we will show that, λr−1−λr < λr−λr+1 for r = 1, . . . ,

⌈
n− 1

2

⌉
. It

suffices to show that λr−1 + λr+1 < 2λr, which holds as

λr−1 + λr+1 = 2 cos

(
(r − 1)π

n+ 1

)
+ 2 cos

(
(r + 1)π

n+ 1

)
= 2

(
2 cos

(
rπ

n+ 1

)
cos

(
π

n+ 1

))
< 2

(
2 cos

(
rπ

n+ 1

))
= 2λr.

Since we know that λr−1 − λr > 0, we can conclude that |λr−1 − λr| <

|λr − λr+1|, for r = 1, . . . ,

⌈
n− 1

2

⌉
. Further, given that λ0 = 2 and λn+1 =

−2

|λn−r − λn−r+1| =
∣∣∣∣2 cos

(
(n− r)π
n+ 1

)
− 2 cos

(
(n− r + 1)π

n+ 1

)∣∣∣∣
=

∣∣∣∣2 cos

(
π − (r + 1)π

n+ 1

)
− 2 cos

(
π − rπ

n+ 1

)∣∣∣∣
=

∣∣∣∣2 cos

(
π − (r + 1)π

n+ 1

)
− 2 cos

(
π − rπ

n+ 1

)∣∣∣∣
=

∣∣∣∣2 cos

(
(r + 1)π

n+ 1

)
− 2 cos

(
rπ

n+ 1

)∣∣∣∣
= |λr+1 − λr| , (3.54)
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for r = 0, . . . , n. Thus

ε∗n =


1
2

∣∣∣λn
2
− λn+2

2

∣∣∣ if n is even,

1
2

∣∣∣λn−1
2
− λn+1

2

∣∣∣ if n is odd

=


2 sin

(
π

2(n+ 1)

)
if n is even,

2 sin

(
π

2(n+ 1)

)
cos

(
π

2(n+ 1)

)
if n is odd

.

In order to compute εn for each n, we will now firstly consider the case n = 1.

We can see that the set of eigenvalue of An when n = 1 is {0}. Thus, the

smallest ε1 = 2 > f(1). From (3.54) and definition of ε∗n, we have that for

every n ≥ 2

|2− λ1| = |2 + λn| =
∣∣∣∣2− 2 cos

(
π

n+ 1

)∣∣∣∣ = 4 sin2

(
π

2(n+ 1)

)
< ε∗n.

Therefore, εn = ε∗n. Where f(n) is defined in Corollary 3.7, we know that

4 sin

(
π

2(n+ 3)

)
< f(n) < 4 sin

(
π

2(n+ 1)

)
.

We can see that
f(n)

εn
→ 2 as n → ∞, so that, for this example, f(n)

overestimates the smallest εn for which (3.51) holds by a factor of about 2

for larger value of n.

For this example, plots of the inclusion sets in Corollary 3.7 for n = 4, 8, 16

and 64, are shown in Figure 3.1.
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Figure 3.1: Plots of the sets Σn
f(n)(A), which are inclusion sets for specA,

where f(n) is given as in Corollary 3.7 and An,k is the ordinary finite subma-

trix given by (3.5) of the 1-dimensional Schrödinger operator, A = V1 + V−1,

with specA = [−2, 2]. Shown are the inclusion sets when n = 4, 8, 16 and 64.
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3.2.3 3-periodic Bi-diagonal Operator

In this example, we are considering the bidiagonal operator

A =



. . . . . .

. . . −1.5 1

0 1 2

0 1 1

0 −1.5 1

0
. . .

. . . . . .


.

Since A is not normal, we cannot apply Theorem 2.20 to this operator. How-

ever, Corollary 3.3 and Corollary 3.6 tell us that in the bidiagonal case,

‖γ‖∞ = 0,

spec εA ⊆ Σn
ε+f(n)(A) and specA ⊆ Σn

f(n)(A). (3.55)

where f(n) is defined by (3.40) and the finite submatrices, An,k, of A must

be one of the following n× n matrices:

−1.5 1

1 2

1 1

−1.5
. . .
. . .


,



1 2

1 1

−1.5 1

1
. . .
. . .


and



1 1

−1.5 1

1 2

1
. . .
. . .


.

Therefore, in order to compute our inclusion sets, we do not have to compute

the pseudospectra of infinitely many submatrices but only 3 submatrices

of size n. In Figure 3.3 we plot the inclusion sets in (3.55) for specA for

n = 4, 8, 16, 32 and 64, and we also plot specA, computed using the formulae

in Theorem 4.4.9 of Davies [13] (cf. Theorem 5.12 in Chapter 5).

These inclusion sets seem to be converging to ŝpecA where ŝpecA, defined

as in Section 2.1, is the complement of the unbounded component of C \
specA.
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3.3 Inclusion sets in terms of quasi-circulant

modification matrices

In this chapter so far we have computed the inclusion sets for specA using

ordinary finite submatrices, An,k. In this section we will prove correspond-

ing results when, instead, we replace An,k by the “periodised” submatrices,

Ân,k, defined in (3.56). We will show numerical examples where this method

produce much sharper inclusion sets.

Ân,k =



βk+1 γk+2 αk

αk+1 βk+2 γk+3

. . . . . . . . .

αk+n−2 βk+n−1 γk+n

γk+n+1 αk+n−1 βk+n


. (3.56)

Theorem 3.13. If ε > 0, n ∈ N, wj > 0, for j = 1, . . . , n and w0 = wn+1 =

0, then

spec εA ⊆ Πn
ε+f(n)(A),

where

f(n) = (‖α‖∞ + ‖γ‖∞)

√
Tn
Sn
,

Sn =
n∑
i=1

w2
i and Tn = (w1 + wn)2 +

n−1∑
i=1

(wi+1 − wi)2.

Proof. Let λ ∈ specεA. Then either there exists x ∈ `2(Z) with ‖x‖ = 1 and

‖(A− λI)x‖ < ε, or the same holds with A replaced by its adjoint. In the

first case, let y = (A− λI)x, so ‖y‖ < ε.

For i, k ∈ Z, define e
(k)
i , E+

i,k and E−i,k as in the proof of Theorem 3.2. For

k ∈ Z, let

Pk := ‖(An,k − λIn)x̃n,k‖ ,
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where x̃n,k = (w1xk+1, w2xk+2, . . . , wnxk+n)T . Let

Ai,k =


|xk+n|wn if i = k + 1

0 otherwise

(3.57)

and

Bi,k =


|xk+1|w1 if i = k + n

0 otherwise

(3.58)

We will prove that Pk < (ε + f(n)) ‖x̃n,k‖ for some k ∈ Z, which will show

that λ ∈ spec ε+f(n)An,k.

Note first that, using (3.6), (3.7), (3.57) and (3.58)

P 2
k =

∣∣∣yk+1e
(k)
k+1 + αk(xk+ne

(k)
k+n − xke

(k)
k+1) + γk+2(e

(k)
k+2 − e

(k)
k+1)xk+2

∣∣∣2
+

k+n−1∑
i=k+2

∣∣∣yie(k)
i + αi−1(e

(k)
i−1 − e

(k)
i )xi−1 + γi+1(e

(k)
i−1 − e

(k)
i )xi+1

∣∣∣2
+
∣∣∣yk+ne

(k)
k+n + αk+n−1(e

(k)
k+n−1 − e

(k)
k+n)xk+n−1 + γk+n+1(xk+1e

(k)
k+1 − xk+ne

(k)
n+k)

∣∣∣2
≤

k+n∑
i=k+1

(
|yi| e(k)

i,k + |αi−1|
(
Ai,k + E−i,k |xi−1|

)
+ |γi+1|

(
Bi,k + E+

i,k |xi+1|
))2

.

So, for all θ > 0 and φ > 0, by Lemma 3.1,

P 2
k ≤

k+n∑
i=k+1

[
(1 + θ)

(
|yi| e(k)

i

)2

+ (1 + θ−1)
(
|αi−1|

(
Ai,k + E−i−k |xi−1|

)
+ |γi+1|

(
Bi,k + E+

i−k |xi+1|
))2
]

≤
k+n∑
i=k+1

[
(1 + θ)

(
|yi| e(k)

i

)2

+ (1 + θ−1)
(

(1 + φ) |αi−1|2
(
Ai,k + E−i,k |xi−1|

)2

+(1 + φ−1) |γi+1|2
(
Bi,k + E+

i,k |xi+1|
)2
)]
.

Note that, ∑
k∈Z

x2
k+ie

(k)
k+i

2 =
(
e

(k)
i+k

)2

‖x‖2
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for all i, and we have that∑
k∈Z

(xk+ne
(k)
k+n − xke

(k)
i+k)

2 ≤
(
e

(k)
k+n

)2

‖x‖2 + 2e
(k)
k+1e

(k)
k+n

∑
k∈Z

|xk+nxk|+
(
e

(k)
k+1

)2

‖x‖2

≤ (e
(k)
k+1 + e

(k)
k+n)2 ‖x‖2 .

Thus∑
k∈Z

P 2
k ≤ (1 + θ)

∑
i∈Z

|yi|2
∑
k∈Z

(
e

(k)
i

)2

+ (1 + θ−1)
[
(1 + φ) ‖α‖2

∞

{
(e

(k)
k+n + e

(k)
k+1)2 + (E−k+2,k)

2 + · · ·+ (E−k+n,k)
2
}

+ (1 + φ−1) ‖γ‖2
∞ {(E

+
k+1,k)

2 + (E+
k+2,k)

2 + · · ·+ (E+
k+n−1,k)

2 + (e
(k)
k+1 + e

(k)
k+n)2}

]
≤ (1 + θ) ‖y‖2

2 Sn + (1 + θ−1)
(

(‖α‖∞ + ‖γ‖∞)
√
Tn

)2

< (1 + θ)ε2Sn + (1 + θ−1)
(

(‖α‖∞ + ‖γ‖∞)
√
Tn

)2

Thus,∑
k∈Z

P 2
k <

[
(1 + θ)ε2 + (1 + θ−1)

(
(‖α‖∞ + ‖γ‖∞)

√
Tn

)2 1

Sn

]
Sn

≤
[
(1 + θ)ε2 + (1 + θ−1) [f(n)]2

]∑
k∈Z

‖x̃n,k‖2 .

Applying Lemma 3.1 again, we see that

inf
θ>0

[
(1 + θ)ε2 + (1 + θ−1)[f(n)]2

]
= (ε+ f(n))2,

so that ∑
k∈Z

P 2
k < (ε+ f(n))2

∑
k∈Z

‖x̃n,k‖2 .

Thus, for some k ∈ Z,

Pk < (ε+ f(n)) ‖x̃n,k‖ ,

so that λ ∈ spec ε+f(n)An,k.

In the case when there exists x ∈ `2(Z) with ‖x‖ = 1 and ‖(A− λI)∗x‖ < ε,

the same argument shows that λ ∈ spec ε+f(n)A
∗
n,k, for some k ∈ Z, so that

λ ∈ spec ε+f(n)An,k.
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Corollary 3.14. spec A ⊆ Πn
f(n)(A).

Proof. We can see that, if

λ ∈ specA =
⋂
ε>0

spec εA ⊆
⋂
ε>0

(⋃
k∈Z

spec ε+f(n)Ân,k

)
,

so that for all ε > 0 there is a k ∈ Z with

∥∥∥∥(Ân,k − λIn)−1
∥∥∥∥ > 1

ε+ f(n)
, then

s := sup
k∈Z

∥∥∥(Ân,k − λIn)−1
∥∥∥ ≥ 1

f(n)
. If s >

1

f(n)
then there exists a k ∈ Z

with λ ∈ spec f(n)Ân,k ⊆ Πn
f(n)(A). If s =

1

f(n)
then putD :=Diag

{
Ân,k : k ∈ Z

}
,

so that ∥∥(D − λI)−1
∥∥ = sup

k∈Z

∥∥∥∥(Ân,k − λIn)−1
∥∥∥∥ = s =

1

f(n)
.

Take r > 0 small enough that λ + rD ⊆ ρ(D) := C \ specD. By Theorem

2.32, there are µ1, µ2, . . . ∈ ρ(D) with |µm − λ| <
r

m
and

∥∥(D − µmI)−1
∥∥ >∥∥(D − λI)−1

∥∥ =
1

f(n)
for m = 1, 2, . . .. Hence, λ is in the closure of

spec f(n)D =
⋃
k∈Z

spec f(n)Ân,k = Πn
f(n)(A).

From the definitions of Sn and Tn in Theorem 3.13, we know that

Sn = ‖w‖2
2

and

Tn = ‖Bnw‖2
2

where

Bn =



1 −1

1 −1
. . . . . .

1 −1

−1 1


.

From Theorem 2.16 and Proposition 2.48 we have that

inf
w 6=0

√
Tn
Sn

= inf
w 6=0

‖Bnw‖2

‖w‖2

= ν(Bn) =
√
λmin(BnBT

n ) = smin(Bn).
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Further

BnB
T
n =



2 −1 1

−1 2 −1
. . . . . . . . .

−1 2 −1

1 −1 2


.

We know that λ is an eigenvalue of BnB
T
n with eigenvector v =


vn
...

v1

 iff



2− λ −1 1

−1 2− λ −1
. . . . . . . . .

−1 2− λ −1

1 −1 2− λ





vn

vn−1

...

v2

v1


= 0. (3.59)

From equation (3.59), we have that (BnB
T
n − λI)v = 0 iff

v1 + (2− λ)vn − vn−1 = 0, (3.60)

− vi+1 + (2− λ)vi − vi−1 = 0 for i = 2, . . . , n− 1, (3.61)

and

− v2 + (2− λ)v1 + vn = 0. (3.62)

Equation (3.61) has general solution

vj = A cos((j − 1)θ) +B sin((j − 1)θ), j = 1, 2, . . . , n− 1,

where λ = 2(1− cos θ) = 4 sin2(
θ

2
). From equation (3.60) we have then that,

v1 = A and v2 = A cos θ +B sin θ.

Clearly, for a three-term-recurrence relation, we need to know the first two

terms as initial conditions. In the other word, for every (v1, v2) ∈ C2, there
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exists exactly one sequence (v1, v2, . . . , vn) ∈ Cn which satisfies the equation

(3.60). Provided sin θ 6= 0, this solution is given by

vj = v1cos ((j − 1)θ) +
(v2 − v1 cos θ)

sin θ
sin ((j − 1)θ)

j = 1, 2, . . . , n. Setting v1 = v2 = 1, then substituting v1, v2 and vn in the

equation (3.62) yields

sin ((n− 1)θ)− sin θ − sin ((n− 2)θ) + sin(2θ) = 0,

i.e.

4 cos

(
nθ

2

)
cos

(
n− 3

2
θ

)
sin

(
θ

2

)
= 0.

That means the smallest θ which satisfies the above equation is θ =
π

n
.

Corollary 3.15. If ε > 0, n ∈ N , then

spec εA ⊆ Πn
ε+f(n)(A) and specA ⊆ Πn

f(n)(A),

where

f(n) = 2 sin
( π

2n

)
(‖α‖∞ + ‖γ‖∞) .

3.4 Numerical Examples for Method 1*

3.4.1 Shift Operator

Note that every finite n× n periodised submatrix of the shift operator V1 is

of the form,

Ân :=



0 0 1

1 0 0
. . . . . . . . .

