
Applied Krylov subspace methods

Jens-Peter M. Zemke
zemke@tu-harburg.de

joint work with:
Martin Gutknecht (IDREig);

Martin van Gijzen & Gerard Sleijpen (QMRIDR);
Olaf Rendel & Anisa Rizvanolli (classification of IDR);

Chris Paige & Ivo Panayotov (augmented backward error analysis).

Institut für Mathematik
Technische Universität Hamburg-Harburg

July 18th, 14:30-15:30

TUHH Jens-Peter M. Zemke Krylov @ TUHH Kickoff 2012 2012-07-18 1 / 86

http://www.tu-harburg.de/~matjz/
http://www.tu-harburg.de/ins/
http://www.tu-harburg.de/


Outline

Classification of Krylov subspace methods

Krylov/Hessenberg

Arnoldi-based

Lanczos-based

Sonneveld-based

Connections

Interpolation

Approximation

Applications

RQI and the Opitz-Larkin Method

QMRIDR & IDREig

Augmented Backward Error Analysis

TUHH Jens-Peter M. Zemke Krylov @ TUHH Kickoff 2012 2012-07-18 2 / 86



Classification of Krylov subspace methods

Outline

Classification of Krylov subspace methods

Krylov/Hessenberg

Arnoldi-based

Lanczos-based

Sonneveld-based

Connections

Interpolation

Approximation

Applications

RQI and the Opitz-Larkin Method

QMRIDR & IDREig

Augmented Backward Error Analysis

TUHH Jens-Peter M. Zemke Krylov @ TUHH Kickoff 2012 2012-07-18 3 / 86



Classification of Krylov subspace methods

Part I

We give an algorithmically oriented approach to Krylov subspace methods,
the first method using Krylov subspaces dates to 1931, by Krylov (sic).

In our approach Krylov subspace methods are divided into three classes:

I Arnoldi-based methods (first by Hessenberg, 1940),
I Lanczos-based methods (first by Stieltjes, 1884), and
I Sonneveld-based methods (first by Bouwer, 1950).
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Classification of Krylov subspace methods Krylov/Hessenberg

Basics

Krylov subspaces:

Kk := Kk(A,q) := span
{

q,Aq,A2q, . . . ,Ak−1q
}

= {pk−1(A)q | pk−1 ∈ Πk−1}

spanned by columns of Krylov matrix

Kk := Kk(A,q) :=
(
q,Aq,A2q, . . . ,Ak−1q

)
.

Krylov subspace methods based on ideas by:

Hessenberg: CMRH; costly;
Lanczos: CG, BICG, QMR; short recurrence, look-ahead, transpose;

Arnoldi: GMRES; long recurrence, optimal, costly, truncation & restart;
Sonneveld: IDR, CGS, BICGSTAB, BICGSTAB(`), IDR(s), IDR(s)STAB(`);

short recurrence, transpose, {unstable,cheap}–{stable,costly}

We subsume Hessenberg and Arnoldi as “Arnoldi-based”.
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Classification of Krylov subspace methods Krylov/Hessenberg

Hessenberg decompositions

Arnoldi- and Lanczos-based methods Hessenberg decomposition:

AQk

+ Fk

= Qk+1Hk. (Lanczos: Hk = Tk, 2×)

Sonneveld-based methods generalized Hessenberg decomposition:

AVk

+ F̂k

= AGkUk

+ Fk

= Gk+1Hk, Vk := GkUk

+ F̃k

.

Three remarks:

I Structure: Hk ∈ C(k+1)×k always unreduced extended Hessenberg;
I Generalization: Ik  Uk ∈ Ck×k upper triangular;
I Mnemonic for names of matrices in Sonneveld-based methods:

IDR(s)-coauthor “van Gijzen” first Vk, then Gk.

Finite precision or inexact method perturbations Fk, Fk = F̂k + AF̃k.
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Classification of Krylov subspace methods Krylov/Hessenberg

Karl Hessenberg & “his” matrix + decomposition

”Behandlung linearer Eigenwertaufgaben mit Hilfe
der Hamilton-Cayleyschen Gleichung“, Karl
Hessenberg, 1. Bericht der Reihe ”Numerische
Verfahren“, July, 23rd 1940, page 23:

I Hessenberg decomposition, Eqn. (57),
I Hessenberg matrix, Eqn. (58).

Karl Hessenberg (* September 8th, 1904, † February 22nd, 1959)
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Classification of Krylov subspace methods Krylov/Hessenberg

OR and MR for linear systems (Ax = r0 = b− Ax0)

Residuals of OR and MR approximation (Qke1‖r0‖ = Qk+1e1‖r0‖ = r0)

xk := Qkzk and xk := Qkzk

with coefficient vectors

zk := H−1
k e1‖r0‖ and zk := H†ke1‖r0‖

satisfy

rk := r0 − Axk = Rk(A)r0 and rk := r0 − Axk = Rk(A)r0.

Residual polynomials Rk, Rk given by

Rk(z) := det (Ik − zH−1
k Ik) and Rk(z) := det (Ik − zH†kIk).

Convergence of OR and MR depends on (harmonic) Ritz values.

TUHH Jens-Peter M. Zemke Krylov @ TUHH Kickoff 2012 2012-07-18 9 / 86



Classification of Krylov subspace methods Krylov/Hessenberg

OR and MR for linear systems (Ax = r0 = b− Ax0)

Residuals of OR and MR approximation (Qke1‖r0‖ = Qk+1e1‖r0‖ = r0)

xk := Qkzk and xk := Qkzk

with coefficient vectors

zk := H−1
k e1‖r0‖ and zk := H†ke1‖r0‖

satisfy

rk := r0 − Axk = Rk(A)r0 and rk := r0 − Axk = Rk(A)r0.

Residual polynomials Rk, Rk given by

Rk(z) := det (Ik − zH−1
k Ik) and Rk(z) := det (Ik − zH†kIk).

Convergence of OR and MR depends on (harmonic) Ritz values.

TUHH Jens-Peter M. Zemke Krylov @ TUHH Kickoff 2012 2012-07-18 9 / 86



Classification of Krylov subspace methods Krylov/Hessenberg

OR and MR for linear systems (Ax = r0 = b− Ax0)

Residuals of OR and MR approximation (Qke1‖r0‖ = Qk+1e1‖r0‖ = r0)

xk := Qkzk and xk := Qkzk

with coefficient vectors

zk := H−1
k e1‖r0‖ and zk := H†ke1‖r0‖

satisfy

rk := r0 − Axk = Rk(A)r0 and rk := r0 − Axk = Rk(A)r0.

