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The basic idea behind IDR History

Is IDR a new method?

IDR is yet another acronym, here, for Induced Dimension Reduction.

» The original IDR method was developed in 1976 by Peter Sonneveld
while preparing a lecture in numerical analysis for students of TU Delft.
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IDR is yet another acronym, here, for Induced Dimension Reduction.
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The original IDR method was developed in 1976 by Peter Sonneveld
while preparing a lecture in numerical analysis for students of TU Delft.

It was presented in 1979 at a CFD conference and published in 1980.

In 2006, Peter Sonneveld and Martin van Gijzen reconsidered the original
variant and constructed something “new”, namely, IDR(s).

Is IDR/IDR(s) really new? Are parts of it new?

v

v

v

Spoiler:

» |IDR marks the beginning of a new era in Krylov subspace methods,
» IDR(s) is closely related to ML (k)BiCGStab by Yeung and Chan.
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The basic idea behind IDR History

The origin of IDR: poor man’s secant method

In 1976 Peter Sonneveld (Sonneveld, 2006; Sonneveld, 2008) prepared notes
for a course on Numerical Analysis at TU Delft. The secant method was part
of the course. He generalized it to a multidimensional secant method . ..
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In 1976 Peter Sonneveld (Sonneveld, 2006; Sonneveld, 2008) prepared notes
for a course on Numerical Analysis at TU Delft. The secant method was part
of the course. He generalized it to a multidimensional secant method . ..

Let f(x) :== b — Ax, where A € C"*" and b € C" are given. Then
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The origin of IDR: poor man’s secant method

In 1976 Peter Sonneveld (Sonneveld, 2006; Sonneveld, 2008) prepared notes
for a course on Numerical Analysis at TU Delft. The secant method was part
of the course. He generalized it to a multidimensional secant method . ..

Let f(x) := b — Ax, where A € C"*" and b € C" are given. Then
Fi=f(Xy) i= (f(x0) -+ f(x,)) € C0HD)
is rank deficient. For every solution x of Ax = b,

F, = A(f(eT —Xi), where e:=ones(n+1,1).

Thus, for Fre; = 0, and e'¢; # 0,

Xicx

be'c, = Axe'c, = AXpey, = Xx= o
k
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The basic idea behind IDR History

The origin of IDR: poor man’s secant method

For genuine non-linear (smooth) functions f, we replace A by the Jacobi
matrix and b by the function evaluation at an initial guess.
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The origin of IDR: poor man’s secant method

For genuine non-linear (smooth) functions f, we replace A by the Jacobi
matrix and b by the function evaluation at an initial guess.

Then the process described gives a linearization and updates iterates to give
better approximations.

Updating all columns of F; is ill-conditioned, as all columns converge to the
same vector f := f(x). Sonneveld updated only the last two columns:

Fk = (Fgo_nISt fk—l fk) .
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The origin of IDR: poor man’s secant method

For genuine non-linear (smooth) functions f, we replace A by the Jacobi
matrix and b by the function evaluation at an initial guess.

Then the process described gives a linearization and updates iterates to give
better approximations.

Updating all columns of F; is ill-conditioned, as all columns converge to the
same vector f := f(x). Sonneveld updated only the last two columns:

Fk = (Fgo_nISt fk—l fk) .
Therefore, with A := V f(X),
Fr=(ARe" =X, ) +E,-; AR-—x1)+dy AR—x) +dy),

where E,_, is a constant matrix and the vectors d, converge to zero.
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The basic idea behind IDR History

The origin of IDR: poor man’s secant method

Sonneveld used the example Ax = o,, and mimicked the non-linearity by the
presence of a constant matrix E,_; in the process.
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The origin of IDR: poor man’s secant method

Sonneveld used the example Ax = o,, and mimicked the non-linearity by the
presence of a constant matrix E,_; in the process.

If used for a matrix of dimension n € N, the process gave (an approximation
to) the value zero in step 2n. In the following example | used Maple to exclude
finite precision and a badly conditioned matrix A of size 5.

[roll, = 7.416198487, |y, = 31.28897569,
[ra]l2 = 3.838120391, |[|r3]|, = 3.944190988,
l[r4ll2 = 1.035754508, ||rs||> = 1.035728492,
[rsll. = 0.983756197, |r7|l> = 0.983648677,
[rgll2 = 0.520741201, ||rs]l> = 0.520740892,
[rioll2 = [[r2:]2 = 0.
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The origin of IDR: poor man’s secant method

Sonneveld used the example Ax = o,, and mimicked the non-linearity by the
presence of a constant matrix E,_; in the process.