1 0 0

0 1 0


,

i.e., Ân,k = Ân for every k ∈ Z. From the normality property of V1 and

Theorem 2.20, we can compute that specεV1 = T∪{λ ∈ C : d(λ,T) < ε} and
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Figure 3.2: Plots of the sets Πn
f(n)(A), which are inclusion sets for specA,

where f(n) is given as in Corollary 3.15, where A is the 1-dimensional

Schrödinger operator, A = V1 + V−1, with specA = [−2, 2]. Shown are

the inclusion sets when n = 8, 16, 32 and 64.
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spec ε+f(n)Ân = Tn +Bε+f(n)(0), where T and Tn are the unit circle and the

set of the n-th roots of unity, respectively. Thus Corollary 3.15, in the case

A = V1 reduces to

T +Bε(0) = spec εV1 ⊆ Πn
ε+f(n)(A) = spec ε+f(n)Ân = Tn +Bε+f(n)(0),

and

T = specV1 ⊆ Πn
ε+f(n)(A) = spec f(n)Ân = Tn +Bf(n)(0),

where f(n) = 2 sin
( π

2n

)
.

Let us now consider the sharpness of this value for f(n). Clearly, in this

example, for ε > 0,

Πn
ε+f(n)(A)→ spec ε(A)

and

Πn
f(n)(A)→ spec (A)

as n→∞ in the Haussdorff metric. Let us now compute the smallest possible

εn which satisfies

spec εV1 ⊆ Πn
ε+εn(V1) = spec ε+εnÂn,

and

T = specA ⊆ Πn
εn(V1) = spec εnÂn = Tn +Bε(0). (3.63)

We can compute that spec Ân = Tn. Since we know that the distances

between any 2 consecutive roots of unity are equal, therefore, the smallest

possible number εn is the half of the distance between each pair of the con-

secutive roots. The arc between 2 consecutive roots on the circumferrence

subtends the angle
2π

n
. Therefore, the smallest value of εn for which (3.63)

holds is

εn = 2 sin
( π

2n

)
= f(n).

3.4.2 1D - Schrödinger Operator

As an example for Corollary 3.15, we will apply this method to the operator

A = V−1 + V1. Note that every n × n periodised submatrix of the operator

A is of the form
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Ân =



0 1 1

1 0 1
. . . . . . . . .

1 0 1

1 1 0


,

which means our inclusion sets of the spectrum can be computed using just

the periodised matrix Ân. Obviously, Corollary 3.15 can be rewritten as

spec εA ⊆
⋃
k∈Z

spec ε+f(n)Ân,k = spec ε+f(n)Ân.

We can see that Ân is a symmetric matrix, so spec Ân ⊆ R. (Ân − λI)v = 0

iff

v1 − λvn + vn−1 = 0 (3.64)

vj+1 − λvj + vj−1 = 0 for j = 2, . . . , n− 1. (3.65)

v2 − λv1 + vn = 0. (3.66)

The equation (3.65) has general solution

vj = A cos((j − 1)θ) +B sin((j − 1)θ)

where j = 1, . . . , n and

λ = 2 cos θ.

From the equation (3.66), we have v1 = A and then

v2 = A cos θ +B sin θ

= v1 cos θ +B sin θ

B =
v2 − v1 cos θ

sin θ
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where λ = 2 cos θ. Setting v1 = v2 = 1, then A = 1 and B =
1− cos θ

sin θ
. From

equation (3.66),

vn − λv1 + v2 = 0

⇔ cos ((n− 1)θ) +

(
1− cos θ

sin θ

)
sin ((n− 1)θ)− 2 cos θ + 1 = 0

⇔ −4 cos

(
θ

2

)
sin

(
nθ

2

)
sin

(
(n− 3)θ

2

)
= 0.

Therefore, θ =
2π

n
is the smallest possible θ > 0. So we can see that the

spec Ân is the set of n points, λr = 2 cos

(
2rπ

n

)
, where r = 1, . . . , n. As in

Section 3.2.1, we are again asking by what function f∗(n) one could replace

f(n) such that (3.2) still holds. Or in other words, for every n ∈ N, what is

the smallest number εn for which it holds that

specA ⊆ Πn
εn(A). (3.67)

Since An,k is normal, by Theorem 2.20, (3.67) holds iff

[−2, 2] = specA ⊆ Πn
εn =

{
λr = 2 cos

(
rπ

n+ 1

)
: r = 1, . . . , n

}
+Bεn(0).

(3.68)

Equation (3.68) holds iff the interval [−2, 2] is covered by the union of n

closed balls of radius εn centred at the eigenvalues of Ân. The smallest εn

for which this is true is

εn = max {|2− λ1| , ε∗n, |2 + λn|}

where

ε∗n = max

{
1

2
|λ2 − λ1| ,

1

2
|λ3 − λ2| , . . . ,

1

2
|λn − λn−1|

}
= max

r=1,...,n

{∣∣∣∣cos

(
2(r − 1)π

n

)
− cos

(
2rπ

n

)∣∣∣∣} . (3.69)

Next, we will show that, λr−1 − λr < λr − λr+1 for 1 ≤ r ≤ n

2
. It suffices
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to show that λr−1 + λr+1 < 2λr, which holds as

λr−1 + λr+1 = 2 cos

(
2(r − 1)π

n

)
+ 2 cos

(
2(r + 1)π

n

)
= 2

(
2 cos

(
2rπ

n

)
cos

(
2π

n

))
< 2

(
2 cos

(
2rπ

n

))
= 2λr.

Since we know that λr−1 − λr > 0 for 1 ≤ r ≤ n

2
, we can conclude that

|λr−1 − λr| < |λr − λr+1|. Further, given that λ0 = 2 and λn+1 = −2∣∣λn
2
−r+1 − λn

2
−r
∣∣ =

∣∣∣∣2 cos

(
2(n

2
− r + 1)π

n

)
− 2 cos

(
2(n

2
− r)π
n

)∣∣∣∣
=

∣∣∣∣2 cos

(
2π − 2(r − 1)π

n

)
− 2 cos

(
2π − 2rπ

n

)∣∣∣∣
=

∣∣∣∣2 cos

(
2(r − 1)π

n

)
− 2 cos

(
2rπ

n

)∣∣∣∣
= |λr−1 − λr| ,

for r = 0, . . . , n. Thus,

ε∗n =


1
2

∣∣∣λn−2
4
− λn+2

4

∣∣∣ if n
2

is odd,

1
2

∣∣∣λn+4
4
− λn

4

∣∣∣ if n
2

is even

=

{
2 sin

(
π
n

)
if n

2
is odd,

sin
(

2π
n

)
if n

2
is even

.

In order to compute ε∗n. we will now firstly consider the case n = 1. We can

see that the set of eigenvalue of Â1 is {0}. Thus, the smallest ε1 = 2 > f(1).

Where f(n) is defined in Corollary 3.15, we know that f(n) = 4 sin
( π

2n

)
.

We can see that

εn = 2 sin
(π
n

)
< 4 sin

( π
2n

)
cos
( π

2n

)
≤ 4 sin

( π
2n

)
= f(n).

Moreover, we also can see that the proportion
f(n)

εn
→ 1 as n → ∞. This

shows how sharp the number f(n) is when we approximate the spectrum

using large matrices.

For this example, plots of the inclusion sets in Corollary 3.15 for n =

8, 16, 32 and 64, are shown in Fig. 3.2.
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3.4.3 3-periodic Bi-diagonal Operator

In this example, we are considering the bidiagonal operator

A =



. . . . . .

. . . −1.5 1

0 1 2

0 1 1

0 −1.5 1

0 1
. . .

. . . . . .


.

Since A is not normal, we can not apply Theorem 2.20 to this operator.

However, Theorem 3.15 tells us that

spec εA ⊆
⋃
k∈Z

spec ε+f(n)Ân,k.

From the numerical results, Figure 3.4, it seems like the inclusion sets are

converging to the spectrum of A as n→∞.

3.5 The conjecture on the convergence of our

inclusion sets we got from method 1 and

1*?

In the examples we have considered, we can notice that when we apply

method 1 to the infinite operator A, the inclusion sets Σn
f(n)(A) are simply

connected sets. Note that, if a sequence of the inclusion sets of the infinite

tridiagonal operator A converges to the spectrum as n tends to infinity, that

means the spectrum has also to be a simply connected set. Therefore, the

inclusion sets for the spectra of infinite dimensional operators using method

1 do not converge to the spectrum in general.

In section 3.2.1 and 3.4.1, we have shown analytically that method 1 con-

verges to the polynomial convex hull of specA, ŝpecA (see Section 2.1), and
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method 1* converges to specA when A is the right shift operator. Moreover,

we can see that the convergence of method 1 to ŝpecA is faster than the

convergence of method 1* to specA.

These numerical results suggest some conjectures. The first two relate to

the convergence of the inclusion sets for the spectra of bi-infinite tri-diagonal

operators as follows:

1. The inclusion sets for specA using method 1 converges to the poly-

nomial convex hull of specA and the inclusion sets for specA using

method 1* converge to specA, precisely

dH

(
Σn
f(n)(A), ŝpecA

)
→ 0 and dH

(
Πn
f(n)(A), specA

)
→ 0 as n→∞

2. The Haussdorff distance between the inclusion sets of A using method

1 and the polynomial convex hull of specA is less than the Hauss-

dorff distance between the inclusion sets of A using method 1* and the

spectrum of A, i.e. dH

(
Σn
f(n)(A), ŝpecA

)
≤ dH

(
Πn
f(n)(A), specA

)
.

Although we believe that method 1* converges to specA, in some case

method 1 converge to specA even faster than method 1*. Comparing the

plots in Figure 3.5 and Figure 3.6 when we apply each method to the operator

A =



. . . . . .

. . . 0 1

−1 0 1

1 0 1

1 0 1

−1 0
. . .

. . . . . .


,

we see that the inclusion sets Σn
f(n)(A) converge to specA faster than Πn

f(n)(A).
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Figure 3.3: Plots of the sets Σn
f(n)(A), which are inclusion sets for specA,

where f(n) is given as in Corollary 3.6, where A is the periodic bi-diagonal op-

erator which has γi = 1 for all i ∈ Z and (βi) = (. . . , 1,−1.5, 1, 1,−1.5, 1, . . .).

Shown are the inclusion sets when n = 4, 8, 16, 32 and 64. The last picture

shows the spectrum of the operator A and also the Gershgorin circles (dashed

line), defined in Theorem 2.50.
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Figure 3.4: Plots of the sets Πn
f(n)(A), which are inclusion sets for specA,

where f(n) is given as in Corollary 3.15, where A is the periodic bi-diagonal

operator which has γi = 1 for all i ∈ Z and (βi) = (. . . , 1,−1.5, 1, 1, 2, 1, . . .).

Shown are the inclusion sets when n = 4, 8, 16, 32 and 64. The last picture

shows the spectrum of the operator A and also the Gershgorin circles (dashed

line), defined in Theorem 2.50.
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Figure 3.5: Plots of the sets Σn
f(n)(A), which are inclusion sets for specA,

where f(n) is given as in Corollary 3.6, where A is the periodic tri-

diagonal operator which has γi = 1 and βi = 0 for all i and (αi) =

(. . . , 1,−1, 1, 1,−1, 1, . . .). Shown are the inclusion sets when n = 4, 8, 16, 32

and 64. The last picture shows the spectrum of the operator A and also the

Gershgorin circles (dashed line), defined in Theorem 2.50.
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Figure 3.6: Plots of the sets Πn
f(n)(A), which are inclusion sets for specA,

where f(n) is given as in Corollary 3.15 when Ân,k is the periodised finite

submatrix given by (3.56) of the periodic tri-diagonal operator which has

γi = 1 and βi = 0 for all i and (αi) = (. . . , 1,−1, 1, 1,−1, 1, . . .). Shown are

the inclusion sets when n = 4, 8, 16, 32 and 64. The last picture shows the

spectrum of the operator A and also the Gershgorin circles (dashed line),

defined in Theorem 2.50.
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Figure 3.7: Plots of the sets Σn
f(n)(A), which are inclusion sets for specA,

where f(n) is given as in Corollary 3.15, where A is the periodic tri-

diagonal operator which has γi = 1 and βi = 0 for all i and (αi) =

(. . . , 1,−1, 1, 1,−1, 1, . . .), with specA = [−3,−1] ∪ [1, 3]. Shown are the

inclusion sets when n = 4, 8, 16, 32 and 64. The last picture shows the spec-

trum of the operator A and also the Gershgorin circles (dashed line), defined

in Theorem 2.50.



Chapter 4

A One-sided truncation

Method for Approximating the

Spectrum and Pseudospectrum

of Infinite Tridiagonal Matrices

In this chapter, we will try to improve our upper bounds of the spectrum of

tri-diagonal matrices. While the “finite section matrix” method involves the

smallest singular value of the two-sided truncation Pn,k (A− λI)Pn,k, where

Pn,k is the operator of multiplication by χ(n,k), the method to be discussed

now involves the smallest of all singular values of the two one-sided trun-

cations (A− λI)Pn,k and Pn,k (A− λI), where, because of the tridiagonal

structure of A, these can be identified with (n + 2) × n instead of ∞ × n

matrices. The fact that truncation is only performed from one side should

give a more accurate picture of the operator and its spectrum.

97
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4.1 Inclusion sets in terms of one-sided trun-

cation matrices

In Chapter 3, we have studied inclusion sets for the spectra and pseudospectra

of the matrix

A =



. . . . . .

. . . β−2 γ−1

α−2 β−1 γ0

α−1 β0 γ1

α0 β1 γ1

α1 β2
. . .

. . . . . .


,

using two different methods. The first method is a naive way to approximate

the spectra and pseudospectra of any infinite matrix using the standard n×n
finite sections,

An,k =



βk+1 γk+2

αk+1 βk+2 γk+3

. . . . . . . . .

αk+n−2 βk+n−1 γk+n

αk+n−1 βk+n


.

(See Figure 4.1.) We have shown that

spec εA ⊆ Σn
ε+f(n)(A)

and

specA ⊆ Σn
f(n)(A),

for every ε > 0 and every n ∈ N, where f(n) <
π

n
(‖α‖∞ + ‖γ‖∞).

There are some disadvantages of using the principal finite sections, so

the second method has been introduced. It is a method to compute the
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Figure 4.1: The idea of the first method.

spectra and pseudospectra of an infinite tridiagonal matrix using periodised

submatrices,

Ân,k =



βk+1 γk+2 αk

αk+1 βk+2 γk+3

. . . . . . . . .

αk+n−2 βk+n−1 γk+n

γk+n+1 αk+n−1 βk+n


.

This method gives the following results,

spec εA ⊆ Πn
ε+f(n)(A)

and

specA ⊆ Πn
f(n)(A),

where f(n) <
π

n
(‖α‖∞ + ‖γ‖∞).

In this chapter, we are going to introduce a new idea to compute the

inclusion sets for the spectra and pseudospectra of A using one-sided finite

truncations. Let (Xn,k) denote the range of Mχ(n,k) , which is an n-dimensional
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Figure 4.2: The idea of the second method.

subspace of `2(Z). Now, recalling that A is the tridiagonal operator given by

(3.1), let

B+
n,k, B

−
n,k : Xn,k → Xn,k

be defined by

B+
n,k := Mχ(n,k)(A− λI)∗(A− λI)Mχ(n,k)

∣∣
Xn,k

and

B−n,k := Mχ(n,k)(A− λI)(A− λI)∗Mχ(n,k)

∣∣
Xn,k

,

respectively, and let

Cn,k : Xn,k → `2 (Z)

be defined by

Cn,k = (A− λI)Mχ(n,k)

∣∣
Xn,k

= (A− λI)
∣∣
Xn,k

.

Then

C∗n,k = Mχ(n,k)(A− λI)∗,
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and

B+
n,k = C∗n,kCn,k

and, from Theorem 2.24,

min spec (B+
n,k) = min spec (C∗n,kCn,k) = inf

‖φ‖=1
φ∈Xn,k

(
C∗n,kCn,kφ, φ

)
= inf
‖φ‖=1
φ∈Xn,k

(Cn,kφ,Cn,kφ) = inf
‖φ‖=1
φ∈Xn,k

‖Cn,kφ‖2 = ν (Cn,k)
2 .