Residual polynomials Rk, Rk given by

Rk(z) := det (Ik − zH−1
k Ik) and Rk(z) := det (Ik − zH†kIk).

Convergence of OR and MR depends on (harmonic) Ritz values.

TUHH Jens-Peter M. Zemke Krylov @ TUHH Kickoff 2012 2012-07-18 9 / 86



Classification of Krylov subspace methods Krylov/Hessenberg

OR and MR for linear systems (Ax = r0 = b− Ax0)

Residuals of OR and MR approximation (Qke1‖r0‖ = Qk+1e1‖r0‖ = r0)

xk := Qkzk and xk := Qkzk

with coefficient vectors

zk := H−1
k e1‖r0‖ and zk := H†ke1‖r0‖

satisfy

rk := r0 − Axk = Rk(A)r0 and rk := r0 − Axk = Rk(A)r0.

Residual polynomials Rk, Rk given by

Rk(z) := det (Ik − zH−1
k Ik) and Rk(z) := det (Ik − zH†kIk).

Convergence of OR and MR depends on (harmonic) Ritz values.

TUHH Jens-Peter M. Zemke Krylov @ TUHH Kickoff 2012 2012-07-18 9 / 86



Classification of Krylov subspace methods Krylov/Hessenberg

Arnoldi/GMRes
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Classification of Krylov subspace methods Krylov/Hessenberg

OR and MR for eigenpairs

Well known: Ritz pairs OR eigenpairs (θj, yj),

yj := Qksj, where Hksj = sjθj, 1 6 j 6 k.

Known: (shifted) harmonic Ritz pairs (θj, yj
),

y
j
:= Qksj, where Iksj = (Hk − τIk)†Iksj(θj − τ), 1 6 j 6 k.

Less known: ρ-values, refined extraction, combinations thereof.

Mostly unknown: MR eigenpairs (θ̀, ỳ = Qk s̀),

‖(θ̀Ik −Hk)s̀‖
‖s̀‖

:= min loc
z∈C,s∈Ck,‖s‖=1

‖(zIk −Hk)s‖
‖s‖

,

Lehmann: MR by minimization over shifts in harmonic Ritz & ρ-values.
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‖(θ̀Ik −Hk)s̀‖
‖s̀‖

:= min loc
z∈C,s∈Ck,‖s‖=1

‖(zIk −Hk)s‖
‖s‖

,

Lehmann: MR by minimization over shifts in harmonic Ritz & ρ-values.

TUHH Jens-Peter M. Zemke Krylov @ TUHH Kickoff 2012 2012-07-18 11 / 86



Classification of Krylov subspace methods Krylov/Hessenberg

OR and MR for eigenpairs

Well known: Ritz pairs OR eigenpairs (θj, yj),

yj := Qksj, where Hksj = sjθj, 1 6 j 6 k.

Known: (shifted) harmonic Ritz pairs (θj, yj
),

y
j
:= Qksj, where Iksj = (Hk − τIk)†Iksj(θj − τ), 1 6 j 6 k.

Less known: ρ-values, refined extraction, combinations thereof.

Mostly unknown: MR eigenpairs (θ̀, ỳ = Qk s̀),
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‖(θ̀Ik −Hk)s̀‖
‖s̀‖

:= min loc
z∈C,s∈Ck,‖s‖=1

‖(zIk −Hk)s‖
‖s‖

,

Lehmann: MR by minimization over shifts in harmonic Ritz & ρ-values.

TUHH Jens-Peter M. Zemke Krylov @ TUHH Kickoff 2012 2012-07-18 11 / 86



Classification of Krylov subspace methods Krylov/Hessenberg

A graphical representation

We associate with every real or complex approximate eigenpair (θ̃, ỹ = Qk s̃) a
point (z,w) in the plane R× R or C× R

:

z = θ̃, w = ‖(θ̃Ik −Hk)s̃‖
‖s̃‖

. (1)

The former gives the approximate eigenvalue, the latter gives the norm of the
(quasi-)residual of the approximate eigenpair.

The norm of the residual of (θ̃, ỹ) gives the backward error, i.e.,

w = min
{
‖∆A‖ : (A + ∆A)ỹ = ỹ θ̃

}
. (2)

Remark 1: Without additional knowledge a small backward error is the best
we can achieve.

Remark 2: There exist “graphical” bounds for general and “Rayleigh”
approximations.

TUHH Jens-Peter M. Zemke Krylov @ TUHH Kickoff 2012 2012-07-18 12 / 86



Classification of Krylov subspace methods Krylov/Hessenberg

A graphical representation

We associate with every real or complex approximate eigenpair (θ̃, ỹ = Qk s̃) a
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Classification of Krylov subspace methods Krylov/Hessenberg

A beautiful example
As an example we use

H3 =


0 1 0
1 0 1
0 1 0
0 0 1

 . (3)

Its Ritz values are given by

θ1,3 = ∓
√

2 ≈ ∓1.41421356, θ2 = 0, (4)

its harmonic Ritz values are given by

θ1,3 = ∓
√

2 ≈ ∓1.41421356, θ2 =∞, (5)

its ρ-values (Rayleigh quotients with harmonic Ritz vectors) are given by

ρ1,3 = ∓
√

2 · 2
3
≈ ∓0.9428090, ρ2 = 0, (6)

and its MR eigenvalues are given by (where y = 276081 + 21504
√

2i)

θ̀1,3 = ∓
√

2
16

√
113 + 2Re 3

√
y ≈ ∓1.37898323557, θ̀2 = 0. (7)
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Classification of Krylov subspace methods Krylov/Hessenberg

OR and MR for Sonneveld-based methods

Generalized Hessenberg decomposition:

AVk = AGkUk = Gk+1Hk, Vk := GkUk.

Rules of thumb: Use Vk, not Gk as “basis”; insert Uk appropriately.

Sonneveld OR (Hk regular):

zk := H−1
k e1‖r0‖, xk := Vkzk = GkUkzk.

Sonneveld MR:
zk := H†ke1‖r0‖, xk := Vkzk = GkUkzk.

Sonneveld Ritz:
Hksj = θjUksj, yj := Vksj = GkUksj.

Sonneveld (shifted) harmonic Ritz:

Iksj = (θj − τ)
(
Hk − τUk

)†Uksj, y
j
:= Vksj = GkUksj.
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Classification of Krylov subspace methods Krylov/Hessenberg

Beyond “classical” Krylov subspace methods

Generalizations:

Fk := Fk(A,q) := {fk−1(A)q | fk−1 structured, e.g., rational}.

Rational methods:

I Rational Krylov (Ruhe);
I Rayleigh Quotient Iteration (RQI); Lord Rayleigh’s original iteration.