If used for a matrix of dimension n € N, the process gave (an approximation
to) the value zero in step 2n. In the following example | used Maple to exclude
finite precision and a badly conditioned matrix A of size 5.

[roll, = 7.416198487, |y, = 31.28897569,
[ra]l2 = 3.838120391, |[|r3]|, = 3.944190988,
l[r4ll2 = 1.035754508, ||rs||> = 1.035728492,
[rsll. = 0.983756197, |r7|l> = 0.983648677,
[rgll2 = 0.520741201, ||rs]l> = 0.520740892,
[rioll2 = [[r2:]2 = 0.

He analyzed this startling behavior: the first IDR method was born.
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The basic idea behind IDR History

The origin of IDR: poor man’s secant method

To analyze, he realized that ¢, is of interest up to a scalar non-zero factor. He
considered the case that ¢, | + ¢, = 1, i.e., that the sum of the last two
elements is scaled to be one. He sets ¢, | := v, and thus ¢, = 1 — .
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To analyze, he realized that ¢, is of interest up to a scalar non-zero factor. He
considered the case that ¢,_; + ¢, = 1, i.e., that the sum of the last two
elements is scaled to be one. He sets ¢, | := v, and thus ¢, = 1 — .

Now, for c,(,’? 1» we have to solve the overdetermined consistent linear system
Fooiel) ) = —f =y — fio).

AsF,_, € C"™ (=1 there exists a non-zero vector p € C” in the left null space
of F,_. With this vector,

0=p"F, 1| = p"(—f — (e — 1)),
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The origin of IDR: poor man’s secant method

To analyze, he realized that ¢, is of interest up to a scalar non-zero factor. He
considered the case that ¢,_; + ¢, = 1, i.e., that the sum of the last two
elements is scaled to be one. He sets ¢, | := v, and thus ¢, = 1 — .

Now, for c,(,’? 1» we have to solve the overdetermined consistent linear system

Fn—lc,(,lfl = —fi — n(fe — fi1)-

AsF,_, € C"™ (=1 there exists a non-zero vector p € C” in the left null space
of F,_. With this vector,

0=p"F, e} = p™(~f — (i — i),
i.e., 7 is uniquely (in case of no breakdown) determined by
pfi

Yk = _—pH(fk — fk—l).
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The basic idea behind IDR History

The origin of IDR: poor man’s secant method

The vector cfﬁ | is then (because of the consistency of the given
overdetermined system) given by

el o= —FI (i + el — fr)).

Jens-Peter M. Zemke IDR @ Oxford 2011-05-26 9/46



The basic idea behind IDR History

The origin of IDR: poor man’s secant method

The vector cfﬁ | is then (because of the consistency of the given

overdetermined system) given by
) o= —FI (i + w(fe — fio1)).
The new residual f;; = 0, — Ax; satisfies

A(Xn—lc,(,]?1 + X¢ + (X — Xi—1))
efe™ 41

(Ep_q — Fn_1)c,(,121 —fi — e (fe — fi1) En—lcg?l

frr1=—

eTc,(ﬁ L1 "~ eTe®W +1

n—1
Enlel_ fi +v(fe — iy
= TRt ! ( ) = piB(f + e (f — fi1))
e'F,  (fi +y(f —fi_1)) — 1
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The basic idea behind IDR History

The origin of IDR: poor man’s secant method

As the method usually converges, the vector ¢; in the null space of F,(,k) will not
change much, thus the scaling will not change much, thus for k > 1

1 1
£ ™ = —— =~ const # 0.
eTF | (f + (e —fiop)) —1 el

Jens-Peter M. Zemke IDR @ Oxford 2011-05-26 10/ 46



The basic idea behind IDR History

The origin of IDR: poor man’s secant method

As the method usually converges, the vector ¢; in the null space of F,(,k) will not
change much, thus the scaling will not change much, thus for k > 1

1 1
B = —— =~ const # 0.
eTF | (f + (e —fiop)) —1 el

The finite termination property of the resulting three-term recurrence

fir1 = piB(f + e (fe — £i1))

can thus not depend on the scaling, but only on the way ~; and thus f; is
computed. For this reason, Sonneveld considered the case p; = 1 for all k.
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The origin of IDR: poor man’s secant method

As the method usually converges, the vector ¢; in the null space of F,(,k) will not
change much, thus the scaling will not change much, thus for k > 1

1 1
B = —— =~ const # 0.
eTF | (f + (e —fiop)) —1 el

The finite termination property of the resulting three-term recurrence
fii1 = peB (e + (B — 1))

can thus not depend on the scaling, but only on the way ~; and thus f; is
computed. For this reason, Sonneveld considered the case p; = 1 for all k.