Therefore

min spec (B+
n,k) = ν

(
(A− λI)

∣∣
Xn,k

)2

≥ ν (A− λI)2 . (4.1)

Similary,

min spec (B−n,k) = ν
(

(A− λI)∗
∣∣
Xn,k

)2

≥ ν ((A− λI)∗)2 . (4.2)

Recall that, for the lower norm

ν(B) = inf
‖x‖=1

‖Bx‖ ,

of an operator B on a Hilbert space X., it holds, by Proposition 2.15 and

Theorem 2.16,

ν(B) > 0⇔ B is injective and the image of B is closed,

ν(B) > 0 and ν(B∗) > 0⇔ B is invertible.

The latter motivates us to define

ξ(B) := min(ν(B), ν(B∗))

= min(ν(B∗B), ν(BB∗))
1
2

= min(spec (B∗B) ∪ spec (BB∗))
1
2

= min(smin(B), smin(B∗)),

so that one has

spec (B) = {λ ∈ C : ξ(B − λI) = 0}, (4.3)
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and

spec ε(B) = {λ ∈ C : ξ(B − λI) < ε}, (4.4)

by Theorem 2.26.

We now put, for k ∈ Z, n ∈ N and B ∈ B(`2(Z)),

ξn,k(B) := min
(
ν
(
B|Xn,k

)
, ν
(
B∗|Xn,k

))
= min

(
ν
(
BMχ(n,k)|Xn,k

)
, ν
(
B∗Mχ(n,k)|Xn,k

))
= min

(
spec

(
Mχ(n,k)B∗BMχ(n,k)|Xn,k

)
∪ spec

(
Mχ(n,k)BB∗Mχ(n,k)|Xn,k

)) 1
2

and

ξn(B) := inf
k∈Z

ξn,k(B).

From ν(B) ≤ ν
(
B|Xn,k

)
and ν(B∗) ≤ ν

(
B∗|Xn,k

)
it follows that,

ξ(B) ≤ ξn,k(B) for all n, k, so that ξ(B) ≤ ξn(B). (4.5)

Recalling (4.3) and (4.4), we introduce the following sets:

Definition 4.1. For ε > 0, k ∈ Z, n ∈ N, and A ∈ B(`2(Z)), we put

γn,kε (A) := {λ ∈ C : ξn,k(A− λI) < ε} ,

and

Γnε (A) := {λ ∈ C : ξn(A− λI) < ε} .

Explicitly, this means that

γn,kε (A) = {λ ∈ C : min
(
ν
(
(A− λI)|Xn,k

)
, ν
(
(A− λI)∗|Xn,k

))
< ε}

=
{
λ ∈ C : min

(
spec

(
Mχ(n,k)(A− λI)∗(A− λI)Mχ(n,k)|Xn,k

)
∪ spec

(
Mχ(n,k)(A− λ)(A− λ)∗Mχ(n,k)|Xn,k

))
< ε2

}
(4.6)

and Γnε (A) =
⋃
k∈Z

γn,kε (A).

It is interesting to compare (4.6) to the corresponding sets (pseudospec-

trum of two-sided truncations) used in our first method. These are

specεAn,k = {λ ∈ C : min spec
(
Mχ(n,k)(A− λI)∗Mχ(n,k)(A− λI)Mχ(n,k)

)
< ε2}

= {λ ∈ C : min spec
(
Mχ(n,k)(A− λI)Mχ(n,k)(A− λI)∗Mχ(n,k)

)
< ε2}.
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From (4.4), the definition of Γnε (A) and (4.5), applied to B = A − λI, we

immediately get the following lower bound on spec εA :

Theorem 4.2. If ε > 0, n ∈ N and A ∈ B(`2(Z)) then

Γnε (A) ⊆ spec εA. (4.7)

With very much similarity to Theorem 3.2 and Theorem 3.13, we can

accompany the lower bound (4.7) on spec εA by the following upper bound.

Theorem 4.3. If ε > 0, n ∈ N, wj > 0, for j = 1, . . . , n and w0 = wn+1 = 0,

then

spec εA ⊆ Γnε+f(n)(A),

where

f(n) = (‖α‖∞ + ‖γ‖∞)

√
Tn
Sn

with Sn =
n∑
i=1

w2
i and Tn = w2

1 + w2
n +

n−1∑
i=1

(wi+1 − wi)2.

Proof. Let λ ∈ specε(A). Then either there exists x ∈ `2(Z) with ‖x‖ = 1

and ‖(A− λI)x‖ < ε, or the same holds with A−λI replaced by its adjoint.

In the first case, let y = (A− λI)x, so ‖y‖ < ε. For i, k ∈ Z, define e
(k)
i , E+

i,k

and E−i,k as in the proof of Theorem 3.2.

For k ∈ Z, let

Pk := ‖(A− λI)Me(k)x‖ .

Let Qk := ‖Me(k)x‖. We will prove that Pk < (ε+ f(n))Qk, for some k ∈ Z,

which will show that ν
(

(A− λI)
∣∣
Xn,k

)
< ε+f(n), so that λ ∈ γn,kε+f(n) (A) ⊆

Γnε+f(n) (A).



4.1 ONE SIDED TRUNCATION METHOD 104

Note first that, using (3.6) and (3.7),

P 2
k =

∣∣∣γk+1e
(k)
k+1xk+1

∣∣∣2 +
∣∣∣yk+1e

(k)
k+1 − αkxke

(k)
k+1 + γk+2(e

(k)
k+1 − e

(k)
k+1)xk+2

∣∣∣2
+

k+n−1∑
i=k+2

∣∣∣yie(k)
i + αi−1(e

(k)
i−1 − e

(k)
i )xi−1 + γi+1(e

(k)
i+1 − e

(k)
i )xi+1

∣∣∣2
+
∣∣∣yk+nwn + αk+n−1(e

(k)
k+n−1 − e

(k)
k+n)xk+n−1 − γk+n+1xk+n+1e

(k)
k+n

∣∣∣2 +
∣∣∣αk+ne

(k)
k+nxk+n

∣∣∣2
≤

k+n∑
i=k+1

(
|yi| e(k)

i + |αi−1|E−i,k |xi−1|+ |γi+1|E+
i,k |xi+1|

)2

+ |γk+1|2
(
E+
k,k

)2 |xk+1|2 + |αk+n|2
(
E−k+n+1,k

)2 |xk+n|2 .

So, for all θ > 0 and φ > 0, by Lemma 3.1,

P 2
k ≤

k+n∑
i=k+1

[
(1 + θ)

(
|yi| e(k)

i

)2

+ (1 + θ−1)
(
|αi−1|E−i,k |xi−1|+ |γi+1|E+

i,k |xi+1|
)2
]

+ |γk+1|2
(
E+
k,k

)2 |xk+1|2 + |αk+n|2
(
E−k+n+1,k

)2 |xk+n|2

≤
k+n+1∑
i=k

[
(1 + θ)

(
|yi| e(k)

i

)2

+ (1 + θ−1)
(

(1 + φ) |αi−1|2
(
E−i,k

)2 |xi−1|2

+ (1 + φ−1) |γi+1|2
(
E+
i,k

)2 |xi+1|2
)]

+ |γk+1|2
(
E+
k,k

)2 |xk+1|2 + |αk+n|2
(
E−k+n+1,k

)2 |xk+n|2 .

Thus∑
k∈Z

P 2
k ≤ (1 + θ)

∑
i∈Z

|yi|2
∑
k∈Z

(
e

(k)
i

)2

+ (1 + θ−1)

[
(1 + φ) ‖α‖2

∞

{(
e

(k)
k+1

)2

+
(
E−k+2,k

)2
+ · · ·+

(
E−k+n+1,k

)2
+
(
e

(k)
k+n

)2
}

+ (1 + φ−1) ‖γ‖2
∞ {
(
e

(k)
k+1

)2

+
(
E+
k+1,k

)2
+
(
E+
k+2,k

)2
+ · · ·+

(
E+
k+n−1,k

)2
+
(
e

(k)
k+n

)2

}
]

≤ (1 + θ) ‖y‖2
2 Sn + (1 + θ−1)

(
(‖α‖∞ + ‖γ‖∞)

√
Tn

)2

.
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Moreover,
∑
k∈Z

Q2
k =

∑
k∈Z

n∑
i=1

w2
i |xi+k|

2 = Sn. Thus, and since ‖y‖ < ε,

∑
k∈Z

P 2
k <

[
(1 + θ)ε2 + (1 + θ−1)

(
(‖α‖∞ + ‖γ‖∞)

√
Tn

)2 1

Sn

]
Sn

≤
[
(1 + θ)ε2 + (1 + θ−1) [f(n)]2

]∑
k∈Z

Q2
k.

Applying Lemma 3.1 again, we see that

inf
θ>0

[
(1 + θ)ε2 + (1 + θ−1)[f(n)]2

]
= (ε+ f(n))2,

so that ∑
k∈Z

P 2
k < (ε+ f(n))2

∑
k∈Z

Q2
k.

Thus, for some k ∈ Z,
Pk < (ε+ f(n))Qk.

In the case that there exists x ∈ `2 (Z) with ‖x‖ = 1 and ‖(A− λI)∗x‖ < ε,

we can show similarly that, for some k ∈ Z, ν
(

(A− λI)∗
∣∣
Xn,k

)
< ε+ f(n),

so that λ ∈ γn,kε+f(n) (A) ⊆ Γnε+f(n) (A) . Thus the result is proved.

In order to minimise f(n) = (‖α‖∞ + ‖γ‖∞)

√
Tn
Sn

, we need to minimise
Tn
Sn

where

Tn = w2
1 + (w2 − w1)2 + · · ·+ (wn − wn−1)2 + w2

n,

Sn = w2
1 + w2

2 + · · ·+ w2
n,

i.e. we need to minimise √
Tn
Sn

=
‖Bw‖
‖w‖

where

B =



1

−1 1
. . . . . .

−1 1

−1 1

−1


(n+1)×n

,
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and w = (w1, w2, . . . , wn)T .

Note that

inf
‖w‖6=0

Tn
Sn

= inf
‖w‖6=0

‖Bw‖2

‖w‖2 = inf
‖w‖6=0

(Bw,Bw)Rn+1

(w,w)Rn

= inf
‖w‖6=0

(B∗Bw,w)Rn+1

(w,w)Rn
= λmin

(
BTB

)
,

where

BTB =



2 −1

−1 2 −1
. . . . . . . . .

−1 2 −1

−1 2


n×n

.

We know that λ is an eigenvalue ofBTB with eigenvector v = (v1, v2, . . . , vn)T

iff BTBv = λv. i.e.

(2− λ)v1 − v2 = 0, (4.8)

−vi−1 + (2− λ)vi − vi+1 = 0 i = 2, . . . , n− 1, (4.9)

−vn−1 + (2− λ)vn = 0. (4.10)

Set v0 = vn+1 = 0, then the above equations can be written as

−vi−1 + (2− λ)vi − vi+1 = 0,

for i = 1, . . . , n. As in the discussion before Corollary 3.6, we see that the

general solution is

vj = C cos(jθ) +D sin(jθ), j = 1, . . . , n+ 1,

with θ ∈ (0, π) and 2 cos θ = 2− λ. Let D = 1. Since v0 = 0, it follows that

C = 0, i.e.

vj = sin(jθ), j = 1, . . . , n+ 1.

Since vn+1 = 0 it follows that (n + 1)θ = kπ for some k ∈ N, so that

θk =
kπ

n+ 1
, k = 1, . . . , n. From 2− λk = 2 cos θk we conclude that

λk = 2(1− cos θk) = 4 sin2 θk
2

= 4 sin2 kπ

2(n+ 1)
, k = 1, . . . , n.
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It follows that λmin = λ1 and hence the minimal value for f(n) is

f(n) = (‖α‖∞ + ‖γ‖∞)

√
Tn
Sn

= (‖α‖∞ + ‖γ‖∞)
√
λ1

= (‖α‖∞ + ‖γ‖∞) 2 sin
π

2(n+ 1)
.

This minimum is realised by the choice w =

(
sin

jπ

n+ 1

)n
j=1

for the weight

vector w in Theorem 4.3.

Corollary 4.4. If ε > 0, n ∈ N , then

spec εA ⊆ Γnε+f(n)(A),

and

specA ⊆ Γnf(n)(A).

where

f(n) = 2 sin

(
π

2(n+ 1)

)
(‖α‖∞ + ‖γ‖∞) . (4.11)

4.2 How to implement a program to approx-

imate the spectrum of an infinite matrix

A?

We are considering in this section how to compute Γnε (A). Let
(
e(j)
)
j∈Z be

the canonical basis for `2 (Z), i.e.,

e
(j)
i = δij, i ∈ Z

Note that, for x ∈ `2(Z).

(Ax)m =
∑
j∈Z

amjxj,
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where amj := αj−1δm,j−1+βjδm,j+γj+1δm,j+1,m, j ∈ Z. For φ =
k+n∑
j=k+1

φje
(j) ∈

Xn,k, the action of A
∣∣
Xn,k : Xn,k → `2 (Z) is given by

(
A
∣∣
Xn,kφ

)
m

=
k+n∑
j=k+1

amjφj, m ∈ Z,

and, for φ ∈ Xn,k,

(
(A− λI)

∣∣
Xn,k φ

)
m

=
k+n∑
j=k+1

(amj − λδmj)φj, m ∈ Z.

Further, for ψ ∈ `2 (Z) ,

(
Mχ(n,k) (A− λI)∗ ψ

)
m

=
∑
j∈Z

(
ajm − λδjm

)
ψj, m = k + 1, . . . , k + n.

Thus, for φ ∈ Xn,k, and m = k + 1, . . . , k + n,

(B+
n,kφ)m =

(
Mχ(n,k) (A− λI)∗ (A− λI)Mχ(n,k)φ

)
m

=
∑
i∈Z

(
aim − λδim

)( k+n∑
j=k+1

(aij − λδij)φj

)

=
∑
i∈Z

k+n∑
j=k+1

(
aim − λδim

)
((aij − λδij)φj)

=
∑
i∈Z

k+n∑
j=k+1

(
|λ|2 δimδij − λδimaij − λajmδij + aimaij

)
φj

=
k+n∑
j=k+1

φj
∑
i∈Z

(
|λ|2 δimδij − λδimaij − λaimδij + aimaij

)
=

k+n∑
j=k+1

(
|λ|2 δmj − λamj − λajm +

m+1∑
i=m−1

aimaij

)
φj. (4.12)

Let

ψ
(1)
j =

(
Mχ(n,k) (A− λI)∗ (A− λI)Mχ(n,k)φ

)
k+j

, j = 1, . . . , n,
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and let ψ(1) =
(
ψ

(1)
k+1, ψ

(1)
k+2, . . . , ψ

(1)
k+n

)T
and φ = (φk+1, φk+2, . . . , φk+n)T .

Then (4.12) implies that

ψ(1) =
[
|λ|2 In − λAn,k − λA∗n,k + Ã∗n,kÃn,k

]
φ,

where An,k is given by (3.5) and

Ãn,k =



γk+1

βk+1 γk+2

αk+1 βk+2 γk+3

. . . . . . . . .

αk+n−3 βk+n−2 γk+n−1

αk+n−2 βk+n−1 γk+n

αk+n−1 βk+n

αk+n


(n+2)×n

.

Similarly, we can show that if we let

ψ
(2)
j =

(
Mχ(n,k) (A− λI) (A− λI)∗Mχ(n,k)φ

)
k+j

, j = 1, . . . , n,

and ψ(2) =
(
ψ

(2)
k+1, ψ

(2)
k+2, . . . , ψ

(2)
k+n

)T
then

ψ̃(2) =
[
|λ|2 In − λAn,k − λA∗n,k + Å∗n,kÅn,k

]
φ

where

Ån,k =



αk

βk+1 αk+1

γk+2 βk+2 αk+2

. . . . . . . . .

γk+n−4 βk+n−3 αk+n−2

γk+n−3 βk+n−2 αk+n−1

γk+n−1 βk+n

γk+n+1


(n+2)×n

.