Word of warning: I consider these to be Krylov subspace methods.

Partial motivation:

I can be captured by a generalized Hessenberg decomposition.

Single vector Krylov subspace methods (von Mises 1929, Wielandt 1944;
Bernoulli 1728 Frobenius companion matrices):

I Power method (von Mises 1929),
I (Shifted) Inverse Iteration (Wielandt 1944).
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Classification of Krylov subspace methods Krylov/Hessenberg

Hessenberg structure

Krylov subspace method Hessenberg (tridiagonal) matrices:

I first occurrence: Wronski (one step of Laplace expansion),
I various links to (bi)orthogonal polynomials,
I interesting polynomial recursions (Schweins),
I low-rank structure: Asplund, . . .

Schwein’s recurrence for determinants: (Schweins, 1825, Erste Abtheilung,
IV. Abschnitt, §154, Seite 361, Gleichung (560)):

(zIk −Hk)νk(z) = e1
χk(z)∏k
`=1 h`+1,`

, (ν̌k(z))T(zIk −Hk) = χk(z)∏k
`=1 h`+1,`

eT
k ,

with polynomial vectors (χi:j(z) := det (zIj−i+1 −Hi:j))

eT
i νk(z) := χi+1:k(z)∏k

`=i+1 h`,`−1
, eT

i ν̌k(z) := χ1:i−1(z)∏i−1
`=1 h`+1,`

,

 Adjugate; inverse; eigenvectors and principal vectors; nullspace.
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Classification of Krylov subspace methods Arnoldi-based

Outline

Classification of Krylov subspace methods

Krylov/Hessenberg

Arnoldi-based

Lanczos-based

Sonneveld-based

Connections

Interpolation

Approximation

Applications

RQI and the Opitz-Larkin Method

QMRIDR & IDREig

Augmented Backward Error Analysis
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Classification of Krylov subspace methods Arnoldi-based

Linear independence orthonormality

Krylov matrix Kk+1(A,q) rank deficient (k minimal) minimal polynomial µk:

Kk(A,q)c = Akq ⇒ µk(A)q = on, µk(z) = zk −
k∑

i=1

cizi−1.

Eigenvalues, Inverse:

AKk = KkFk, Fk :=
(

oT
k−1

Ik−1
c
)
, Ax = A(Ak−1q−

k∑
i=2

ciAi−2q) = qc1.

Natural idea: use linearly independent vectors for some other basis Qk.

 nested basis transformation: Kk+1 = Qk+1Rk+1 with Rk+1 upper triangular.

Hessenberg: LU decomposition: Kk+1 = Lk+1Rk+1, rii = 1, 1 6 i 6 k + 1.
Arnoldi: orthonormal basis, i.e., QR decomposition: Kk+1 = Qk+1Rk+1.

Extended Hessenberg matrix as quotient: (e1,Hk) = Rk+1

(
1 oT

k
ok R−1

k

)
.

Arnoldi based on orthogonal projection: minimal coeffs c “optimal”.
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Classification of Krylov subspace methods Arnoldi-based

Arnoldi

Arnoldi decomposition:
AQk = Qk+1Hk.

Construction:

H0 = [ ]; Q1 = q1 = q/‖q‖;

for i=1:k do
r = Aqi;
hi = QH

i r;
r = r−Qihi;
hi+1,i = ‖r‖;
qi+1 = r/hi+1,i;

Hi =
(

Hi−1 hi

oT
i−1 hi+1,i

)
;

Qi+1 = (Qi,qi+1);
done

Gram-Schmidt variant.
Others possible.

Other inner products or
semi-inner products
possible.
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Classification of Krylov subspace methods Lanczos-based

Outline

Classification of Krylov subspace methods

Krylov/Hessenberg

Arnoldi-based

Lanczos-based

Sonneveld-based

Connections

Interpolation

Approximation

Applications

RQI and the Opitz-Larkin Method

QMRIDR & IDREig

Augmented Backward Error Analysis
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Classification of Krylov subspace methods Lanczos-based

Linear independence using less vectors

Lanczos: biorthonormal bases Q̂H
k+1Qk+1 = Ik+1 of

Kk := Kk(A,q) := span
{

q,Aq,A2q, . . . ,Ak−1q
}

= {pk−1(A)q | pk−1 ∈ Πk−1},

K̂k := Kk(AH, q̂) := span{q̂,AHq̂,A2Hq̂, . . . ,A(k−1)Hq̂}.

Based on three-term recurrence for the solutions ηk, η̃k of the Hankel systems

Ck+1

(
ηk
1

)
= ek+1hk, C̃k+2

(
η̃k
1

)
= ek+1h̃k+1,

Ck+1 = K̂H
k+1Kk+1 =


c0 c1 c2 · · · ck

c1 c2 c3 · · · ck+1
c2 c3 c4 · · · ck+2
...

...
...

. . .
...

ck ck+1 ck+2 · · · c2k

 , ci = q̂HAiq,

where C̃k+2 is Ck+2 w/o first row & last column.
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Classification of Krylov subspace methods Lanczos-based

Modern implementations

(Example of) Lanczos decompositions:

AQk = Qk+1Tk, AHQ̂k = Q̂k+1T̂k, Q̂H
k+1Qk+1 = Ik+1, TH

k = T̂k.

Implementation nowadays usually based on two-sided Gram-Schmidt:

r = A qk − qkαk − qk−1β̂k,

r̂ = AHq̂k − q̂kαk − q̂k−1βk,

β̂k+1βk+1 = 〈r̂, r〉,
qk+1 = r/βk+1,

q̂k+1 = r̂/β̂k+1.

I Hankel matrices may become singular vs. inner products may be zero:
need for look-ahead.

I Problems with incurable breakdown (in finite fields):
 Taylor’s mismatch theorem.
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Classification of Krylov subspace methods Sonneveld-based

Outline
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Classification of Krylov subspace methods Sonneveld-based

Avoiding the use of the transpose

Lanczos method can be generalized:

I block variants ` left- and right-hand starting vectors;
I block variants with different number of left- and right-hand starting vectors
 applications in model reduction.

Variants denoted by Lanczos(`, s), ` denotes number of the left-hand starting
vectors and s denotes number of right-hand starting vectors. Linear systems:
left (block) Krylov subspace is not used to compute approximations.