Do we need the information that the matrix B € C"*" is defined by

B:=E, F_?

n—1-
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The basic idea behind IDR History

The origin of IDR: poor man’s secant method

The constant matrix E,_; was arbitrarily chosen. Thus, we could represent
every at most rank n — 1 matrix with the same kernel as F!_,.
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The constant matrix E,_; was arbitrarily chosen. Thus, we could represent
every at most rank n — 1 matrix with the same kernel as F!_,.

The right kernel of F!_| is the left kernel of F,_,, i.e., it is spanned by the
vector p used in the computation of ;,
pH i

Yk = _—pH(fk — fk—l).
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The constant matrix E,_; was arbitrarily chosen. Thus, we could represent
every at most rank n — 1 matrix with the same kernel as F!_,.

The right kernel of F!_| is the left kernel of F,_,, i.e., it is spanned by the
vector p used in the computation of ;,

Ve = ——pH b

o opH i)

The simplified (i.e., scaled) three-term recurrence
i1 =B + w(fi — fi1))

is “immune” to changes in B in direction of p, as the ~; are chosen to construct
vectors orthogonal to p.
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The origin of IDR: poor man’s secant method

The constant matrix E,_; was arbitrarily chosen. Thus, we could represent
every at most rank n — 1 matrix with the same kernel as F!_,.

The right kernel of F!_| is the left kernel of F,_,, i.e., it is spanned by the
vector p used in the computation of ;,

Ve = ——pH b

o opH i)

The simplified (i.e., scaled) three-term recurrence
i1 =B + w(fi — fi1))

is “immune” to changes in B in direction of p, as the ~; are chosen to construct
vectors orthogonal to p.

We could use any B € C"*" without spoiling the finite termination property!
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The basic idea behind IDR History

The origin of IDR: primitive IDR

Sonneveld first made experiments and then gave a rigorous proof. It is easy to
see that apart from the first two (arbitrarily chosen) residuals the constructed
residuals are in the B image of the space S := p*.
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The origin of IDR: primitive IDR

Sonneveld first made experiments and then gave a rigorous proof. It is easy to
see that apart from the first two (arbitrarily chosen) residuals the constructed
residuals are in the B image of the space S := p*.

The same argument proves that in general (observe that the first two
residuals fy, f; are usually notin S) fork > 1
1

k
for, fort1 € Gr = ﬂ B/(S) = <J£ B—/H {p}>L _ (ICk(B H gH p))

j=1
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The basic idea behind IDR History

The origin of IDR: primitive IDR

Sonneveld first made experiments and then gave a rigorous proof. It is easy to
see that apart from the first two (arbitrarily chosen) residuals the constructed
residuals are in the B image of the space S := p*.

The same argument proves that in general (observe that the first two
residuals fy, f; are usually notin S) fork > 1

k
B o1 € G = BY(S) = (,—i_] B/ {P}>L = (’Ck(B 2B I’))l

j=1

Sonneveld proved that the dimensions of the spaces constructed are
shrinking. This is the essence of the first IDR Theorem. He did not use the
description as an orthogonal complement of a Krylov subspace as it is done
here. We remark that generically dim(,(B~",B " p)) = n.
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The origin of IDR: primitive IDR

Sonneveld first made experiments and then gave a rigorous proof. It is easy to
see that apart from the first two (arbitrarily chosen) residuals the constructed
residuals are in the B image of the space S := p*.

The same argument proves that in general (observe that the first two
residuals fy, f; are usually notin S) fork > 1

k
B o1 € G = BY(S) = (,—i_] B/ {P}>L = (’Ck(B 2B I’))l

j=1

Sonneveld proved that the dimensions of the spaces constructed are
shrinking. This is the essence of the first IDR Theorem. He did not use the
description as an orthogonal complement of a Krylov subspace as it is done
here. We remark that generically dim(,(B~",B " p)) = n.