Define the n× n matrices C±n,k by

C+
n,k = ÃHn,kÃn,k
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and

C−n,k = ÅHn,kÅn,k.

Setting

D±n,k = |λ|2 In − λAn,k − λAHn,k + C±n,k, (4.13)

clearly

min specD+
n,k = min spec

(
Mχ(n,k) (A− λI)∗ (A− λI)Mχ(n,k)

∣∣
Xn,k

)
= min specB+

n,k, (4.14)

and

min specD−n,k = min spec
(
Mχ(n,k) (A− λI) (A− λI)∗Mχ(n,k)

∣∣
Xn,k

)
= min specB−n,k. (4.15)

Recalling Definition 4.1, we see that, for ε > 0 and n ∈ N,

Γnε (A) = {λ ∈ C : ξn(A− λI) < ε} (4.16)

where ξn(A− λI) =

{
inf
k∈Z

(
min specD+

n,k,min specD−n,k
)} 1

2

.

In the numerical results that we show in section 4.4 we compute the

inclusion sets Γnf(n)(A) for specA using equation (4.16)

4.3 Convergence of One-Sided Truncation Method

From Theorem 4.2 and Theorem 4.3 we get

specεA ⊆ Γnε+f(n)(A) ⊆ spec ε+f(n)A (4.17)

for all ε > 0, n ∈ N and A as in (3.1).

From Theorem 2.32, it follows that the set specεA depends continuously

(in the Hausdorff metric) on ε > 0, i.e.

εn → ε > 0 ⇒ dH
(
specεnA, specεA

)
→ 0.
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By (4.11) it follows that f(n)→ 0 as n→∞, so that

dH
(
specε+f(n)A, specεA

)
→ 0, n→∞.

But from (4.17) it follows that

dH
(
Γnε+f(n)(A), specεA

)
≤ dH

(
specε+f(n)A, specεA

)
→ 0,

as n→∞, so that

Γnε+f(n)(A)→ specεA and Γnf(n)(A)→ specA

in the Hausdorff metric as n→∞.

4.4 Numerical Examples for Method 2

4.4.1 Shift Operator

As an example of Corollary 4.4, we will apply method 2 to the right shift

operator (3.41) and compare the result to the previous methods. Note that

for n ∈ N, k ∈ Z, the matrices Ån,k and Ãn,k from Section 4.2 are in this case

Ån,k =



1

0 1

0 0 1
. . . . . . . . .

0 0 1

0 0

0


and Ãn,k =



0

0 0

1 0 0
. . . . . . . . .

1 0 0

1 0

1


.

(4.18)
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Both matrices are of size (n+ 2)× n and are independent of k. From (4.13)

we get that

D+
n,k = D−n,k = Dn :=



|λ|2 + 1 −λ
−λ |λ|2 + 1 −λ

−λ |λ|2 + 1 −λ
. . . . . . . . .

−λ |λ|2 + 1 −λ
−λ |λ|2 + 1


n×n

Let ω :=
√
λ/λ. We can show that

G−1
(
Dn − (|λ|2 + 1)In

)
G = −



0 |λ|
|λ| 0 |λ|
|λ| 0 |λ|

. . . . . . . . .

|λ| 0 |λ|
|λ| 0


n×n

,

(4.19)

where

G =



ω 0

0 ω2 0

0 ω3 0
. . . . . . . . .

0 ωn−1 0

0 ωn


n×n

.

We have already shown in Chapter 3 that the spectrum (eigenvalues) of

the matrix An of the form (3.48) is the set

{
2 cos

(
mπ

n+ 1

)
: m = 1, . . . , n

}
.

From (4.19), we have that
(
Dn − (|λ|2 + 1)In

)
is similar to the matrix− |λ|An.

It follows that

spec
(
Dn − (|λ|2 + 1)In

)
= spec (− |λ|An)

=

{
−2 |λ| cos

(
mπ

n+ 1

)
: m = 1, . . . , n

}
.
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Therefore

specDn =

{
|λ|2 + 1− 2 |λ| cos

(
mπ

n+ 1

)
: m = 1, . . . , n

}
.

min specDn = |λ|2 + 1− 2 |λ| cn

and

ξn(A− λI) = ξn,k(A− λI) :=
(
|λ|2 + 1− 2 |λ| cn

) 1
2 ,

for all k ∈ Z where cn := cos

(
π

n+ 1

)
. Consequently, by equation (4.16),

Γnε (A) = {λ ∈ C : ξn(A− λI) < ε}

=
{
λ ∈ C :

(
|λ|2 + 1− 2 |λ| cn

)
< ε2

}
=
{
λ ∈ C : (|λ| − cn)2 < ε2 + c2

n − 1
}

From Corollary 3.15 we get that specA ⊆ Γnf(n)(A). So if we put ε = f(n) in

the above computations, we get from (4.11) that

Γnf(n)(A) =

{
λ ∈ C : (|λ| − cn)2 ≤ 4 sin2

(
π

2(n+ 1)

)
+ c2

n − 1

}
=
{
λ ∈ C : (|λ| − cn)2 ≤ 2 (1− cn) + c2

n − 1
}

=
{
λ ∈ C : (|λ| − cn)2 ≤ (cn − 1)2}

= {λ ∈ C : ||λ| − cn| ≤ |cn − 1| = 1− cn}

= {λ ∈ C : |λ| ∈ [2cn − 1, 1]}

Thus, we have shown that

Γnf(n)(A) = {λ ∈ C : |λ| ∈ [2cn − 1, 1]} ,

so that our inclusion set for specA is an annulus with center 0, outer radius

1 and thickness

2 (1− cn) = 4 sin2

(
π

2(n+ 1)

)
<

π2

(n+ 1)2
.
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Figure 4.3: Plots of the sets Σn
f(n)(A),Πn

f(n)(A) and Γnf(n)(A) which are in-

clusion sets for specA, where f(n) is given as in Corollary 4.4, where A is

the shift operator, V1, with specA = T. Shown are the inclusion sets com-

puted from method1 (column 1), method 1* (column 2), method 2 (column

3) when n = 4, 8 and 16.

Thus

dH

(
Γnf(n)(A), specA

)
= max

(
4 sin2

(
π

2(n+ 1)

)
, 0

)
= 4 sin2

(
π

2(n+ 1)

)
<

π2

(n+ 1)2
→ 0

as n→∞. Therefore, Γnf(n)(A)→ specA as n→∞ in Hausdorff metric, as

shown already in section 4.3. Now we have a rigorous analytical description

for all of the images in Figure 4.3.
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4.4.2 3-periodic Bi-diagonal Operator

As the second example, Let us consider the case when when A is the bi-

diagonal matrix,

A =



. . . . . .

. . . 1 1

0 −1 1

0 1 2

0 1 1
. . . . . . . . .


, (4.20)

with only the main diagonal and the first superdiagonal non-zero, and both

of these periodic with period 3.

We can compute explicitly that

spec (A) =
{
λ ∈ C : λ3 − λ2 + λ+ 1 = 2eiθ, θ ∈ [−π, π]

}
.

From Figure 4.4, we can see that, when n is getting larger, the inclusion set

Γnf(n)(A) is converging to specA faster than Πn
f(n)(A) of method 1* which uses

the periodised submatrices. We would not compare method 1 to method 2

because we believe that they converge to different sets. However, from the

numerical results, this seems to convince us that method 2 produces the

inclusion sets which give us the fastest convergence to specA.
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Figure 4.4: Plots of the sets Σn
f(n)(A),Πn

f(n)(A) and Γnf(n)(A) which are

inclusion sets for specA, where f(n) is given as in Corollary 4.4, where

A is the periodic bi-diagonal operator which has αi = 0 for all i, (βi) =

(. . . , 1,−1, 1, 1,−1, 1, . . .) and (αi) = (. . . , 1, 1, 2, 1, 1, 2, . . .). Shown are the

inclusion sets computed from method1 (column 1), method 1* (column 2),

method 2 (column 3) when n = 8, 16, 32 and 64.



Chapter 5

Spectral Properties of a

Random Tridiagonal Matrix

Arising in Non-Self-Adjoint

Quantum Mechanics

In this chapter, we will investigate the spectral properties of our infinite

tridiagonal matrix of the form

Ab =



. . . . . .

. . . 0 1

b−1 0 1

b0 0 1

b1 0 1

b2 0
. . .

. . . . . .


,

where b = (bi) ∈ {±1}Z, which is a non-self-adjoint tri-diagonal matrix. We

will be particularly interested in the case where the entries bi are chosen

randomly. In the first section, we will discuss some related research work

which gives us some inspiration.

117
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Figure 5.1: A picture of spectral plot from a talk of A. Zee at the Math. Sci.

Research Institute, Berkeley in 1999.
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5.1 Background and Motivation

Recently, there has been a great deal of work on the spectrum and pseu-

dospectrum of doubly- (and singly-) infinite random tridiagonal matrices

and their finite sections (e.g. [1, 5, 6, 11, 16, 17, 19, 20, 23, 24, 25, 29, 37, 39,

40, 45]). In 2001, Trefethen, Contedini and Embree [48] studied the spectra

and pseudospectra of random bidiagonal matrices of the form

An =



x1 1

x2 1
. . . . . .

xn−1 1

xn


n×n

where each xi is a random variable taking values independently in a compact

subset of C, from some distribution X. If the entries on the main diagonal

generate from X = [−2, 2] with uniform probability, this random matrix A

is associated with the “one-way-model” by Brezin, Feinberg and Zee [5, 16,

17], when the entries on the main diagonal generate from {±1}, then they

obtained the following matrix

An =



±1 1

±1 1
. . . . . .

±1 1

±1


n×n

In order to prove the main result, they started characterising the spectra,

pseudospectra and numerical range of the finite matrix An. The main idea of

the proof is to show that for every λ ∈ C they have conditions on the norm

of resolvent (An − λI)−1 which guaranteed the exponential growth, guaran-

teed almost sure exponential growth, guaranteed almost sure subexponential

growth and guaranteed boundedness as n → ∞. It follows that the set of

complex numbers has been divided into 4 regions according to the behaviour
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of (An − λI)−1, i.e. delocalized (surely), delocalized almost surely, localized

almost surely and localized (surely). Note that (An − λI)−1 is said to be

localized if the entries of the colums in (An−λI)−1 decay exponentially with

distance from the diagonal and delocalized if they do not.

Then they proved results for the case of infinite bidiagonal matrices, finite

periodic matrices and bi-infinite bidiagonal matrices A of the form

A =



. . . . . .

±1 1

±1 1

±1 1

±1
. . .
. . .


,

respectively. The main result for a random bidiagonal doubly infinite matrix

case is, with probability 1, specA is the union of the regions which are

delocalized almost surely and localized almost surely. Precisely, specA is the

union of the two closed unit disks centred at 1 and -1, respectively.

In 2008, Lindner [35] generalizes the above result for the case of one

random and one constant diagonals to the case of two random diagonals, so

that

A =



. . . . . .

σ−1 τ−1

σ0 τ0

σ1 τ1

σ2
. . .
. . .


, (5.1)

where σk ∈ Σ and τk ∈ T are taken independently from a random distribution

on Σ and T , which are arbitrary compact subsets of C, respectively under

the condition for every ε > 0, σ ∈ Σ and τ ∈ T , that Pr (|σk − σ| < ε) and

Pr (|τk − τ | < ε) are both non-zero. This is a proper generalization of [48]

because the set T may contain zero. For every ε > 0, define
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Σε
∪ :=

⋃
σ∈Σ

U ε(σ) and Σε
∩ :=

⋂
σ∈Σ

Uε(σ)

where Uε(σ) = {λ ∈ C : |λ− σ| < ε}. He then proved the following nice

result:

Theorem 5.1. If A is the random matrix shown in (5.1) then, almost surely,

specA = specess A = ΣT
∪ \ Σt

∩

where T = max {|τ | : τ ∈ T } and t = min {|τ | : τ ∈ T }.

If all entries on the main diagonal and on the upper diagonal take values

independently from the sets Σ = {±1} and T = {1}, respectively, then it

is obvious from Theorem 5.1 that the spectrum of that infinite bi-diagonal

matrix is the union of the two closed unit disks centred at 1 and -1, respec-

tively.

Moreover, Lindner computed the spectrum of doubly infinite random ma-

trices of the form (5.1) where (σi) and (τi) are pseudo-ergodic ±1-sequences,

by looking at the union of spectrum of finitely many limit operators. Since

the set σop(A) is very large and very difficult to compute, he computed the

spectrum of bi-infinite random ±1-sequence matrix by considering only pe-

riodic limit operators. He approximated the spectrum of the infinite matrix

by the union of all eigenvalues of every possibility n-periodic limit operators,

spec perA :=
∞⋃
n=1

 ⋃
B∈Pn(A)

spec∞pointB

 ,

where Pn(A) ⊆ σop(A) denotes the set of all limit operators of A with

n−periodic diagonals. Then he proved that spec perA is dense in specA.

There are some difficulties to study the spectrum of Ab and to find the

explicit form of eigenvectors. First of all, the eigenvalues of the finite section

matrices of the infinite bidiagonal random matrices can be found more easily

than those of the finite section matrices of the infinite tridiagonal random

matrices since the eigenvalues of the finite section matrices of the infinite
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bidiagonal random matrices are already the entries on the main diagonal of

those finite submatrices.

Moreover, computing the spectra and pseudospectra of infinite bidiagonal

random matrices is a lot easier than computing the spectra and pseudospectra

of infinite tridiagonal random matrices. The reason is, to find the eigenvectors

of bidiagonal matrices we need to solve 2-term recurrence equations which is

less complicated than finding the eigenvector of infinite tridiagonal random

matrices which satisfy a 3-term recurrence relation.

In 1999, to the best of my knowledge, leading quantum physicists includ-

ing Anthony Zee, Joshua Feinberg started studying to describe the propaga-

tion of a particle hopping on a 1-dimensional lattice. Feinberg and Zee [16]

studied the equation

vk+1 + rk−1vk−1 = λvk (5.2)

where the real numbers rk are generated from some random distribution and

λ is the spectral parameter. Zee and Feinberg studied the distribution of the

eigenvalues of the n× n matrix Abn defined by

Abn =



0 1

b1 0 1

b2 0 1
. . . . . . . . .

bn−2 0 1

bn−1 0


,

which is obtained from (5.2) when v0 = vn+1 = 0 and each bk is ±1, randomly.

They noticed that when n was large, the spectrum has a complicated fractal-

like form. The matrix Ab is obtained from one of the simple models suggested

in [28]. They studied the eigenvalues of the finite section matrix Abn and

rewrite the equation (5.2) into the transfer matrix form(
xk+1

xk

)
= Tk−1

(
xk

xk−1

)
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where Tk defined by

Tk =

(
λ −bk
1 0

)
Let P = [p11 p12] be a vector defined by P := Tn−1 · · ·T2T1. Then they

determined the eigenvalues once they solved the equation λp11 + p12 = 0.

They had also noticed that when they considered a large finite subsection,

the spectrum has a complicated fractal-like form.

In 2002, Holz, Orland and Zee [28] studied the spectrum of the infinite

random matrix Ab for all 6 possible cases with a 4-periodic sequence. They

found that the spectrum for each of these 6 patterns corresponds to a certain

curve. In this paper, they stated some open questions on the spectrum of the

infinite random matrix e.g. does the spectrum contain a hole in the complex

plane or not? Is the spectrum of the operator localized or delocalized?

In 2010, Chien and Nakazato [10] studied the numerical range of tri-

diagonal operators A defined by Aej = ej−1 + rjej+1, where r ∈ R, j ∈ N and

{e1, e2, . . .} is the standard orthonormal basis for `2(N). In the third section

of this paper, they emphasised the case r = −1 and they showed that

W (A) = {z ∈ C : −1 ≤ Re(z) ≤ 1,−1 ≤ Im(z) ≤ 1}

\ {1 + i, 1− i,−1 + i,−1− i} .