I Brower, 1950: scalars ci can be formed using only powers of A, no need
for transpose, but n 2n;

I Sonneveld, 1979: Birth of “Induced Dimension Reduction”;
I Sonneveld, 1989: 〈p(AH)r̂0, q(A)r0〉 = 〈r̂0, p(A)q(A)r0〉;
I Famous classical examples of Sonneveld-based methods: CGS,

BICGSTAB, Wiedemann’s method (for finite fields);
I Lanczos(s, 1) without transpose: IDR(s) & Sonneveld spaces.
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Classification of Krylov subspace methods Sonneveld-based

IDR(s)

IDR spaces:

G0 := K(A,q), (full Krylov subspace)
Gj := (A− µjI)(Gj−1 ∩ S), j > 1, µj ∈ C,

where
codim(S) = s, e.g., S = span{R̃0}⊥, R̃0 ∈ Cn×s.

Interpreted as Sonneveld spaces (Sleijpen, Sonneveld, van Gijzen 2010):

Gj = Sj(Pj,A, R̃0) :=
{

Mj(A)v | v ⊥ Kj(AH, R̃0), v ∈ G0

}
,

Mj(z) :=
j∏

i=1

(z− µi).

Image of shrinking space: Induced Dimension Reduction.
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Classification of Krylov subspace methods Sonneveld-based

IDR(s)
IDR spaces nested:

{o} = Gjmax ( · · · ( Gj+1 ( Gj ( Gj−1 ( · · · ( G2 ( G1 ( G0.

How many vectors in Gj \ Gj+1? In generic case, s + 1.

Stable basis: Partially orthonormalize basis vectors gk, 1 6 k 6 n:

Arnoldi: compute orthonormal basis of Ks+1 ⊂ G0,

AGs = Gs+1Hs.

“Lanczos”: perform intersection Gj ∩ S, map, and orthonormalize,

vk =
k∑

i=k−s

giγi, R̃H
0 vk = os, k > s + 1,

gk+1νk+1 = (A− µjI)vk −
k∑

i=k−j(s+1)−1

giνi, j =
⌊

k − 1
s + 1

⌋
.
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Classification of Krylov subspace methods Sonneveld-based

IDR(s)

Generalized Hessenberg decomposition:

AVk = AGkUk = Gk+1Hk,

where Uk ∈ Ck×k upper triangular.

Structure of Sonneveld pencils:

Hk =



××××◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
+××××◦ ◦ ◦ ◦ ◦ ◦ ◦
◦+××××◦ ◦ ◦ ◦ ◦ ◦
◦ ◦+××××◦ ◦ ◦ ◦ ◦
◦ ◦ ◦+××××◦ ◦ ◦ ◦
◦ ◦ ◦ ◦+××××◦ ◦ ◦
◦ ◦ ◦ ◦ ◦+××××◦ ◦
◦ ◦ ◦ ◦ ◦ ◦+××××◦
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Classification of Krylov subspace methods Sonneveld-based
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Connections

Outline

Classification of Krylov subspace methods

Krylov/Hessenberg

Arnoldi-based

Lanczos-based

Sonneveld-based

Connections

Interpolation

Approximation

Applications

RQI and the Opitz-Larkin Method

QMRIDR & IDREig

Augmented Backward Error Analysis
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Connections

Part II

The connections between

I Krylov subspace methods and
I (generalized) Hessenberg decompositions

on the one hand, and

I polynomials,
I interpolation &
I approximation

on the other are established.

First: Relations between the three approaches to Krylov subspace methods.
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Connections

Connections between the three approaches

(Generalized) Hessenberg decompositions:

Arnoldi: AQk = Qk+1Hk,

Lanczos: AQk = Qk+1Tk, AHQ̂k = Q̂k+1T̂k,

Sonneveld: AVk = AGkUk = Gk+1Hk, Vk = GkUk.

I Arnoldi and Lanczos (q̂ = q) are the same (so-called symmetric Lanczos)
for Hermitean matrices (pencil (K,M): (K− σM)−1M is M-symmetric):

Hk = QH
k AQk = QH

k AHQk = (QH
k AQk)H = HH

k = Tk;

I Lanczos is typically slower in terms of matrix-vector multiplies, faster in
terms of computing time, but less stable than Arnoldi;

I Sonneveld is Lanczos multiplied with extra polynomials;
I Sonneveld with varying s fills the gap between Lanczos and Arnoldi,

reduces risk of breakdown.
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Connections Interpolation

Outline

Classification of Krylov subspace methods

Krylov/Hessenberg

Arnoldi-based

Lanczos-based

Sonneveld-based

Connections

Interpolation

Approximation

Applications

RQI and the Opitz-Larkin Method

QMRIDR & IDREig

Augmented Backward Error Analysis
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Connections Interpolation

Introducing: polynomials

For simplicity we only consider perturbed methods that satisfy

AQk + Fk = Qk+1Hk.

Polynomials based on computed Hk or Hk  useful properties.

Polynomials named by property. In (Zemke, 2007) we considered the
following five types of polynomials:

I basis polynomials Bk,
I adjugate polynomials Ak,
I Lagrange interpolation polynomials Lk[z−1] and Lk[z−1],
I Lagrange interpolation polynomials Lk[1− δz0] and Lk[1− δz0],
I residual polynomials Rk and Rk.

We restrict ourselves to Ak, Lk[z−1], Lk[1− δz0] and Rk.
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Connections Interpolation

Adjugate polynomials

First we consider certain bivariate polynomials – the adjugate polynomials.

I Property:
Ak(z,Hk) = adj(zIk −Hk).

I Implies (Schweins, 1825; Zemke, 2006)

Ak(θj,Hk)e1 = sj, Hksj = sjθj

for all eigenvalues (Ritz values) θj of Hk.
I Definition:

Ak(θ, z) := χk(θ)− χk(z)
θ − z

, χk(z) := det (zIk −Hk).

I Generalization:

A`+1:k(θ, z) := χ`+1:k(θ)− χ`+1:k(z)
θ − z

, ` = 0, 1, . . . , k.
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Connections Interpolation

Adjugate polynomials and Ritz vectors

Theorem (Ritz vectors)

Let HkSθ = SθJθ (for a certain Sθ). Let the Ritz matrix be given by Yθ := QkSθ.
Then

vec(Yθ) =


Ak(θ,A)
A′k(θ,A)

...
A(α−1)

k (θ,A)
(α− 1)!

q1 +
k∑
`=1

`−1∏
j=1

hj+1,j


A`+1:k(θ,A)
A′`+1:k(θ,A)

...
A(α−1)
`+1:k (θ,A)
(α− 1)!

 f`, (8)

with derivation with respect to the shift θ.

We might scale differently such that (here only for approximate eigenvectors)

y = Ak(θ,A)∏k−1
j=1 hj+1,j

q1 +
k∑
`=1

A`+1:k(θ,A)∏k−1
j=`+1 hj+1,j

· f`
h`+1,`

.
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Connections Interpolation

Lagrange polynomials

We consider Lagrange interpolation polynomials interpolating the inverse and
a singularly perturbed identity.