Using the Krylov subspace point of view and the explicit orthogonalization
against p before multiplication with B, we see that indeed f,, = Bo, = o,.
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The basic idea behind IDR History

The origin of IDR: primitive IDR

The three-term recurrence

pH i
pH (o — )’
is an “implementation” of the Induced Dimension Reduction (IDR) Theorem.

The vectors constructed live in spaces of shrinking dimensions. Methods like
this are called “IDR Algorithms”.

firr = B(fe + n(fx — 1)), where =
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The origin of IDR: primitive IDR

The three-term recurrence

H
p" i
firr =B +w(f —fi1)), where ~ = (e —f)

is an “implementation” of the Induced Dimension Reduction (IDR) Theorem.
The vectors constructed live in spaces of shrinking dimensions. Methods like
this are called “IDR Algorithms”.

Another implementation by Sonneveld can be used to solve “genuine” linear
systems. The idea is to rewrite the linear system to Richardson iteration form,

Ax=b = x=(I—-Ax+b=Bx+bh.
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The basic idea behind IDR History

The origin of IDR: primitive IDR

The three-term recurrence

H
p" i
firr =B +w(f —fi1)), where ~ = (e —f)

is an “implementation” of the Induced Dimension Reduction (IDR) Theorem.
The vectors constructed live in spaces of shrinking dimensions. Methods like
this are called “IDR Algorithms”.

Another implementation by Sonneveld can be used to solve “genuine” linear
systems. The idea is to rewrite the linear system to Richardson iteration form,

Ax=b = x=(I—-Ax+b=Bx+bh.

The classical Richardson iteration with a starting guess x; is then given by

Xi+1 = (I — A)Xk +b.
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The basic idea behind IDR History

The origin of IDR: primitive IDR

With ry := b — Ax,, the Richardson iteration is carried out as follows:

Xepl =X+ 1, Ty = (I—A)rg.
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The basic idea behind IDR History

The origin of IDR: primitive IDR

With ry := b — Ax,, the Richardson iteration is carried out as follows:

Xip1 =Xk + 1, Tigpr = (I = Ay

In a Richardson-type IDR Algorithm, the second equation is replaced by the
update
p'ry

Tt = (L= A)(rc+ lre —m)), %= o =5
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The basic idea behind IDR History

The origin of IDR: primitive IDR

With ry := b — Ax,, the Richardson iteration is carried out as follows:

Xip1 =Xk + 1, Tigpr = (I = Ay

In a Richardson-type IDR Algorithm, the second equation is replaced by the
update

H
P ri

Tt = (L= A)(rc+ lre —m)), %= o =5

The update of the iterates has to be modified accordingly,

—A(Xk1 —Xe) = rgpr — e = (L= A)(re + (e — re—1)) — 1%
= (I—A)(rx — NA(Xe —Xx—1)) — g
= A+ —A) (X — x4-1))

& Xy — X =T + (I — A) (X — Xp—1)
=1+ (X — X1+ Tk —Tp).

Jens-Peter M. Zemke IDR @ Oxford 2011-05-26

14/ 46



The basic idea behind IDR History

The origin of IDR: primitive IDR

Sonneveld terms the outcome the Primitive IDR Algorithm (Sonneveld, 2006):

I'():b—AXO
X| = Xp + I
1‘1:l'o—Al‘0

Fork=1,2,...do

Ve = PTl‘k/PT(l‘k—1 - l'k)

Sk = T + (Te — rep)

Xpp1 = X + Ve(Xp — Xp—1) + 8¢
Fit1 = Sk — ASk

done
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The basic idea behind IDR History

The origin of IDR: primitive IDR

Sonneveld terms the outcome the Primitive IDR Algorithm (Sonneveld, 2006):

Xold = Xo

old = b — AXoig
Xnew = Xold 1 Told
Tnew = Fold — ATold

ro = b — AX()
X; = Xo + Ip
ry=r9— AI‘()
While “not converged” do
Fork=1,2,...do g

Y= PTrnew/PT(roId — Tnew)

S = I'new + 'Y(rnew - I'old)