5.2 The Initial Investigations

Consider the n× n finite section matrix of the form

Abn =



0 1 0 . . . 0

b1 0 1 . . . 0
... b2

. . . . . .
...

0 . . .
. . . 0 1

0 . . . . . . bn−1 0


. (5.3)
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All eigenvalues λ and eigenvectors (or eigenfunctions) x of Abn satisfy

Abnx = λx.

Taking norms on both sides, we have

|λ| ‖x‖ = ‖λx‖ =
∥∥Abnx∥∥ ≤ ∥∥Abn∥∥ ‖x‖

i.e.

|λ| ≤
∥∥Abn∥∥ .

In particular ∥∥Abn∥∥∞ = max
m

∑
n

|amn| = 2.

Also for the infinite case,
∥∥Abn∥∥ = 2, so |λ| ≤ 2. Further, from the basic

property of Toeplitz operators (see [4]), we know that

A :=



. . . . . .

. . . 0 1

c 0 1

c 0 1

c 0 1

c 0
. . .

. . . . . .


,

has symbol a(t) = t + ct−1 where t ∈ T = {t : |t| = 1}. If c = 1, it follows

that

specA = {eiθ + e−iθ : θ ∈ R} = {2 cos θ : θ ∈ R} = [−2, 2] (5.4)

and if c = −1,

specA = {eiθ − e−iθ : θ ∈ R} = {2i sin θ : θ ∈ R} = i[−2, 2]. (5.5)
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Figure 5.2: The plot of all eigenvalues of all possible finite matrices of order

n = 2, 3, 4 and 5.
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5.2.1 The Symmetry of specAb
n

From Figure 5.2, we can see the symmetry of specAbn. This suggests us

to prove rigorously the symmetry properties of specAbn and specAb, respec-

tively. To study the symmetry of the spectrum ofAbn, we need to prove the

following proposition:

Proposition 5.2. Let n ≥ 3. The characteristic polynomial of Abn is an odd

function if n is odd and it is an even function if n is even. Moreover, for

n ≥ 3,

Dn := det(Abn − λI) = −λDn−1 − bn−1Dn−2.

Proof. We are proving this statement by using mathematical induction on

the size of the finite section, n.

Basis Step : If n = 3 we consider the matrix

Ab3 =

 0 1 0

b1 0 1

0 b2 0

 .

The characteristic polynomial for A3 is det(A3−λI) = −λ3 +(b1 +b2)λ which

is an odd function no matter what b1, b2 are.

If n = 4 we consider the matrix

Ab4 =


0 1 0 0

b1 0 1 0

0 b2 0 1

0 0 b3 0

 .

The characteristic polynomial D4 is



5.2 THE INITIAL INVESTIGATION 127

D4 = det(Ab4 − λI) =

∣∣∣∣∣∣∣∣∣∣
−λ 1 0 0

b1 −λ 1 0

0 b2 −λ 1

0 0 b3 −λ

∣∣∣∣∣∣∣∣∣∣
= (−λ)

∣∣∣∣∣∣∣
−λ 1 0

b1 −λ 1

0 b2 −λ

∣∣∣∣∣∣∣−
∣∣∣∣∣∣∣
−λ 1 0

b1 −λ 1

0 0 b3

∣∣∣∣∣∣∣
= (−λ)

∣∣∣∣∣∣∣
−λ 1 0

b1 −λ 1

0 b2 −λ

∣∣∣∣∣∣∣− b3

∣∣∣∣∣−λ 1

b1 −λ

∣∣∣∣∣ .
Since D3 is an odd function, it follows that D4 is an even function. In

addition,

D4 = (−λ)D3 − (b3)D2.

Inductive Step : Let k be any integer such that for every l ≤ k, then

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−λ 1

b1 −λ 1

b2 −λ 1

b3 −λ . . .
. . . . . . 1

bl−1 −λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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is an odd function if l is odd and is an even function if l is even. Consider

det(Ak+1 − λI) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−λ 1

b1 −λ 1

b2 −λ 1

b3 −λ . . .
. . . . . . 1

bk−2 −λ 1

bk−1 −λ 1

bk −λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(5.6)

Using the (k + 1)th column to compute the determinant, we see that

det(Abk+1 − λI) = (−λ) ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−λ 1

b1 −λ 1

b2 −λ 1

b3 −λ . . .
. . . . . . 1

bk−2 −λ 1

bk−1 −λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

− (1) ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−λ 1

b1 −λ 1

b2 −λ 1

b3 −λ . . .
. . . . . . 1

bk−2 −λ 1

0 bk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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= (−λ) ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−λ 1

b1 −λ 1

b2 −λ 1

b3 −λ . . .
. . . . . . 1

bk−2 −λ 1

bk−1 −λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

− (bk) ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−λ 1

b1 −λ 1

b2 −λ 1

b3 −λ . . .
. . . . . . 1

bk−2 −λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (−λ)Dk − bkDk−1.

By the induction hypothesis, we can see that, if k is odd then Dk is odd

and Dk−1 is even i.e. Dk+1 is even and if k is even then Dk is even and Dk−1

is odd i.e. Dk+1 is even as desired.

Note that every odd function satisfies f(0) = 0. As a result, if n is odd

then det(Abn−λI) can be factorised as det(Abn−λI) = λ ·m(λ), where m(λ)

is an even function. As a consequence, if λ is a root of the characteristic

equation, so is −λ.

Because all coeficients of Dn are real, all its complex roots come in con-

jugated pairs, so that with λ also λ is a root of Dn.

In the next subsection we are proving the symmetry property of specAb.

5.2.2 The Symmetry of specAb

From the results in the subsection 5.2.1, we have already shown that the

spectra of the finite submatrices of Ab are symmetric about the x−axis,

y−axis and 90◦ rotation around the origin. This suggests us to show that
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if λ ∈ specAb then −λ and λ also belong to specAb. We need to recall the

definition of pseudo-ergodic in our case. A sequence (bi) ∈ {±1}Z is said to

be pseudo-ergodic iff every finite pattern of ±1’s can be found somewhere in

the sequence b.

Proposition 5.3. If b is pseudo-ergodic then,

σop(Ab) =
{
Ac : c ∈ {±1}Z} .

Proof. This follows from Ab = MbV1 + V−1 and Proposition 2.55.

Proposition 5.4. If b ∈ {±1}Z is pseudo-ergodic ( which holds almost surely

if b is random ) then

1. It holds that

specAb = specess A
b =

⋃
c∈{±1}Z

specAc =
⋃

c∈{±1}Z
spec∞point A

c, (5.7)

so in particular,

specperA
b :=

⋃
n∈N

specnperA
b ⊆ specAb (5.8)

(see Fig.5.3, Fig.5.4 and Fig.5.5), where

specnperA
b :=

⋃
c∈{±1}Z,n−periodic

spec∞pointA
c. (5.9)

2. specAb is invariant under reflection about either axis as well as under

a 90◦ rotation around the origin.

Proof.

1. By Proposition 2.53, i.e. for any A ∈ W ,

specess A =
⋃

B∈σop(A)

specB =
⋃

B∈σop(A)

spec∞point B,
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and Proposition 5.3, i.e. σop(Ab) =
{
Ac : c ∈ {±1}Z

}
, we will get that

specess A
b =

⋃
c∈{±1}Z

specAc =
⋃

c∈{±1}Z
spec∞point A

c.

Moreover, we can see that specAb ⊆
⋃

c∈{±1}Z
specAc = specess A

b. On

the other hand, of course specessA
b ⊆ specAb. Therefore we obtain the

desired result as in the proposition.

2. we let λ ∈ specAb =
⋃

c∈{±1}Z
spec∞pointA

c, i.e. λ ∈ spec∞point A
d for some

d ∈ {±1}Z. Hence we have that Adv = λv. Now we will show that

−λ ∈ specAb. Choose a vector v̂ where v̂k = (−1)kvk, then

Adv = λv ⇔ dk−1vk−1 − λvk + vk+1 = 0

⇔ dk−1

(
(−1)k−1vk−1

)
− λ

(
(−1)k−1vk

)
+ (−1)k−1vk+1 = 0

⇔ dk−1

(
(−1)k−1vk−1

)
+ λ

(
(−1)kvk

)
+ (−1)k+1vk+1 = 0

⇔ Adv̂ = −λv̂

⇔ −λ ∈ spec∞point A
d.

We are now showing that if λ ∈ specAb then λi ∈ specAb. Choose a

vector v′ such that v′k = ikvk.

Adv = λv ⇔ dk−1vk−1 − λvk + vk+1 = 0

⇔ dk−1

(
ik+1vk−1

)
− λ

(
ik+1vk

)
+ ik+1vk+1 = 0

⇔ −dk−1

(
ik−1vk−1

)
− λi

(
ikvk

)
+ ik+1vk+1 = 0

⇔ ek−1v
′
k−1 − λiv′k + v′k+1 = 0

⇔ Aev′ = λiv′

⇔ λi ∈ spec∞point A
e,

where ek = −dk for all k ∈ Z, so that also e = (ek) ∈ {±1}Z and hence

λi ∈ specAb. Moreover, we know∥∥∥(Ab − λI)−1
∥∥∥ =

∥∥∥∥((Ab − λI)∗)−1
∥∥∥∥ =

∥∥∥((Ab − λI)−1
)∗∥∥∥ =

∥∥∥(Ab − λI)−1
∥∥∥ ,

we can conclude that λ ∈ specAb.
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Hence, −λ, λ, λi ∈
⋃

c∈{±1}Z
spec∞point A

c = specAb. Therefore, specAb is invari-

ant under reflection about either axis as well as under a 90◦ rotation around

the origin.

5.2.3 Numerical Range of Ab

In this section, we will show that the numerical range of Ab is equal to

D = {x+ iy : x, y ∈ R, |x|+ |y| < 2}.

Proposition 5.5. If b is pseudo-ergodic, then

D ⊆ W (Ab),

and

D ⊆ W (Ab).

Proof. Let λ ∈ D = {x+iy : x, y ∈ R, |x|+ |y| ≤ 2}, which is the square with

2,−2, 2i and −2i as its corners. From (5.4), (5.5) and Proposition 5.4, we

know that [−2, 2] ∪ [−2i, 2i] ∈
⋃

c∈{±1}Z
specAc = specAb. Note that W (Ab)

is convex and specAb ⊆ W (Ab) by Theorem 2.28, it follows that the line

segments [−2, 2], [−2i, 2i] and {(x+ yi) ∈ C : |x|+ |y| = 2} are in W (Ab).

From the convexity, it is implied that λ ∈ W (Ab).

Now, we are proving that D ⊆ W (Ab). Let µ ∈ D. Since D is an open

set, there exists ε1 > 0 such that Bε1(µ) ⊆ D. We claim that µ does not

belong to the boundary of W (Ab). Suppose not, it also means µ belongs

to the boundary of W (Ab), i.e. for every ε > 0, Bε(µ) ∩ W (Ab) 6= φ and

Bε(µ) ∩
(
W (Ab)

)C
6= φ, where AC is the complement of a set A. Since

D ⊆ W (Ab), there exists ζ ∈ Bε1(µ) such that ζ /∈ D which contradicts the

fact that Bε1(µ) ⊆ D. That means the supposition is not true. Therefore,

D ⊆ W (Ab).

Lemma 5.6. ∀x, y ∈ `2(Z), (x, y) = (x̄, ȳ).
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Proof. Let x, y ∈ `2(Z). Then

(x, y) =
∑
i∈Z

xȳ

=
∑
i∈Z

x̄y

= (x̄, ȳ).

Lemma 5.7. If λ ∈ W (Ab) then λ ∈ W (Ab) and −λ ∈ W (Ab).

Proof. Let λ ∈ W (Ab). So, there exists a unit vector v ∈ `2(Z) such that

λ = (Abv, v).

Claim λ ∈ W (Ab).

λ̄ = (Abv, v)

since (x, y) = (x̄, ȳ),

= (Abv, v̄)

since every entry of Ab is real,

= (Abv̄, v̄).

Since ‖v̄‖ = ‖v‖ = 1, it follows that λ̄ ∈ W (Ab).

Claim−λ ∈ W (Ab).

Since

−λ = −(Abv, v) = (Abvi, vi),

and ‖vi‖ = ‖v‖ = 1, it follows that −λ ∈ W (Ab).

From Lemma 5.7, we know that if a+ bi ∈ W (Ab) then a− bi ∈ W (Ab).

Therefore, W (Ab) is symmetric about the real axis. Since we know that a−bi
belongs to W (Ab) if a + bi ∈ W (Ab) and −(a − bi) also belongs to W (Ab).

Thus, −a + bi ∈ W (Ab) if a + bi ∈ W (Ab). As a consequence, W (Ab) is

symmetric about the imaginary axis
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For the next lemma, we will show that W (Ab) ⊆ D. We need to show

some facts about the real part of the numerical range as following :

Re(Av, v) =
1

2
[(Av, v) + (Av, v)]

=
1

2
[(Av, v) + (v, (A)∗ v)]

=
1

2
[(Av, v) + (A∗v, v)]

= (Bv, v)

where A ∈ B(`2(Z)) and B =
1

2
(A+ (A∗) is self-adjoint. This is very helpful.

Lemma 5.8. Re(e
iπ
4 (Abv, v)) <

√
2, for all v ∈ `2(Z) with ‖v‖ ≤ 1.

Proof. Since Ab = MbV1 + V−1 and (Ab)∗ = V−1Mb + V1, it follows that

e
iπ
4 Ab = M

e
iπ
4 b
V1 + e

iπ
4 V−1 and (e

iπ
4 Ab)∗ = V−1M

e−
iπ
4 b

+ e−
iπ
4 V1, and let

Bπ
4

:=
1

2
(e

iπ
4 Ab + (e

iπ
4 Ab)∗) = (McV1 + V−1Mc̄) ,

where c =
1

2
(e

iπ
4 b + e−

iπ
4 ), i.e., ‖c‖∞ =

1√
2
. From the previous statement

before this lemma, we know that

Re e
iπ
4 (Abv, v) = Re (e

iπ
4 Abv, v)

= (Bπ
4
v, v)

= (McV1v, v) + (V−1Mcv, v)

≤ ‖c‖∞ ((V1w,w) + (V−1w,w)) where wi = |vi|.

Claim 1. V1w 6= mw for every constant m. Suppose V1w = mw for some

constant m. We have ‖V1w‖ = ‖mw‖. Since V1 is an isometry, 1 = ‖V1‖ =

|m|. It follows that |wi| = |wi+1| for every i. That means, the sequence

w = (wi) /∈ `2(Z), which is a contradiction. Therefore the supposition is not

true.

Claim 2.|(V1w,w)| < 1 and |(V−1w,w)| < 1.

By Cauchy-Schwarz Inequality and Claim 1. we know that the equality

doesn’t hold in any case, i.e.

|(V1w,w)| < ‖V1w‖ ‖w‖ = 1.
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Figure 5.3: This figure shows the sets
12⋃
n=1

specnperA
b and

13⋃
n=1

specnperA
b , as

defined in (5.9).

Similarly, we can show that |(V−1w,w)| < 1.

Hence,
∣∣(Bπ

4
w,w)

∣∣ ≤ ‖c‖∞ (|(V1w,w)| + |(V−1w,w)|) < (
1√
2

)2 =
√

2. It

follows that Re e
iπ
4 (Abv, v) = Re (Bπ

4
w,w) <

√
2.