The Lagrange interpolation of the inverse is denoted by Lk[z−1](z).

I Property:
Lk[z−1](Hk) = H−1

k .

I Definition:
Lk[z−1](z) := χk(0)− χk(z)

zχk(0) = −Ak(0, z)
χk(0) .

I Generalization:

L`+1:k[z−1](z) := χ`+1:k(0)− χ`+1:k(z)
zχ`+1:k(0) = −A`+1:k(0, z)

χ`+1:k(0) , ` = 0, 1, . . . , k.
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Connections Interpolation

Lagrange polynomials and OR iterates

Theorem (OR iterates)

Suppose that all H`+1:k are regular. Define zk := H−1
k e1‖r0‖ and xk := Qkzk.

Then

xk = Lk[z−1](A)r0 −
k∑
`=1

L`+1:k[z−1](A) f`z`k. (9)

Really sloppily speaking, in case of convergence,

x∞ = A−1r0 + A−1F∞z∞ = A−1(r0 + F∞z∞).

Proving convergence is the hard task.
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Connections Interpolation

Lagrange polynomials (continued)

We consider Lagrange interpolation polynomials interpolating the inverse and
a singularly perturbed identity.

The Lagrange interpolation of the singularly perturbed identity is denoted by
L0

k [1− δz0](z).

I Properties:

L0
k [1− δz0](Hk) = Ik, L0

k [1− δz0](0) = 0.

I Definition:
L0

k [1− δz0](z) := χk(0)− χk(z)
χk(0) = Lk[z−1](z)z.

I Generalization (` = 0, 1, . . . , k):

L0
`+1:k[1− δz0](z) := χ`+1:k(0)− χ`+1:k(z)

χ`+1:k(0) = L`+1:k[z−1](z)z.

TUHH Jens-Peter M. Zemke Krylov @ TUHH Kickoff 2012 2012-07-18 38 / 86



Connections Interpolation

Lagrange polynomials (continued)

We consider Lagrange interpolation polynomials interpolating the inverse and
a singularly perturbed identity.

The Lagrange interpolation of the singularly perturbed identity is denoted by
L0

k [1− δz0](z).

I Properties:

L0
k [1− δz0](Hk) = Ik, L0

k [1− δz0](0) = 0.

I Definition:
L0

k [1− δz0](z) := χk(0)− χk(z)
χk(0) = Lk[z−1](z)z.

I Generalization (` = 0, 1, . . . , k):

L0
`+1:k[1− δz0](z) := χ`+1:k(0)− χ`+1:k(z)

χ`+1:k(0) = L`+1:k[z−1](z)z.

TUHH Jens-Peter M. Zemke Krylov @ TUHH Kickoff 2012 2012-07-18 38 / 86



Connections Interpolation
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Connections Interpolation

Lagrange polynomials (continued)
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Connections Interpolation

Residual polynomials

Well-known residual polynomials (Stiefel, 1955), denoted by Rk(z).

I Properties:
Rk(Hk) = Ok, Rk(0) = 1.

I Definition:

Rk(z) := χk(z)
χk(0) = 1− L0

k [1− δz0](z) = det (Ik − zH−1
k ).

I Generalization (` = 0, 1, . . . , k):

R`+1:k(z) := χ`+1:k(z)
χ`+1:k(0) = 1− L0

`+1:k[1− δz0](z).

Two types of polynomials two expressions for the OR residuals.
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Connections Interpolation

Residual polynomials and OR residuals

Theorem (OR residuals)

Suppose q1 = r0/‖r0‖ and let all H`+1:k be invertible. Let xk denote the OR
iterate and rk = r0 − Axk the corresponding OR residual.
Then

rk = Rk(A)r0 +
k∑
`=1

L0
`+1:k[1− δz0](A) f`z`k

= Rk(A)r0 −
k∑
`=1

R`+1:k(A) f`z`k + Fkzk.

(10)

First expression: related to perturbation amplification.
Second expression: related to the attainable accuracy.
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Connections Approximation

Outline

Classification of Krylov subspace methods

Krylov/Hessenberg

Arnoldi-based

Lanczos-based

Sonneveld-based

Connections

Interpolation

Approximation

Applications

RQI and the Opitz-Larkin Method

QMRIDR & IDREig

Augmented Backward Error Analysis
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Connections Approximation

The connection to approximation theory

OR and MR perform polynomial approximation. Best understood: case Qk+1
orthonormal, i.e., Arnoldi/GMRES.

OR = Arnoldi/symmetric Lanczos:

min
p∈Πk

‖p(A)q‖, p(z) = zk + · · · ⇒ p(z) = χk(z) = det (zIk −Hk).

MR = GMRES/MINRES:

min
p∈Πk

‖p(A)q‖, p(z) = 1 + · · · ⇒ p(z) = χ
k
(z) = det (zIk −H†kIk).

I Others: Sonneveld ≈ Lanczos ≈ Arnoldi;
I Link to Potential Theory via Green’s functions;
I Potential Theory: also for eigenvalue approximations.
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Connections Approximation

Eigenvalue convergence
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Connections Approximation

Eigenvalue convergence in finite precision
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Connections Approximation

Convergence of CG, first example
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Connections Approximation

Convergence of CG, second example . . .
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Connections Approximation

Characteristics of floating point Lanczos
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Connections Approximation

Characteristics of floating point Lanczos; details
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Applications

Outline

Classification of Krylov subspace methods
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Applications

Part III

As an example we consider a deep link between Rayleigh Quotient Iteration
(RQI) and the Opitz-Larkin Method (OLM).

We briefly sketch some recent developments in two fascinating areas:

I Progress in methods based on the principle of Induced Dimension
Reduction (IDR), and the

I Augmented backward error analysis of Lanczos methods.
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Applications RQI and the Opitz-Larkin Method
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Applications RQI and the Opitz-Larkin Method

Original RQI

In the second edition of the first volume of his book “The Theory of Sound”
(Strutt, 1894), John William Strutt, 3rd Baron Rayleigh, included on page 110
the following passage:
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Applications RQI and the Opitz-Larkin Method

Original RQI

In modern notation, Lord Rayleigh starts with an approximate eigenvector vk,
k = 0, of a Hermitean matrix (Hermitean pencil), computes its Rayleigh
quotient

ρ(vk) := vH
k Avk

vH
k vk

,

and iterates for some suitably chosen j ∈ {1, 2, . . . , n},

vk+1 = (A− ρ(vk)In)−1ej

‖(A− ρ(vk)In)−1ej‖
, k = 0, 1, . . .

where j may vary, depending on the computed approximate eigenvector.