Xtmp = Xnew + ¥ (Xnew — Xold) + 8

Y% = Pr/p (11 — 1)

Sk = I + /Yk(rk — rk—l)

Xyt = X + Vi (Xk — Xx—1) + ¢
Fpp1 = S, — ASk Xold = Xnews Xnew = Xtmp
done Told = Tnews I'new = T'tmp

done
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The basic idea behind IDR History

The origin of IDR: primitive IDR

Sonneveld terms the outcome the Primitive IDR Algorithm (Sonneveld, 2006):

Xold = Xo

old = b — AXoig
Xnew = Xold 1 Told
Tnew = Fold — ATold

ro = b — AX()

X; = Xo + Ip

ry=r9— AI‘()
While “not converged” do

Fork=1,2,...do 9

Y= PTrnew/PT(roId — Tnew)

S = I'new + 'Y(rnew = I'old)

Xtmp = Xnew + ¥ (Xnew — Xold) + 8

I'imp = S — As

Ve = PTl‘k/PT(l‘k—1 - l'k)

Sk = e + Ye(re — rp—q)

Xpr1 = Xk + W (Xe — Xp—1) + 8¢

Iii1 = Sy — As,

e ¢ ¢ Xold = Xnew; Xnew = Xtmp

done Told = Tnews I'new = T'tmp
done

On the next slide we compare Richardson iteration (red) and PIA (blue).
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The basic idea behind IDR History

The origin of IDR: primitive IDR

Impressions of “finite termination” and acceleration in finite precision:

PIA for n = 5 and no scaling PIA for n = 20 and no scaling PIA for n = 100 and no scaling
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The basic idea behind IDR History

The origin of IDR: primitive IDR

Sonneveld never did use PIA, as he considered it to be too unstable, instead
he went on with a corresponding acceleration of the GauB-Seidel method. In
(Sonneveld, 2008) he terms this method Accelerated GauB-Seidel (AGS) and
refers to it as “[tlhe very first IDR-algorithm [..]”, see page 6, Ibid.
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(Sonneveld, 2008) he terms this method Accelerated GauB-Seidel (AGS) and
refers to it as “[tlhe very first IDR-algorithm [..]”, see page 6, Ibid.

This part of the story took place “in the background” in the year 1976.

In September 1979 Sonneveld did attend the IUTAM Symposium on
Approximation Methods for Navier-Stokes Problems in Paderborn, Germany.
At this symposium he presented a new variant of IDR based on a variable
splitting I — w;A, where w; is fixed for two steps and otherwise could be chosen
freely, but non-zero.
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The basic idea behind IDR History

The origin of IDR: primitive IDR

Sonneveld never did use PIA, as he considered it to be too unstable, instead
he went on with a corresponding acceleration of the GauB-Seidel method. In
(Sonneveld, 2008) he terms this method Accelerated GauB-Seidel (AGS) and
refers to it as “[tlhe very first IDR-algorithm [..]”, see page 6, Ibid.

This part of the story took place “in the background” in the year 1976.

In September 1979 Sonneveld did attend the IUTAM Symposium on
Approximation Methods for Navier-Stokes Problems in Paderborn, Germany.
At this symposium he presented a new variant of IDR based on a variable
splitting I — w;A, where w; is fixed for two steps and otherwise could be chosen
freely, but non-zero.

This algorithm with minimization of every second residual is included in the
proceedings from 1980 (Wesseling and Sonneveld, 1980). The connection to
Krylov methods, e.g., BiCG/Lanczos, is also given there.

Jens-Peter M. Zemke IDR @ Oxford 2011-05-26 17/ 46


http://www.iutam.info/iutam/Publications/index.php/3
http://www.iutam.info/iutam/Publications/index.php/3

The basic idea behind IDR

History

The origin of IDR: classical IDR

A numerical comparison of Richardson iteration, original IDR, and PIA.
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The basic idea behind IDR A sketch of IDR(s)

Building blocks of IDR(s)

IDR(s) is a Krylov subspace method based on two building blocks:

» Multiplication by polynomials in A.
(IDR(s): linear, IDR(s)Stab(¢): higher degree)
» Oblique projection perpendicular to P € C"**.
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The basic idea behind IDR A sketch of IDR(s)

Building blocks of IDR(s)

IDR(s) is a Krylov subspace method based on two building blocks:

» Multiplication by polynomials in A.
(IDR(s): linear, IDR(s)Stab(¢): higher degree)
» Oblique projection perpendicular to P € C"**.