Consequently, by proposition 5.5 and lemma 5.8 we have the following

result:

Theorem 5.9. Let D = {x + iy : x, y ∈ R, |x| + |y| < 2}. If b is pseudo-

ergodic then D = W (Ab).
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Figure 5.4: This figure shows the sets specnperA
b, as defined in 5.9, for n =

1, . . . , 15. Note that each set specnperA
b consists of k analytic arcs, where

2n/n ≤ k ≤ 2n. Recall that Fig.5.3 shows the union of the first twelve

pictures and thirteen pictures, respectively, of this figure.
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Figure 5.5: This figure shows the sets specnperA
b, as defined in 5.9, for n =

16, . . . , 30. Note that each set specnperA
b consists of k analytic arcs, where

2n/n ≤ k ≤ 2n.
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Figure 5.6: This figure shows the union
⋃

c∈{±1}n−1

specAcn of all n×n matrix

eigenvalues for n = 1, . . . , 15. Note that the first picture we have used heavier

pixels for the sake of visibility.
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Figure 5.7: This figure shows the union
⋃

c∈{±1}n−1

specAcn of all n×n matrix

eigenvalues for n = 16, . . . , 30.
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5.3 Spectral Theory of Periodic Matrices

Recall from Proposition 5.4, if b is pseudo-ergodic, we have the following

result:

spec (Ab) = specess (Ab) =
⋃

c∈{±1}Z
spec∞point (Ac). (5.10)

Generally it is difficult to evaluate the rightmost term in (5.10) since it

would be a very large computation and the point spectrum of Ac is some-

times difficult to determine. We are presenting the approach which has

been used by Davies and co-workers which is to look at a large number

of periodic limit operator of Ab. More precisely, one look at the subset⋃
B∈σop(A),n−periodic

spec∞point B of specA for large values of n ∈ N. We know (see

e.g. Lindner [36, Theorem 5.37]) that specB = spec∞point B if B is n−periodic

and its computation reduces to the computation of the spectra of certain fi-

nite matrices by treating B as a block Laurent matrix with n×n block entries

( see Section 5.3.2 and 5.3.3 for the known related results).

5.3.1 The Point Spectrum of the Matrix Ab

In this section we will discuss about the point spectrum of Ab when b is

N -periodic. Let λ be an eigenvalue of Ab with a corresponding eigenvector

x ∈ `∞(Z). Then Abx = λx, λ 6= 0, i.e.

bjxj−1 − λxj + xj+1 = 0, j ∈ Z

i.e. (
xj

xj+1

)
= Mj

(
xj−1

xj

)
, j ∈ Z

where Mj =

(
0 1

−bj λ

)
. Note that Mj+N = Mj for every j ∈ Z. Then

(
xmN−1

xmN

)
= M̃

(
x(m−1)N−1

x(m−1)N

)
, m ∈ Z
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where

M̃ = MmN−1MmN−2 . . .M(m−1)N

= MN−1MN−2 . . .M0.

Thus, (
xmN−1

xmN

)
= M̃m

(
x−1

x0

)
, m ∈ Z. (5.11)

Lemma 5.10. If C is an invertible 2 × 2 matrix and v is a non-zero 2 × 1

vector and (Cmv)m∈Z is a bounded sequence, then C has an eigenvalue µ with

|µ| = 1.

Proof. Let C = XDX−1 be the Jordan normal form of C with

either D =

(
a 0

0 b

)
or D =

(
a 0

1 a

)

depending on whether C is diagonalizable or not. If there exists a nonzero

vector v ∈ C2 such that Cmv = XDmX−1v remains bounded as m → ±∞

then there is also a nonzero vector w := X−1v ∈ C2, say w =

(
x

y

)
, such

that Dmw = X−1Cmv remains bounded as m→ ±∞.

Case 1. (Diagonalizable case). If D is the first one of the two matrices

above then

Dmw =

(
am 0

0 bm

)(
x

y

)
=

(
amx

bmy

)
.

Since this is bounded as m → ±∞ we know that both |amx| = |a|m |x| and

|bmy| = |b|m |y| remain bounded and hence ( |a| = 1 or x = 0 ) and ( |b| = 1

or y = 0 ) hold. Since w 6= 0, not both x and y are zero and at least one of

|a| and |b| has to be equal to 1.

Case 2. (non-diagonalizable case). If D is the first one of the two

matrices above then

Dmw =

(
am 0

mam−1 am

)(
x

y

)
=

(
amx

mam−1x+ amy

)
.



5.3 SPECTRAL THEORY OF PERIODIC MATRICES 142

Since this is bounded as m→ ±∞ we know that the first component |amx| =
|a|m |x| is bounded as m → ±∞. This implies that |a| = 1 or x = 0. If

|a| = 1 we are finished and if x = 0 we get from the boundedness of the

second component |mam−1x+ amy| = |amy| = |a|m |y| that |a| = 1 since

y 6= 0 by w 6= 0.

From Lemma 5.10, we know that M̃ has an eigenvalue α with |α| = 1.

Let

(
h

k

)
be the corresponding eigenvector. Define the sequence z = (zi)i∈Z

by

z−1 = h and z0 = k

which is satisfied

bjzj−1 − λzj + yj+1 = 0, j ∈ Z.

From (5.11), for m ∈ Z,(
zmN−1

zmN

)
= M̃m

(
z−1

z0

)
= αm

(
z−1

z0

)
.

So, it is easy to see that z ∈ `∞(Z). In particular,

(
zN−1

zN

)
= α

(
z−1

z0

)
.

Thus



−λ 1 0 . . . b0α
−1

b1 −λ 1 . . . 0
... b2

. . . . . .
...

0 . . .
. . . −λ 1

α 0 . . . bN−1 −λ





z0

z1

...

zN−2

zN−1


= 0

i.e.

(AbN +BN,α − λI)



z0

z1

...

zN−2

zN−1


= 0
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where, for N ≥ 2,

AbN =



0 1 0 . . . 0

b1 0 1 . . . 0
... b2

. . . . . .
...

0 . . .
. . . 0 1

0 0 . . . bN−1 0


and

BN,α =



0 0 0 . . . b0α
−1

0 0 0 . . . 0
... 0

. . . . . .
...

0 . . .
. . . 0 0

α 0 . . . 0 0


BN,α can be written in the form (BN,α)ij = δi,1δj,Jb0α

−1 + δi,Nδj,1α. This is

an excellent way to write it because it works even for the periodicity N = 1,

provided we set A1 = 0. Let

AbN,α := AbN +Bα
N .

We have shown that, if λ ∈ spec∞point (Ab) then λ ∈ specAbN,α for some α with

|α| = 1.

Conversely, let λ ∈ spec (AbN,α) for some α with |α| = 1. So, there exists a

bounded non-zero vector x = [x0, x1, . . . , xN−1]T such that (AbN,α−λI)x = 0.

Then, defining xN = αx0 and x−1 = α−1xN−1, it follows that

bjxj−1 − λxj + xj+1 = 0,

for 0 ≤ j ≤ N−1. Define the bounded sequence y by yk = αmxj if k = mN+j

for some m ∈ Z and some j in the range 0 ≤ j ≤ N − 1. Then, for k ∈ Z,

bkyk−1 − λyk + yk+1 = αmbjxj−1 − αmλxj + αmxj+1 = 0,

i.e. there exists y = (yk)k∈Z such that (Ab − λI)y = 0, i.e. λ ∈ spec∞point A
b.

Then, we have shown the following result.

Theorem 5.11. If b is N-periodic with N ∈ N then

specAb = specess A
b = spec∞point A

b =
⋃
|α|=1

specAbN,α.
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Example.

Case 1 the period N = 1 (Laurent Operators)

spec (AbN,α) = {λ : det(AbN,α − λI) = 0}

= {λ : b0α
−1 + α− λ = 0}.

Therefore

spec∞point (Ab) = {b0α
−1 + α : |α| = 1}.

In particular, if b0 = 1 then

spec∞point (Ab) = {α−1 + α : |α| = 1} = {eis + e−is : s ∈ R} = [−2, 2],

and if b0 = −1 then

spec∞point (Ab) = {α−1 − α : |α| = 1} = {eis − e−is : s ∈ R} = [−2i, 2i].

Case 2 the period N = 2.

spec (AbN,α) = {λ :

∣∣∣∣∣ −λ b0α
−1 + 1

b1 + α −λ

∣∣∣∣∣ = 0}

= {λ : λ2 − (b1 + α)(b0α
−1 + 1) = 0}

= {λ : λ2 − (b0b1α
−1 + b0 + b1 + α) = 0}

= {λ : λ2 =
b0b1

α
+ b0 + b1 + α}

= {λ : λ2 =
α2 + (b0 + b1)α + b0b1

α
}.

Therefore,

spec∞point (Ab) = {±
√

(b0 + α)(b1 + α)

α
: |α| = 1}.
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In particular, if b0 = 1 and b1 = −1 then

spec∞point (Ab) = {±
√

(α + 1)(α− 1)

α
: |α| = 1}

= {±
√
α2 − 1

α
: |α| = 1}

= {±
√
α− α−1 : |α| = 1}

= {±
√

2i sin θ : θ ∈ R}

= {±e
iπ
4
√
p : −2i ≤ p ≤ 2i}

= ±e
iπ
4 [−
√

2i,
√

2i].

Case 3 the period N = 3.

specAbN,α = {λ :

∣∣∣∣∣∣∣
−λ 1 b0α

−1

b1 −λ 1

α b2 −λ

∣∣∣∣∣∣∣ = 0}

= {λ : −λ3 − α− b0b1b2α
−1 + b0λ+ b1λ+ b2λ = 0, where |α| = 1}

= {λ : −λ3 + (b0 + b1 + b2)λ− (α + b0b1b2α
−1) = 0 where |α| = 1}.

If bi ∈ {1,−1} for every i ∈ Z, it follows that

spec∞point (Ab) = {λ : −λ3 + (b0 + b1 + b2)λ− p = 0, where p ∈ [−2, 2] ∪ [−2i, 2i]}.

In particular, if b0 = 1, b1 = −1 and b2 = −1 then

spec∞point (Ab) = {λ : −λ3 − λ− p = 0, where p ∈ [−2, 2]}

= {λ : −2 ≤ −λ3 − λ ≤ 2}

= {λ : −2 ≤ λ3 + λ ≤ 2}.

In the next section, we will prove the same Theorem 5.11 by a different

technique.
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5.3.2 Computing the spectra by using Floquet-Bloch

Technique.

As we noted at the beginning of section 5.3 the characteristic of the spec-

tra of Ab is Theorem 5.11 is not new, but is known as a standard part of

Floquet-Bloch theory. In particular, it can be derived from the following

result [Theorem 4.4.9, [13]]

Theorem 5.12. Let K be a finite-dimensional inner product space and let

H = `2(ZN ,K) be the space of all square-summable K valued sequences on

ZN . Let A : H → H be defined by

(Af)(n) :=
∑
m∈ZN

an−mfm

where a : ZN → L(K) satisfies
∑
n∈ZN

‖an‖ <∞. Then

spec (A) = specess (A) =
⋃

θ∈[−π,π]N

spec (b(θ))

where

b(θ) :=
∑
n∈ZN

ane
in·θ ∈ L(K)

for all θ ∈ [−π, π]N .

Let us show how this theorem implies Theorem 5.11. In fact we shall

show a slightly better result.

Let A be a bounded operator on `2(Z) with a tridiagonal matrix [A] =

[amn]m,n∈Z, i.e. one that satisfies amn = 0 if |m− n| > 1. Suppose also that A

is periodic with period N in the sense that am+N,n+N = amn for all m,n ∈ Z.

Let σ : Z×{0, 1, . . . , N−1} → Z be the map σ(m, j) := Nm+j. It is easy

to show that σ is injective, and by using Division Algorithm, we can show that

σ is surjective. Therefore σ is bijective. Since σ : Z× {0, 1, . . . , N − 1} → Z
is a bijection, clearly, the mapping f : `2(Z,CN)→ `2(Z) defined by

f(x) = x̃,
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for x ∈ `2(Z,CN), where x̃ ∈ `2(Z) is defined by f(x)(σ(m, j)) = (x(m))j or

x̃(σ(m, j)) = (f−1(x)(m))j , m ∈ Z, j ∈ {0, 1, . . . N − 1} is a bijection and it

is also isometric 1, and so an isometric isomorphism. Thus `2(Z) ∼= `2(Z,CN).

For g ∈ `2(Z),

(Ag)(m) :=
∑
n∈Z

amngn, m ∈ Z.

Let Ã ∈ L(`2(Z,CN)) be defined by

Ã := f−1Af.

Then, for every λ ∈ C,

λ− Ã = f−1(λ− A)f

so

spec (A) = spec (Ã).

Moreover, for x ∈ `2(Z,CN), m ∈ Z, i ∈ {0, 1, . . . , N − 1}

((Ãx)(m))i = (fÃx)σ(m, i)

= f(f−1Afx)σ(m, i)

= Ax̃σ(m, i)

=
∑
n∈Z

aσ(m,i),nx̃n

=
∑
n∈Z

N−1∑
j=0

aσ(m,i),σ(n,j)x̃σ(n,j)

=
∑
n∈Z

N−1∑
j=0

aσ(m,i),σ(n,j)(x(n))j

=
∑
n∈Z

N−1∑
j=0

(Cm−n)ij(x(n))j

=
∑
n∈Z

Cm−nx(m)

1 Since ‖f(x)‖ =

√√√√∑
m∈Z

N−1∑
j=0

|x̃(σ(m, j))|2 =

√√√√∑
m∈Z

N−1∑
j=0

|(x(m))j |2 = ‖x‖
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where Cm ∈ L(CN) has matrix representation (Cm)ij := aσ(m,i),σ(0,j) =

aσ(m+N,i),σ(N,j).

Since am,n = 0 if |m− n| > 1, it follows that
∑
n∈Z

‖Cn‖ = ‖C−1‖ + ‖C0‖ +

‖C1‖ <∞.

Then, from Theorem 4.4.9 in [13],

spec (A) = spec (Ã)

=
⋃

θ∈[−π,π]

spec (b(θ))

=
⋃
|α|=1

spec (C−1α + C0 + C1α
−1)

define ai := ai,i+1, bi := ai,i, ci := ai+1,i and let CJ,α = C−1α + C0 + C1α
−1,

i.e.

CN,α =



0 0 . . . 0 0

0 0 0 . . . 0
... 0

. . . . . .
...

0 . . .
. . . 0 0

a0 0 . . . 0 0


α +



b0 a1 0 . . . 0

c1 b1 a2 . . . 0
... c2

. . . . . .
...

0 . . .
. . . bN−2 aN−1

0 0 . . . cN−1 bN−1



+



0 0 . . . 0 c0

0 0 0 . . . 0
... 0

. . . . . .
...

0 . . .
. . . 0 0

0 0 . . . 0 0


α−1

=



b0 a1 0 . . . c0α
−1

c1 b1 a2 . . . 0
... c2

. . . . . .
...

0 . . .
. . . bN−2 aN−1

a0α 0 . . . cN−1 bN−1


.

We have shown the following result:
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Theorem 5.13.

spec (A) =
⋃
|α|=1

spec (CN,α),

where CN,α = CN +Dα
N such that

CN =



b1 a1 0 . . . 0

c2 b2 a2 . . . 0
... c3

. . . . . .
...

0 . . .
. . . bN−1 aN−1

0 0 . . . cN bN


and (Dα

N)mn = δm,1δn,Nc0α
−1 + δm,Nδn,1a0α.

Clearly, Theorem 5.11 follows from the result which implies that

spec (Ab) =
⋃
|α|=1

spec (AbN,α).

5.3.3 An alternative view point

From the view point of S. Prössdorf and B. Silbermann [41], by using the

concept of isomorphism to rearrange the entries of the matrix Ab, we can

consider our matrix as a finite matrix with each entry is Laurent. Then

we can compute the spectrum by using the concept of symbol of Laurent

operators.

Ab =



. . . . . .

. . . 0 1

b−1 0 1

b0 0 1

b1 0 1

b2 0
. . .

. . . . . .


with b = (bi)i∈Z periodic, i.e. bj+N = bj, j ∈ Z. Since the mapping f :

`2(Z)→ (`2(Z))N , defined by
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

...

x−1

x0

x1

...