The Rayleigh quotient uniquely solves the least squares problem

ρ(vk) = argminρ∈C ‖Avk − vkρ‖.
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Applications RQI and the Opitz-Larkin Method

Inverse Iteration

Closely connected to RQI is inverse iteration (Wielandt, 1944).

In its most
basic variant the shift τ is never updated, but the right-hand side is replaced
by the latest approximate eigenvector:

vk+1 = (A− τIn)−1vk

‖(A− τIn)−1vk‖
, k = 0, 1, . . .

The shift can be updated by using the approximate eigenvalues obtained by
the shift update strategy

τk+1 := τk + 1
eT

j (A− τkIn)−1vk
.

The latter variant is described in (Wielandt, 1944, Seite 9, Formel (20)) and
converges locally quadratically.
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Applications RQI and the Opitz-Larkin Method

Modern variants of RQI

Combination gives (symmetric/Hermitean) RQI:

vk+1 = (A− ρ(vk)In)−1vk

‖(A− ρ(vk)In)−1vk‖
, k = 0, 1, . . .

This iteration is also used for nonsymmetric A.

Crandall was the first who investigated the three variants (the original
Rayleigh quotient iteration; inverse iteration with fixed shift; symmetric RQI),
see (Crandall, 1951).

Ostrowski proved that unsymmetric RQI still has a quadratic convergence
rate, (Ostrowski, 1959b). In (Ostrowski, 1959a), he devised two-sided RQI:

ρ(wk, vk) := wH
k Avk

wH
k vk

,
vk+1 = (A− ρ(wk, vk)In)−1vk,

wk+1 = (A− ρ(wk, vk)In)−Hwk,
k = 0, 1, . . .

This trick recovers the cubic convergence rate of RQI at the expense of an
additional system. Parlett’s alternating RQI preserves monotonicity.
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Applications RQI and the Opitz-Larkin Method

Classical methods
Methods for the computation of a root of a rational function

f : C→ C, f (z) := p(z)
q(z) , p, q ∈ Pm

include Newton’s method
zk+1 = zk −

f (zk)
f ′(zk)

and the secant method:

zk+1 = zk −
f (zk)

[zk, zk−1] f
.

The secant method has R-order of convergence given by the golden ratio

φ := 1 +
√

5
2

≈ 1.618.

Two steps of the secant method are as costly as one step of Newton’s
method. This makes the secant method the winner:

φ2 = φ+ 1 ≈ 2.618 > 2.
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Applications RQI and the Opitz-Larkin Method

Schröder’s and König’s methods

Newton’s method has been generalized to incorporate higher order
derivatives and to exhibit a higher order of convergence. Well-known
generalized Newton’s methods are Halley’s and Laguerre’s methods.

In 1870 E. Schröder from Pforzheim came up with two infinite families of
generalizations (Schröder, 1870). In 1884 Julius König proved a theorem on
the limiting behavior of certain ratios of Taylor coefficients (König, 1884),
enabling a simpler derivation of Schröder’s family Aλω with λ = 0.

This family is nowadays known as “König’s method”:

zk+1 = zk + s
(1/f )(s−1)(zk)
(1/f )(s)(zk)

, s = 1, 2, . . .

König’s method for s = 1 is Newton’s method,

zk+1 = zk + (1/f )(zk)
(1/f )′(zk)

= zk −
1/f (zk)

f ′(zk)/(f (zk))2 = zk −
f (zk)
f ′(zk)

.
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Applications RQI and the Opitz-Larkin Method

The Opitz-Larkin method

There is a natural extension of König’s method using divided differences in
place of the derivatives.

This natural extension (without the connection to
König’s method) was published in 1958 by Günter Opitz in a two-page article
in ZAMM.

He published few additional papers on the subject (including his most famous
“Steigungsmatrizen” paper). A more complete presentation can be found in
his “Habilitationsschrift”. There, he even pointed out the connection to König’s
method.

Independently, 23 years later F. M. Larkin re-developed Opitz’ method, see
(Larkin, 1981) and the predecessor (Larkin, 1980).

We will refer to this method as the Opitz-Larkin method. The Opitz-Larkin
method is based on iterations of the form

xk+1 = zk + [z1, z2, . . . , zk−1](1/f )
[z1, z2, . . . , zk−1, zk](1/f ) .
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Applications RQI and the Opitz-Larkin Method

The Opitz-Larkin method

Mostly, the zi are all distinct and the next iterate is used as new evaluation
point zk+1 = xk+1,

zk+1 = zk + [z1, z2, . . . , zk−1](1/f )
[z1, z2, . . . , zk−1, zk](1/f ) .

This variant of the Opitz-Larkin method converges with R-order 2.

Frequently, the Opitz-Larkin method is used with truncation:

zk+1 = zk + [zk−p, . . . , zk−1](1/f )
[zk−p, . . . , zk−1, zk](1/f ) ,

see (Opitz, 1958, Seite 277, Gleichung (9)) and (Larkin, 1981, Section 4,
pages 98–99).
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Applications RQI and the Opitz-Larkin Method

The Opitz-Larkin method

It is possible to use confluent divided differences, i.e., multiple points of
evaluation, i.e., higher order derivatives of 1/f .

When we use only confluent divided differences in the truncated Opitz-Larkin
method with truncation parameter p = s, we recover König’s method:

zk+1 = zk + [
s︷ ︸︸ ︷

zk, . . . , zk](1/f )
[zk, . . . , zk, zk︸ ︷︷ ︸

s+1

](1/f )

= zk + (1/f )(s−1)(zk)/(s− 1)!
(1/f )(s)(zk)/s!

= zk + s
(1/f )(s−1)(zk)
(1/f )(s)(zk)

.
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Applications RQI and the Opitz-Larkin Method

The Opitz-Larkin method

Truncated Opitz-Larkin with p = 1 is the secant method,

zk+1 = zk + [zk−1](1/f )
[zk−1, zk](1/f )

= zk + 1
f (zk−1) ·

zk−1 − zk

1/f (zk−1)− 1/f (zk)

= zk + f (zk) f (zk−1)
f (zk−1) · zk−1 − zk

f (zk)− f (zk−1)

= zk −
f (zk)

[zk−1, zk] f
.