IDR(s) constructs nested subspaces of shrinking dimensions.

The prototype IDR(s) method constructs spaces g; as follows:

» Define Gy := K(A, 1) = span {rg, Arg, A’ry,...}.
> lterate gj = (I—ij)(gj_IHS), j=12..., (CBWJ‘#O

Only sufficiently many vectors in each space are constructed.
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The basic idea behind IDR Variants & Relatives

IDR is Lanczos times something

It turns out that:

» IDR(s) is a transpose-free variant of a Lanczos process with one
right-hand side and s left-hand sides.
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It turns out that:

» IDR(s) is a transpose-free variant of a Lanczos process with one
right-hand side and s left-hand sides.
» IDR(s) is a Lanczos-type product method, i.e., most residuals can be
written as
otk = Q(A)psri(A)ro, 1 <k<s

where pj.1« are residual polynomials of the Lanczos process.
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The basic idea behind IDR Variants & Relatives

IDR is Lanczos times something

It turns out that:

» IDR(s) is a transpose-free variant of a Lanczos process with one

right-hand side and s left-hand sides.
» IDR(s) is a Lanczos-type product method, i.e., most residuals can be
written as
otk = Q(A)psri(A)ro, 1 <k<s

where pj.1« are residual polynomials of the Lanczos process.

Reminder: Residual polynomials are polynomials that

» satisfy r, = pr(A)rg and
» are normalized by the condition p;(0) = 1.
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Points of View Polynomials

Krylov subspace: try thinking in polynomials

IDR/IDR(s)/IDR(s)Stab(¢) are classes of Krylov subspace methods, they
construct approximations from Krylov subspaces

le(A, l’()) = §pan {I’(), AI‘Q, .. ,Ak_ll'()}.

Jens-Peter M. Zemke IDR @ Oxford 2011-05-26

22/46



Points of View Polynomials

Krylov subspace: try thinking in polynomials

IDR/IDR(s)/IDR(s)Stab(¢) are classes of Krylov subspace methods, they
construct approximations from Krylov subspaces
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Points of View Polynomials

Krylov subspace: try thinking in polynomials

IDR/IDR(s)/IDR(s)Stab(¢) are classes of Krylov subspace methods, they
construct approximations from Krylov subspaces

ICk(A, l’o) = §pan {I’(), AI‘Q, {eny Ak_ll'()}.

Krylov subspaces are isomorphic (up to a certain degree) to polynomial
spaces,

k—1 k=1
xeky & x= ZAjrocj =pi—1(A)rg, pi_i(z) = chzj.
Jj=0 j=0

Residual polynomials arise because

Iy =TIy — AXk = (I — Apkfl(A))l‘() = pk(A)l‘o.
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Points of View Polynomials

IDR: a Lanczos process with multiple left-hand sides

The derivation and the theoretical properties of IDR are easy to describe
using the language of polynomials.
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Points of View Polynomials

IDR: a Lanczos process with multiple left-hand sides

The derivation and the theoretical properties of IDR are easy to describe
using the language of polynomials.

Denote Qi (A) := H’Lﬁ:l(l — wyA). It can easily be proven that (S := P+)
Go=K(A,ry), where K(A,ry) denotes the full Krylov subspace,

j—1 -
G =) %uA)'UA)S) = Ci_o szj(A)—HQk(A)H{P})l
k=0 =

_ (Qj(A) —H ICj(AH,P))l = O;(A) (ICj(AH,P))J_.
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IDR: a Lanczos process with multiple left-hand sides

The derivation and the theoretical properties of IDR are easy to describe
using the language of polynomials.

Denote Qi (A) := H’Lﬁ:l(l — wyA). It can easily be proven that (S := P+)
Go=K(A,ry), where K(A,ry) denotes the full Krylov subspace,

=1 a
G = %A %@)©) = (+ Qj(A)_HQk(A)H{P})L
k=0 =

_ (Qj(A) —H ICj(AH,P))l = O;(A) (ICj(AH,P))L.