7→




...

x1

xN+1

...

 ,


...

x2

xN+2

...

 , . . . ,


...

xN

x2N

...



,

is a bijection and also isometric2, hence `2(Z) ∼= (`2(Z))
N

. Let Ãb =

fAbf−1 be defined by

Ãb


x(1)

x(2)
...

x(N)

 =


Ã11 Ã12 · · · ˜A1N

Ã21 Ã22 · · · ˜A2N

...
. . . . . .

...

˜AN1
˜AN2 · · · ˜ANN



x(1)

x(2)
...

x(N)

 ,

each Ãij is Laurent then Ãb : (`2(Z))N → (`2(Z))N .

From [41, section 4.98], we know that, if A is a Fredholm operator, then

(det smb A)(t) 6= 0 for all t ∈ T

If N = 2

Ãb − λI =



. . .

−λ
−λ

−λ
. . .

. . .

. . . 1

−1 1

−1 1
. . . . . .

. . . . . .

1 1

1 1

1
. . .
. . .

. . .

−λ
−λ

−λ
. . .


2 Since ‖f(x)‖ =

√∑
j∈Z
|xj |2 =

√√√√N−1∑
i=0

∑
m∈Z

∣∣xσ(m,i)

∣∣2 =

√√√√N−1∑
i=0

‖x(i)‖2 = ‖x‖
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We have then that

smb (Ãb − λI) =

(
−λ 1− t

1 + 1
t
−λ

)
.

If N ≥ 3, then we have

smb(Ãb−λI) =



−λ 1 0 . . . . . . a0t

a1 −λ 1 . . . . . . 0

0 a2 −λ 1 . . . 0
...

. . . . . . . . . . . .
...

0 0 . . . aN−2 −λ 1
1
t

0 . . . . . . aN−1 −λ


(= AbN,α−λI for α =

1

t
).

Since spec (Ãb) = spec (Ab) and from Theorem 5.11, it follows that

{λ ∈ C : Ãb − λI is not invertible } = spec (Ãb)

= spec (Ab)

=
⋃
|α|=1

spec (AbN,α)

=
⋃
|α|=1

{λ ∈ C : det(AbN,α − λI) = 0}

= {λ ∈ C : det(smbÃb − λI) = 0 for some t ∈ T}.

In the next section, we will construct a sequence b ∈ {±1}Z for which

spec∞point A
c contains the open unit disk. As a consequence of (5.7) and the

closedness of spectra, this shows that specAb contains the closed unit disk.

5.4 Eigenvalue Problem meets Sierpinski Tri-

angle

Fix λ ∈ C. In this section we are looking for a sequence b ∈ {±1}Z such that

λ ∈ spec∞point A
b; that is, there exists a non-zero v ∈ `∞(Z) with Abv = λv,
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Figure 5.8: This figure illustrates a zoom into the set
⋃

c∈{±1}24
specAc25, i.e.

the 10th picture of Fig.5.7

i.e.

v(i+ 1) = λv(i)− b(i)v(i− 1) (5.12)

for every i ∈ Z.

Starting from v(−1) = 1, v(0) = 0 and v(1) = 1, we will successively

use (5.12) to compute v(i) and b(i) for i = 2, 3, ... (an analogous procedure

is possible for i = −2,−3, ...). Doing so we get b(0) = −1, v(2) = λ,

b(1) = 1, v(3) = λ2 + 1, etc. In general, v(i) is a polynomial of degree i− 1

in λ. Since we want v to be a bounded sequence, we are trying to keep the

coefficients of these polynomials small. So our strategy will be to choose

b(2), b(3), ... ∈ {±1} such that each v(i) is a polynomial in λ with coefficients
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in {−1, 0, 1}. The following table, where we abbreviate −1 by −, +1 by +,

and 0 by a space, shows that this seems to be possible.

j → coefficients of λj−1 in the polynomial v(i)
i b(i) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 · · ·
1 + +
2 − +
3 + + +
4 − +
5 + + + +
6 + + +
7 − − − +
8 + +
9 − + + − +

10 − + + +
11 + + + + + +
12 + + +
13 − − − − − +
14 + − − +
15 − + + − +
16 + +

...
...

...
(5.13)

For i, j ∈ N, we denote the coefficient of λj−1 in the polynomial v(i)

by p(i, j). Then the right part of table (5.13) shows the values p(i, j) for

i, j = 1, ..., 16. From (5.12) it follows that

p(i+ 1, j) = p(i, j − 1) − b(i)p(i− 1, j) (5.14)

holds for i = 2, 3, ... and j = 1, 2, ..., i with p(i′, j′) := 0 if j′ < 1 or j′ > i′.

If, for some i, j, one has that p(i, j − 1) 6= 0 and p(i− 1, j) 6= 0 then, by

(5.14) and p(i+ 1, j) ∈ {−1, 0, 1}, this implies that

b(i) = p(i, j − 1)/p(i− 1, j) = p(i, j − 1) · p(i− 1, j) (5.15)

since otherwise p(i+1, j) ∈ {−2, 2}. As an example, look at p(15, 1) = 1 and

p(14, 2) = −1. For b(15) = 1, we would get from (5.14) that p(16, 2) = 2 6∈
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{−1, 0, 1}, so it remains to take b(15) = −1 = p(15, 1) · p(14, 2). The same

value b(15) = −1 is enforced by p(15, 9) and p(14, 10), as well as by p(15, 13)

and p(14, 14). We will prove that this coincidence, i.e. that the right-hand

side of (5.15) is (if non-zero) independent of j, is not a matter of fortune.

As a result we get that the table (5.13) continues without end, only using

values from {−1, 0, 1} for p(i, j) and from {±1} for b(i). To prove this, we

employ a particular self-similarity in the triangular pattern of (5.13); more

precisely, it can be shown that the pattern of non-zero entries of p(·, ·) forms

a so-called infinite discrete Sierpinski triangle.

Proposition 5.14. For every i ∈ N, there exist b(i), c(i) ∈ {±1} such that

(i) it holds that

(
p(2i− 1, 2j − 1) p(2i− 1, 2j)

p(2i, 2j − 1) p(2i, 2j)

)
=


p(i, j)

(
1 0

0 1

)
if i+ j is even,

c(i) p(i− 1, j)

(
1 0

0 0

)
if i+ j is odd

for every j = 1, ..., i, and

(ii) p(i, j − 1) · p(i− 1, j) ∈ {0, b(i)} for all j = 2, ...i− 1.

So in particular, by (i), all values p(i, j) are in {−1, 0, 1}.

As an immediate consequence we get the following result for which we

note that the table (5.13) can be extended to negative values of i in a similar

fashion.

Corollary 5.15. For the sequence b ∈ {±1}Z from Proposition 5.14, it holds

that the closed unit disk D := {z ∈ C : |z| ≤ 1} is contained in specAb.

Consequently, for every pseudo-ergodic c ∈ {±1}Z, one has D ⊂ specAc.

Proof. Let λ ∈ D := {z ∈ C : |z| < 1} and let b be the sequence from

Proposition 5.14. Then, for every i ∈ Z,

|v(i)| =

∣∣∣∣∣∣
|i|∑
j=1

p(i, j)λj−1

∣∣∣∣∣∣ ≤
|i|∑
j=1

|p(i, j)| |λj−1| ≤
∞∑
j=1

|λ|j−1 =
1

1− |λ|
,
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showing that v ∈ `∞(Z), and, by our construction (5.12), Abv = λv. So

D ⊂ spec∞pointA
b ⊂ specAb. Since specAb is closed, it holds that D ⊂ specAb.

The claim for a pseudo-ergodic c then follows from specAb ⊂ specAc.

Proof of Proposition 5.14 Firstly, it is easy to see (by (5.13), (5.14)

and induction) that p(i′, j′) = 0 if i′ + j′ is odd, whence p(2i− 1, 2j) = 0 =

p(2i, 2j − 1) for all i, j.

We will now prove (i) and (ii) by induction over i ∈ N. Therefore, let

(i) be satisfied for i = 1, ..., k, and let (ii) be satisfied for i = 1, ..., 2k. (The

base case is easily verified by looking at table (5.13)). We will then prove (i)

for i = k + 1 and (ii) for i = 2k + 1 and 2k + 2.

Part (i). We let i = k + 1 and start with the case when i+ j is even. By

(5.14), we have that

p(2i− 1, 2j − 1) = p(2i− 2, 2j − 2)− b(2i− 2) · p(2i− 3, 2j − 1)

= p(2(i− 1), 2(j − 1))

−b(2i− 2) · p(2(i− 1)− 1, 2j − 1), (5.16)

where, by induction (and since i− 1 + j − 1 is even), p(2(i− 1), 2(j − 1)) =

p(i − 1, j − 1) if j > 1 and it is 0 if j = 1. Also by induction, p(2(i − 1) −
1, 2j − 1) = c(i− 1)p(i− 2, j) since i− 1 + j is odd. To determine b(2i− 2),

take J ∈ {1, ..., 2i− 4} such that p(2i− 2, J) 6= 0 (whence J =: 2j′ has to be

even) and p(2i− 3, J + 1) 6= 0 (if no such J exists then we are free to choose

b(2i − 2) in which case we will put b(2i − 2) := c(i − 1)b(i − 1)). From (i)

and 0 6= p(2i − 2, J) = p(2(i − 1), 2j′) it is clear that i − 1 + j′ is even and

i− 1 + j′ + 1 is odd. Now, by (ii) and (i), we have that

b(2i− 2) = p(2i− 2, J) p(2i− 3, J + 1)

= p(2(i− 1), 2j′) p(2(i− 1)− 1, 2(j′ + 1)− 1)

= p(i− 1, j′) c(i− 1) p(i− 2, j′ + 1) = c(i− 1) b(i− 1).
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Inserting all these results in (5.16), we get that

p(2i− 1, 2j − 1) =

{
p(i− 1, j − 1)− c(i− 1)b(i− 1)c(i− 1)p(i− 2, j) if j > 1,

0− c(i− 1)b(i− 1)c(i− 1)p(i− 2, j) if j = 1

=

{
p(i− 1, j − 1)− b(i− 1)p(i− 2, j) if j > 1,

−b(i− 1)p(i− 2, j) if j = 1

}
= p(i, j).

We already saw that p(2i − 1, 2j) = 0 = p(2i, 2j − 1) for all i, j; so we are

left with

p(2i, 2j) = p(2i−1, 2j−1)−b(2i−1)p(2i−2, 2j) = p(i, j)−b(2i−1)0 = p(i, j).

Now suppose i+ j is odd. Then, almost exactly as above,

p(2i− 1, 2j − 1) = p(2i− 2, 2j − 2)− b(2i− 2)p(2i− 3, 2j − 1)

= 0− c(i− 1)b(i− 1)p(i− 1, j) = c(i)p(i− 1, j)

with c(i) := −c(i− 1)b(i− 1), and

p(2i, 2j) = p(2i− 1, 2j − 1)− b(2i− 1)p(2i− 2, 2j)

= c(i)p(i− 1, j)− b(2i− 1)p(i− 1, j) (5.17)

since i−1+j is even. To determine b(2i−1), we again take J ∈ {1, ..., 2i−3}
such that p(2i−1, J) 6= 0 (whence J =: 2j′−1 is odd) and p(2i−2, J+1) 6= 0

(if no such J exists then we are free to choose b(2i− 1) in which case we will

put b(2i− 1) := c(i)). From (i) and 0 6= p(2i− 2, J + 1) = p(2(i− 1), 2j′) it

is clear that i− 1 + j′ is even and i+ j′ is odd. Now, by (ii) and (i), we have

that

b(2i− 1) = p(2i− 1, J) p(2i− 2, J + 1) = p(2i− 1, 2j′ − 1) p(2(i− 1), 2j′)

= c(i) p(i− 1, j′) p(i− 1, j′) = c(i).

Inserting this into (5.17), we get that

p(2i, 2j) = c(i)p(i− 1, j)− c(i)p(i− 1, j) = 0.

Part (ii). Let i = 2k + 1 and suppose j ∈ {2, ..., 2k} is such that p(i, j −
1) 6= 0 (whence i+ j − 1 is even, i.e. j =: 2j′ is even) and p(i− 1, j) 6= 0. If
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no such j exists then the product in (ii) is always zero and there is nothing

to show. From 0 6= p(i− 1, j) = p(2k, 2j′) and (i) we get that k + j′ is even

and k + 1 + j′ is odd. Now we have that

p(i, j − 1) p(i− 1, j) = p(2k + 1, 2j′ − 1) p(2k, 2j′)

= p(2(k + 1)− 1, 2j′ − 1) p(2k, 2j′)

= c(k + 1) p(k, j′) p(k, j′) = c(k + 1) =: b(i)

is independent of j. Now let i = 2k + 2 and suppose j ∈ {2, ..., 2k + 1} is

such that p(i, j − 1) 6= 0 (whence i + j − 1 is even, i.e. j =: 2j′ + 1 is odd)

and p(i−1, j) 6= 0. (Again, if no such j exists then there is nothing to show.)

From 0 6= p(i, j − 1) = p(2k + 2, 2j′) = p(2(k + 1), 2j′) and (i) we get that

k + 1 + j′ is even and k + 1 + j′ + 1 is odd. Now we have that

p(i, j − 1) p(i− 1, j) = p(2k + 2, 2j′) p(2k + 1, 2j′ + 1)

= p(2(k + 1), 2j′) p(2(k + 1)− 1, 2(j′ + 1)− 1)

= p(k + 1, j′) c(k + 1) p(k, j′ + 1)

= c(k + 1) b(k + 1) =: b(i)

is independent of j.

5.5 The Relationship between the Spectrum

of Singly Tridiagonal Random Matrices

and the Spectrum of Doubly Tridiagonal

Random Matrices.

In this section, we are going to prove that the spectrum of one sided infinite

matrices, Ab+ is equal the spectrum of two sided infinite matrices, Ab. Let

us introduce Ab,c as a new notation for an infinite tridiagonal matrix of the
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form 

. . . . . .

. . . 0 c−2

b−1 0 c−1

b0 0 c0

b1 0 c1

b2 0
. . .

. . . . . .


(5.18)

where b, c ∈ `∞(Z).

Theorem 5.16. If b is pseudo-ergodic then

specAb = specAb+,

where

Ab+ =



0 1

b1 0 1

b2 0 1

b3 0
. . .

. . . . . .


.

Proof. (⊆) Let us consider this infinite dimensional block matrix

Ãb+ =

[
0 0

0 Ab+

]

We have then that spec Ãb+ = {0} ∪ specAb+ = specAb+. In the next step,

we are investigating the behaviour of the essential spectrum of Ãb+. Since b

is “+–pseudo-ergodic”, from [8], we have

specess A
b
+ =

⋃
B∈σop(Ab+)

specB. (5.19)

Since σop(Ab+) =
{
Ac : c ∈ {±1}Z}, it follows that

specess A
b
+ ⊇ specAb.
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Hence

specAb ⊆ specAb+.

(⊇) Let λ ∈ specAb+. If λ ∈ specess A
b
+ then λ ∈ specAb by (5.7) and

(5.19). So let λ ∈ specAb+ \ specess A
b
+. By Theorem 2.12, λ is an eigenvalue

of Ab+, i.e., Ab+ − λI is not injective or λ is an eigenvalue of
(
Ab+
)∗

, i.e.,(
Ab+ − λI

)∗
is not injective, since the range of

(
Ab+ − λI

)
is closed if λ /∈

specess A
b
+.

If λ is an eigenvalue ofAb+ with the corresponding eigenvector (x0, x1, x2, . . .)
T ,

then

Ab+x− λx =



−λ 1

b1 −λ 1

b2 −λ 1

b3 −λ . . .
. . . . . .





x0

x1

x2

...


=



0

0

0

...


.

Then



. . . . . .