Confluent truncated Opitz-Larkin with p = 1 is Newton’s method.
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Applications RQI and the Opitz-Larkin Method

The Opitz-Larkin method

In general, the Opitz-Larkin method is closely connected to rational
interpolation of the inverse function (Larkin, 1981, Theorem 1, page 96):

Theorem (Larkin 1981)

If, for any integer k > 1, there exists a rational function of the form

rk(z) = qd(z)
z− α

, ∀ z,

where qd is a polynomial of degree d 6 k − 2, such that qd(α) 6= 0 and

rk(zj) = f (zj)−1, j = 1, 2, . . . , k,

then
zk + [z1, z2, . . . , zk−1](1/f )

[z1, z2, . . . , zk−1, zk](1/f ) = α.
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Applications RQI and the Opitz-Larkin Method

Simplification

We set zHn := (zIn −Hn). By the first resolvent identity (Chatelin, 1993)

(z1 Hn)−1(z2 Hn)−1 = (z1In −Hn)−1(z2In −Hn)−1 (11a)

= (z1 Hn)−1 − (z2 Hn)−1

z2 − z1
= −[z1, z2](zHn)−1. (11b)

The first resolvent identity is based on the trivial observation that

(z2In −Hn)− (z1In −Hn) = (z2 − z1)In.

Generalization (see also (Dekker and Traub, 1971)):

k∏
i=1

(zi Hn)−1 = (−1)k−1[z1, . . . , zk](zHn)−1. (12)

Confluent divided differences are well-defined.
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Applications RQI and the Opitz-Larkin Method

Simplification

For simplicity we assume that Hn is unreduced.

We denote products of
sub-diagonal elements of the unreduced Hessenberg matrices Hn ∈ Cn×n by

hi:j :=
j∏
`=i

h`+1,`.

Polynomial vectors ν and ν̌ are defined by

ν(z) :=
(
χj+1:n(z)

hj:n−1

)n

j=1
and ν̌(z) :=

(
χ1:j−1(z)

h1:j−1

)n

j=1
. (13)

The elements are νj(z) and ν̌j(z), j = 1, . . . , n. Observe that νn ≡ 1 ≡ ν̌1.

The polynomials χi:j are the characteristic polynomials of submatrices of Hn,

χi:j(z) := det (zHi:j) = det (zIj−i+1 −Hi:j).
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Applications RQI and the Opitz-Larkin Method

Simplification

For z in the resolvent set

(zHn)ν(z) = χ(z)
h1:n−1

e1 ⇔ ν(z)h1:n−1

χ(z) = (zHn)−1e1, (14a)

ν̌(z)T(zHn) = eT
n
χ(z)

h1:n−1
⇔ h1:n−1ν̌(z)T

χ(z) = eT
n (zHn)−1. (14b)

The repeated application of resolvents to e1 results in

( k∏
i=1

(zi Hn)−1
)

e1 = (−1)k−1[z1, . . . , zk](zHn)−1e1 (15)

= (−1)k−1[z1, . . . , zk]
ν(z)h1:n−1

χ(z) . (16)

Note that zIn − zHn = zIn − (zIn −Hn) = Hn, i.e., Hn(zHn)−1 = z(zHn)−1 − In.

TUHH Jens-Peter M. Zemke Krylov @ TUHH Kickoff 2012 2012-07-18 65 / 86



Applications RQI and the Opitz-Larkin Method

Simplification

For z in the resolvent set

(zHn)ν(z) = χ(z)
h1:n−1

e1 ⇔ ν(z)h1:n−1

χ(z) = (zHn)−1e1, (14a)

ν̌(z)T(zHn) = eT
n
χ(z)

h1:n−1
⇔ h1:n−1ν̌(z)T

χ(z) = eT
n (zHn)−1. (14b)

The repeated application of resolvents to e1 results in

( k∏
i=1

(zi Hn)−1
)

e1 = (−1)k−1[z1, . . . , zk](zHn)−1e1 (15)

= (−1)k−1[z1, . . . , zk]
ν(z)h1:n−1

χ(z) . (16)

Note that zIn − zHn = zIn − (zIn −Hn) = Hn, i.e., Hn(zHn)−1 = z(zHn)−1 − In.

TUHH Jens-Peter M. Zemke Krylov @ TUHH Kickoff 2012 2012-07-18 65 / 86



Applications RQI and the Opitz-Larkin Method

Simplification

For z in the resolvent set

(zHn)ν(z) = χ(z)
h1:n−1

e1 ⇔ ν(z)h1:n−1

χ(z) = (zHn)−1e1, (14a)

ν̌(z)T(zHn) = eT
n
χ(z)

h1:n−1
⇔ h1:n−1ν̌(z)T

χ(z) = eT
n (zHn)−1. (14b)

The repeated application of resolvents to e1 results in

( k∏
i=1

(zi Hn)−1
)

e1 = (−1)k−1[z1, . . . , zk](zHn)−1e1 (15)

= (−1)k−1[z1, . . . , zk]
ν(z)h1:n−1

χ(z) . (16)

Note that zIn − zHn = zIn − (zIn −Hn) = Hn, i.e., Hn(zHn)−1 = z(zHn)−1 − In.

TUHH Jens-Peter M. Zemke Krylov @ TUHH Kickoff 2012 2012-07-18 65 / 86



Applications RQI and the Opitz-Larkin Method

Simplification

For the sake of eased understanding, we look at inverse iteration with a
two-sided Rayleigh quotient where the left vector is the last standard unit
vector eT

n .

For this method we have the iterates

vk+1 =
( k∏

i=1

(zi Hn)−1)e1, xk+1 = eT
n Hnvk+1

eT
n vk+1

,

and thus the approximate eigenvalues are given by the Opitz-Larkin method:

xk+1 =
eT

n Hn
(∏k

i=1(zi Hn)−1
)
e1

eT
n

(∏k
i=1(zi Hn)−1

)
e1

=
eT

n (zkIn − (zk Hn))
(∏k

i=1(zi Hn)−1
)
e1

eT
n

(∏k
i=1(zi Hn)−1

)
e1

(17a)

= zk −
eT

n
zk Hn

(∏k
i=1(zi Hn)−1

)
e1

eT
n

(∏k
i=1(zi Hn)−1

)
e1

= zk −
eT

n

(∏k−1
i=1 (zi Hn)−1

)
e1

eT
n

(∏k
i=1(zi Hn)−1

)
e1

(17b)

= zk + [z1, . . . , zk−1](1/χ)
[z1, . . . , zk−1, zk](1/χ) . (17c)
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Applications RQI and the Opitz-Larkin Method

Simplification

When we update the shifts by choosing zk+1 = xk+1 we obtain the standard
variant of the Opitz-Larkin method. This method has asymptotically second
order convergence against the roots of the characteristic polynomial χ.

Inverse iteration with fixed shift τ = z1 = z2 = . . . = zk results in the recurrence

xk+1 = τ + [τ, . . . , τ ](1/χ)
[τ, . . . , τ, τ ](1/χ) = τ + k

(1/χ)(k−1)(τ)
(1/χ)(k)(τ)

. (18)

Inverse iteration with fixed shift performs one step of König’s method.
Restarting inverse iteration every s steps with updated shift given by the
current eigenvalue approximation converges with order s (divided by steps:
linearly).

Symmetric RQI is very pleasant to analyze, likely-wise is two-sided RQI, but
unsymmetric RQI (and thus, the QR algorithm) and alternating RQI do not fit
into the picture.
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Applications RQI and the Opitz-Larkin Method

Simplification

The original Rayleigh quotient iteration (Strutt, 1894) with the symmetric
Rayleigh quotient and, because of the symmetry, a tridiagonal Hermitean
Hessenberg matrix Hn, gives the update

zk+1 = eT
1 (zk Hn)−HHn(zk Hn)−1e1

eT
1 (zk Hn)−H(zk Hn)−1e1

= eT
1 Hn(zk Hn)−2e1

eT
1 (zk Hn)−2e1

(19a)

= eT
1 (zkIn − zk Hn)(zk Hn)−2e1

eT
1 (zk Hn)−2e1

(19b)

= zk −
eT

1 (zk Hn)−1e1

eT
1 (zk Hn)−2e1

= zk + [zk](χ2:n/χ)
[zk, zk](χ2:n/χ) (19c)

= zk −
r(zk)
r′(zk)

, r(z) := χ(z)
χ2:n(z) . (19d)

This is Newton’s method on the meromorphic function r. As the poles of this
meromorphic function are the eigenvalues of a submatrix, they interlace by
Cauchy’s interlace theorem the roots, which are the eigenvalues.
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Applications RQI and the Opitz-Larkin Method

Simplification

Symmetric RQI for Hermitean matrices gives the update

zk+1 = zk + [z1, z1, . . . , zk−1, zk−1, zk](χ2:n/χ)
[z1, z1, . . . , zk−1, zk−1, zk, zk](χ2:n/χ) . (20)

This update has by a result of Tornheim asymptotically a cubic convergence
rate. We have to compute the limit of the real root of the equations

xk − 2xk−1 − 2xk−2 − · · · − 2 = 0, k = 1, . . .

This is the maximal eigenvalue of a Hessenberg matrix with one in the lower
diagonal and two in the last column. The approximate eigenvector of all ones
to the approximate eigenvalue 3 gives the backward error 1/

√
k and the only

positive real eigenvalue of the matrix is well separated, the other eigenvalues
lie close to a circle of radius one around zero.
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Applications QMRIDR & IDREig

Outline

Classification of Krylov subspace methods

Krylov/Hessenberg

Arnoldi-based

Lanczos-based

Sonneveld-based

Connections

Interpolation

Approximation

Applications

RQI and the Opitz-Larkin Method

QMRIDR & IDREig

Augmented Backward Error Analysis
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Applications QMRIDR & IDREig

Load applied to structure, K ∈ R1092×1092, IDR(1)
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Applications QMRIDR & IDREig

Load applied to structure, K ∈ R1092×1092, IDR(4)
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Applications QMRIDR & IDREig

Load applied to structure, K ∈ R1092×1092, IDR(16)
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Applications QMRIDR & IDREig

Load applied to structure, K ∈ R1092×1092, IDR(32)
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Applications QMRIDR & IDREig

Load applied to structure, K ∈ R1092×1092, IDR(64)
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Applications QMRIDR & IDREig

Shifted Grcar matrix; IDR(1)
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Applications QMRIDR & IDREig

Shifted Grcar matrix; IDR(2)
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Applications QMRIDR & IDREig

Shifted Grcar matrix; IDR(4)
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Applications QMRIDR & IDREig

Shifted Grcar matrix; IDR(8)
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Applications QMRIDR & IDREig

Shifted Grcar matrix; IDR(16)
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Applications QMRIDR & IDREig

Shifted Grcar matrix; IDR(32)
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Applications Augmented Backward Error Analysis

Outline

Classification of Krylov subspace methods

Krylov/Hessenberg

Arnoldi-based

Lanczos-based

Sonneveld-based

Connections

Interpolation

Approximation

Applications

RQI and the Opitz-Larkin Method

QMRIDR & IDREig

Augmented Backward Error Analysis
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Applications Augmented Backward Error Analysis

Behaviour of perturbed Krylov subspace methods

Every observed behaviour that occurs in a perturbed method can also be
observed in unperturbed methods w/ orthonormal basis vectors.

Hessenberg decomposition:

HnIn,k = In,k+1Hk.

Generalized Hessenberg decomposition:

(HnU−1
n )In,kUk = In,k+1Hk.

Bad news: Impossible to distinguish effects of perturbation from startling
behaviour due to strange data.
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Applications Augmented Backward Error Analysis

Analysis of perturbed Krylov subspace methods

Suppose that
AQk + Fk = Qk+1Tk, AH = A, TH

k = Tk.

Set

diag(Tk,A) :=
(

Tk Ok,n

On,k A

)
∈ C(k+n)×(k+n), Tk ∈ Ck×k, A ∈ Cn×n.

Paige used augmented backward error analysis for symmetric Lanczos in
finite precision:

(diag(Tk,A) + H) Q̃k = Q̃k+1Tk, Q̃H
k Q̃k = Ik.

Here, H is a “small” perturbation if Fk is small and local orthonormality is
given. Error-free process for perturbed strange matrix.

Extended to two-sided Lanczos by Paige, Panayotov and Z., 2012.
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Conclusion

Conclusion and Outlook

I I sketched the three main families of Krylov subspace methods.

I I highlighted the rôle of Hessenberg matrices and the resulting structure.
I The relations to interpolation and approximation have been stated.
I Convergence analysis is split into convergence of vectorial quantities and

convergence of (harmonic) Ritz values.
I I gave some insight into some deep link to classical root-finding and

presented some current developments.
I I (hopefully) convinced you that finite-dimensional aspects are still quite

complicated in nature, but very interesting, and gave some hints, which
Krylov subspace methods you could use in your application.
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Thank you very much for attending
our Kickoff meeting!

This talk is partially based on the following technical reports:

Eigenvalue computations based on IDR, Martin H. Gutknecht and Z., Bericht 145,
Institut für Numerische Simulation, TUHH, 2010,

Flexible and multi-shift induced dimension reduction algorithms for solving large
sparse linear systems, Martin B. van Gijzen, Gerard L.G. Sleijpen, and Z., Bericht 156,
Institut für Numerische Simulation, TUHH, 2011,

IDR: A new generation of Krylov subspace methods?, Olaf Rendel, Anisa Rizvanolli,
and Z., Bericht 161, Institut für Mathematik, TUHH, 2012.
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