. . . −λ b2

1 −λ b1

1 −λ 1

-1 −λ 1

1 −λ 1

b1 −λ 1

b2 −λ . . .
. . . . . .





...

x2

x1

x0

0

x0

x1

x2

...



= 0,

i.e. (
Ac̃,d̃ − λI

)
x̃ = 0

where

c̃i =


1 if i ≤ −2 or i = 0,

−1 if i = −1

bi if i ≥ 1

,
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d̃i =

{
1 if i ≥ 0,

b−i if i ≤ −1
,

and

x̃i =


xi if i ≥ 0 ,

x−i−2 if i ≤ −2

0 if i = −1

.

Then we have c̃, d̃ ∈ {±1}Z, so that Ac̃,d̃ ∈ σop(Ac,d) if c, d are pseudo-

ergodic ±1 sequences. We have then that λ ∈ spec∞pointA
c̃,d̃ ⊆ specAc,d ⊆

specAb.

Note that from λ ∈ specAb, we obtain, by (5.7) and (5.19), λ ∈ specessA
b
+,

which contradicts our assumption, implying that this second case is impos-

sible. Therefore specAb+ = specess A
b
+ = specAb = specess A

b

5.6 Lower Bound on spec (Ab)

As an auxiliary step, we will study matrices of the form Ab,c with b, c ∈ `∞(Z).

It can be noticed that, for every x ∈ `∞(Z) and for each i ∈ Z(
Ab,cx

)
i

= bixi−1 + cixi+1

= bi (V1x)i + ci (V−1x)i

= (MbV1x)i + (McV−1x)i

So,

Ab,c = MbV1 +McV−1.

Lemma 5.17. If b, c ∈ {±1}Z, then

specAb,c = specAe,

where e = bV1c ∈ {±1}Z.

Proof. Choose a ∈ {±1}Z such that

ai+1 = aici, i ∈ Z
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i.e. so that

V−1a = ac.

( E.g. choose a0 = 1, and set

ai+1 := aici i = 0, 1, 2, . . .

and

ai := ai+1ci, i = −1,−2, . . .).

Then, noting that M−1
a = Ma,

MaA
b,cM−1

a = Ma (MbV1 +McV−1)Ma

= MabV1Ma +MacV−1Ma

= MabV1aV1 +MacV−1aV−1

= MeV1 + V−1 = Ae,

since MacV−1a = M(ac)2 = I, where e := abV1a = bV1c, since V1aV1c = a, it

follows that V1a = aV1c. Therefore specAb,c = specAe.

Corollary 5.18. If b, c ∈ {±1}Z and Ab,c is symmetric, i.e. b = V1c, then

specAb,c = [−2, 2].

Proof. Note that Ab,c is symmetric if

bi = ci−1, i ∈ Z

i.e.

b = V1c.

It follows that,

(bV1c)i = bi(V1c)i = bici−1 = 1 for every i ∈ Z.

Hence, specAb,c = [−2, 2].
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We agree to call the pair (b, c) ∈ {±1}Z × {±1}Z pseudo-ergodic if

σop(Ab,c) = {Ad,e : d, e ∈ {±1}Z}, which implies that both b and c are

pseudo-ergodic sequences but also means that they are so, roughly speaking,

independently of each other.

We are now proving some results on the resolvent norm of the infinite

matrix. Then we will prove the result of the inclusion sets of the spectrum

of periodic matrices.

Lemma 5.19. If b and c are pseudo-ergodic then ‖(Ab − λI)−1‖ = ‖(Ac −
λI)−1‖ for all λ ∈ C.

Proof. This follows immediately from Theorem 5.12 (ix) in [9] and the fact

that Ab is a limit operator of Ac, and vice versa.

Corollary 5.20. If b and c are pseudo-ergodic then specAb = specAc and

specεA
b = specεA

c for all ε > 0.

Remark 5.21. a) Note that both claims also follow immediately from

Theorem 6.28 (v) and (vi) in [9].

b) Lemma 5.19 and Corollary 5.20 show that, from the (pseudo)spectral

point of view, we can talk about “the pseudo-ergodic operator Ab” without

having a particular pseudo-ergodic sequence b in mind since residual norm,

spectrum and pseudospectrum of Ab don’t depend on b – as long as it is

pseudo-ergodic.

Note that for all λ ∈ C, if (b, c) and d are pseudo-ergodic then by Lemma

5.19,

‖(Ab,c − λI)−1‖ = ‖Ma(A
b,c − λI)−1M−1

a ‖ = ‖(MaA
b,cM−1

a − λI)−1‖

= ‖(Ae − λI)−1‖ = ‖(Ad − λI)−1‖, (5.20)

where ai+1 = aici and e = bV1c as defined in the proof of Lemma 5.17.

Corollary 5.22. If (b, c) and d are pseudo-ergodic then

specAb,c = specAd and specεA
b,c = specεA

d ∀ε > 0.
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Theorem 5.23. If b ∈ {±1}Z is a pseudo-ergodic sequence and n ∈ N, then

specAbn ⊆ specAb.

Proof. Let λ ∈ specAbn and x = (x0, x1, . . . , xn−1)T such that Abnx = λx. So,

Abnx− λx =



−λ 1

b1 −λ 1

b2 −λ 1
. . . . . . . . .

bn−2 −λ 1

bn−1 −λ


n×n



x0

x1

...

xn−2

xn−1


=



0

0

...

0

0


.

But then, by using a simple reflection technique, we get

.
.
.

−λ 1

-1 −λ 1

1 −λ 1

b1 −λ
.
. .

.
.
.

.
.
. 1

bn−1 −λ 1

-1 −λ 1

1 −λ bn−1

1
.
.
.

.
.
.

.
.
. −λ b1

1 −λ 1

-1 −λ 1

1 −λ

.
.
.





.

.

.

x0

0

x0

x1

.

.

.

xn−1

0

xn−1

.

.

.

x1

x0

0

x0

.

.

.



= 0.

If we call this new infinite matrix Ac̃,d̃ − λI then we have c̃, d̃ ∈ {−1, 1}Z, so

that Ac̃,d̃ ∈ σop(Ac,d) if c, d are pseudo-ergodic ±1 sequences. But we have

just seen that

λ ∈ spec∞point A
c̃,d̃ ⊆ specAc,d = specAb.

The fact that the RHS of the inclusion specAbn ⊆ specAb does not de-

pend on the pseudo-ergodic sequence b (see Corollary 5.20), whereas the LHS

clearly does, shows that this formula can be easily improved. In fact, we can

say something about the RHS without looking at the actual entries of the

sequence b (see Remark 5.21 b):
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Corollary 5.24. If b is pseudo-ergodic and n ∈ N then⋃
c1,...,cn−1∈{±1}

specAcn ⊆ specAb.

Proof. This easily follows from Proposition 5.23 and specAcn ⊂ specAc =

specAb for all pseudo-ergodic c ∈ {±1}Z, by Corollary 5.20.

We now carry on with the analogues of Proposition 5.23 and Corollary

5.24 for pseudospectra. In fact, we have the following inequality for resolvent

norms.

Proposition 5.25. If b is pseudo-ergodic and n ∈ N then, for all λ ∈ C,

‖(Abn − λIn)−1‖ ≤ ‖(Ab − λI)−1‖,

independent of the parameter p ∈ [1,∞] of the underlying space `p(Z).

Proof. Put M := ‖(Abn − λIn)−1‖, which we will understand as M = ∞ if

λ ∈ specAbn. From Proposition 5.23 we know that in this case λ ∈ specAb,

so that also the RHS is ∞ and, in this sense, the inequality holds. So we

are left with M < ∞, i.e., λ /∈ specAbn. Then, for every δ > 0, there exists

an x = (x1, ..., xn)> ∈ Cn such that ‖x‖ = 1 and y := (Abn − λIn)x has

‖y‖ < 1

M − δ
. Now put c, d ∈ {±1}Z such that Ac,d is the matrix that

we studied in the proof of Proposition 5.23. Here our current proof has to

bifurcate depending on p ∈ [1,∞].

Case 1: p =∞
Define x̃ ∈ `∞(Z) exactly as in the proof of Proposition 5.23. Then ỹ :=

(Ab,c − λI)x̃ is of the form ỹ = (· · · , y>, 0, (Jny)>, 0, y>, 0, (Jny)>, · · · )> ∈
`∞(Z) and ‖ỹ‖∞ = ‖y‖∞, as well as ‖x̃‖∞ = ‖x‖∞, so that

∥∥(Ac,d − λI)−1
∥∥ ≥ ‖x̃‖∞

‖ỹ‖∞
=
‖x‖∞
‖y‖∞

> M − δ.

Case 2: p <∞
For any m ∈ N, let x̃(m) be the sequence x̃ from case 1, but with all entries of

index outside {−m(n+1), . . . ,m(n+1)} put to zero (where we suppose that
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at index zero there is one of the 0 entries of x̃). Then ỹ(m) := (Ab,c−λI)x̃(m)

is the same as ỹ from Case 1 for entries with index between −m(n+1)+1 and

m(n+ 1)− 1, it is zero outside {−m(n+ 1)− 1, . . . ,m(n+ 1) + 1} and it has

ỹ(m)(−m(n+ 1)) = x1 if m is even and xn if m is odd, ỹ(m)(m(n+ 1)) = −x1

if m is even and −xn if m is odd.

As a result, we have

‖x̃(m)‖pp = 2m ‖x‖pp and ‖ỹ(m)‖pp = 2m ‖y‖pp+

{
2|x1|p if m is even,

2|xn|p if m is odd.

From ‖x‖p = 1, ‖yp‖ < 1
M−δ and |x1|, |xn| ≤ ‖x‖p = 1 we hence get that

‖x̃(m)‖ = 2m and ‖ỹ‖pp < 2m 1
(M−δ)p + 2, so that

‖(Ac,d − λI)−1‖p ≥
‖x̃(m)‖pp
‖ỹ(m)‖pp

>
1

2m
(M−δ)p + 2

=
1

1
(M−δ)p + 1

m

.

In either case, since these inequalities hold for all δ > 0 and all m ∈ N, we

get that ‖(Ac,d − λI)−1‖ ≥ M = ‖(Abn − λIn)−1‖. The claim now follows by

choosing (e, f) pseudo-ergodic and noting that∥∥(Ab − λI)−1
∥∥ =

∥∥(Ae,f − λI)−1
∥∥ ≥ ∥∥(Ac,d − λI)−1

∥∥ ≥ ∥∥(Abn − λIn)−1
∥∥

by (5.20) and the fact Ac,d is a limit operator of Ae,f .

Similar to the discussion before, the RHS of the inequality in Proposition

5.25 does not depend on the pseudo-ergodic sequence b (by Lemma 5.19),

whereas the LHS does. So, we have the following strengthening:

Corollary 5.26. If b is pseudo-ergodic and n ∈ N then, for every ε > 0,

sup
c1,c2,...,cn−1∈{±1}

‖(Acn − λI)−1‖ ≤ ‖(Abn − λI)−1‖.

Proof. For any n ∈ N and pseudo-ergodic c, we have

‖(Acn − λIn)−1‖ ≤ ‖(Ac − λI)−1‖ = ‖(Ab − λI)‖,

by Proposition 5.25 and Lemma 5.19.
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Corollary 5.27. If b is pseudo-ergodic and n ∈ N then, for every ε > 0,⋃
c1,c2,...,cn−1∈{±1}

specεA
c
n ⊆ specεA

b,

and in particular

specεA
b
n ⊆ specεA

b.

We may regard Corollary 5.27 as a generalisation of Corollary 5.24 from

the case ε = 0 to ε ≥ 0.

So far in this section we have established lower bounds on spectrum and

pseudospectrum of Ab in terms of the same quantities for the finite matrix

Abn. We will now look at upper bounds on specAb and specεA
b in terms of

certain pseudospectra of the finite matrix.

5.7 Computing the Inclusion sets using Method

1 and their numerical results.

In this section, we are now applying Corollary 3.3 and Corollary 3.9 to the

infinite random tri-diagonal matrix Ab, to approximate the spectrum of this

operator. Then we have

Corollary 5.28.

specAb ⊆
⋃

b∈{±1}Z
spec f(n)A

b
n

where

f(n) = 4 sin

(
θ

2

)
,

and θ is the unique solution in the range

[
π

2n+ 1
,

π

n+ 1

)
of the equation

2 sin

(
t

2

)
cos

((
n+

1

2

)
t

)
+

1

4
sin ((n− 1) t) = 0.



5.7 NUMERICAL RESULTS 167

Firstly, we have considered the plots of the finite subsection for the ev-

ery possible ±1- sequences. The following pictures show us the spectrum

(eigenvalues) of the finite n× n matrices,

Abn =



0 1 0 . . . 0

b1 0 1 . . . 0
... b2

. . . . . .
...

0 . . .
. . . 0 1

0 . . . . . . bn−1 0


,

where n = 1, . . . , 30.

We are now showing the convergence of the inclusions set for specAb using

method 1, i.e., the union of pseudospectra of n× n principal submatrices of

Ab. We start off by letting Σn =
⋃

c∈{±1}n−1

spec f(n)A
c
n. Then we know that

Σn = Σn
f(n)(A

b).

From Corollary 3.3 and Corollary 5.27, we can see that

specAb ⊆ Σn ⊆ spec f(n)Ab.

Then, by Corollary 2.34, we have the following corollary to see the conver-

gence when we apply method 1 to the operator Ab.

Corollary 5.29. If b ∈ {±1}Z is pseudo-ergodic then

Σn → specAb,

as n→∞ in the Haussdorff metric.

Fig.5.9 illustrates the spectral inclusion sets Σn (the black area) where

n = 2, . . . , 18. The red area is the closure of the numerical range of the

operator Ab and the blue area is the union of all lower bounds on specAb.

In order to demonstrate that Σn does not converge to the numerical range

W (Ab), we have some numerical evidence to show that eventually Σn invades
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the numerical range at the point λ = 1.5+0.5i, starting from n = 34, so that

1.5 + 0.5i /∈ Σ34. Therefore λ cannot be part of specAb but it’s numerically

too expensive to compute and draw a whole image of Σ34. Then, we have a

conjecture on the picture of the specAb as in the Fig.5.10.
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Figure 5.9: Plots of the sets Σn, which are inclusion sets for specAb, where

f(n) is given as in Corollary 5.28. Abn is the ordinary finite submatrix given

by (5.3) of the operator Ab = MbV1 +V−1, when b ∈ {±1}Z is pseudo-ergodic.

Shown are the inclusion sets when n = 3, 4, . . . , 18.
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Figure 5.10: This figure shows the conjecture for specAb.
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[3] A. Böttcher and S. M. Grudsky: Spectral Properties of Banded

Toeplitz Matrices, SIAM, Philadelphia 2005.
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2006.

[34] M. Lindner: Fredholmness and index of operators in the Wiener alge-

bra are independent of the underlying space, Operators and Matrices 2

(2008), 297–306.

[35] M. Lindner: A note on the spectrum of bi-infinite bi-diagonal ran-

dom matrices, Technische Universitt Chemnitz, Fakultt fr Mathematik

(Germany). Preprint 12, 2008

[36] M. Lindner: Fredholm Theory and Stable Approximation of Band

Operators and Their Generalisations, Habilitation thesis, uni, Germany,

40 (2008), 493–504.

[37] C. Mart́ınez: Spectral Properties of Tridiagonal Operators, PhD the-

sis, Kings College, London 2005.

[38] C. Mart́ınez: Spectral estimates for the one-dimensional non-self-

adjoint Anderson model, J. Operator Theory, 56 (2006), 59–88.

[39] D. R. Nelson and N. Hatano: Winding numbers, complex currents,

and non-Hermitian localization, Phys. Rev. Lett., 80 (1998), 5172–5175.

[40] D. R. Nelson and N. M. Shnerb: Non-Hermitian localization and

population biology, Phys. Rev. E, 58 (1998), 1383–1403.
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