This has to be compared with Theorem 4.2 in (Sleijpen et al., 2008) and with
Theorem 4.1 in (Simoncini and Szyld, 2009) (similar result; slightly different
method of proof).
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Points of View Polynomials

IDR: a Lanczos process with multiple left-hand sides

Recall that g() = ’C(A, I’()), gj = (I — ij)(gj_l n S), ] = 1, 2, .
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Points of View Polynomials

IDR: a Lanczos process with multiple left-hand sides

Recall that Gy := ’C(A, I’()), gj = (I — ij)(gj_l n S), j= 1,2,...

The first equality

Jj—1 J
G =) )y =) T=wA) - (I-wA)(S)
k=0

k=1

follows from the observations that:
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Points of View Polynomials

IDR: a Lanczos process with multiple left-hand sides

Recall that Gy := ]C(A, I’()), gj = (I — ij)(gj_l n S), j= 1,2,...
The first equality

Jj—1 J
G =) )y =) T=wA) - (I-wA)(S)
k=0

k=1
follows from the observations that:

» the first s + 1 vectors are in Gy := K(A, rp),

the next s + 1 vectors in G, are in the I — w; A image of S = P+,
the next s + 1 vectors in G, are in the I — w,A image of S = P+,
the last s + 1 vectors are in the I — w;A image of S = P,

the last vectors are I — w;A images of linear combinations of previously
obtained images (I — wj_1A) -+ (I — w;A) of S = P+,

vV V. v Vv
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Points of View Polynomials

IDR: a Lanczos process with multiple left-hand sides

The second equality

j=1 i
N 2@ 0,6 = (T ) ok py)
k=0 -
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Points of View Polynomials

IDR: a Lanczos process with multiple left-hand sides

The second equality
/= -1 it H H +
N %@ 2@)©) = (+ @) @) @)
k=0 -

is based on

BPt = (B Hp)t

and
Utrnvt=uuv)t =u+v)*
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Points of View Polynomials

IDR: a Lanczos process with multiple left-hand sides

The second equality
/= -1 it H H +
N %@ 2@)©) = (+ @) @) @)
k=0 -

is based on

BPt = (B Hp)t

and
Utnvt=uuv)t=uU+v)*

The second relations are basic linear algebra. The first relation follows from
={veC" |P'v=0,}] = BP'={BveC"|Plv=o0,},
since, for invertible B,

yEBP- & [y=BvAPv=0,} & Plv=P"B ly=(B"P)y =0,
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Points of View Polynomials

IDR: a Lanczos process with multiple left-hand sides

The third and fourth equality
U —H H + HpaH p )T
(+ @) @ P = () MGate)

= o) (K" p)
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Points of View Polynomials

IDR: a Lanczos process with multiple left-hand sides

The third and fourth equality

are satisfied

» since the polynomials €(A), 0 < k < j form a basis of the space of
polynomials of degree less j, and

» by the property proved on the last slide, respectively.
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Points of View Polynomials

IDR: a Lanczos process with multiple left-hand sides

The third and fourth equality

are satisfied

» since the polynomials €(A), 0 < k < j form a basis of the space of
polynomials of degree less j, and

» by the property proved on the last slide, respectively.

This is of interest in round-off error analysis (Lanczos): “Local orthogonality” is
preserved, the inner products with the oldest basis vectors, i.e., those that are
the columns of P, are “small”.
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Points of View Generalized Hessenberg Decompositions

Hessenberg decompositions: basic linear algebra

The implementation and (round-off error) analysis of IDR is more closely
related to so-called generalized Hessenberg decompositions.
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Points of View Generalized Hessenberg Decompositions

Hessenberg decompositions: basic linear algebra

The implementation and (round-off error) analysis of IDR is more closely
related to so-called generalized Hessenberg decompositions.

“Classical” Krylov subspace methods generate

> “basis” matrices Qis1 = (Qi, qus1) € C*¢FY and
» unreduced extended Hessenberg matrices H, € CKk+1)xk

which form the Hessenberg decomposition

AQ; = Qi1 H,.
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Hessenberg decompositions: basic linear algebra

The implementation and (round-off error) analysis of IDR is more closely
related to so-called generalized Hessenberg decompositions.
“Classical” Krylov subspace methods generate

> “basis” matrices Qi1 = (Qx, gir1) € C*¥+D) and
» unreduced extended Hessenberg matrices H, € CKk+1)xk

which form the Hessenberg decomposition

AQ; = Qi1 H,.

IDR based Krylov subspace methods additionally generate upper triangular
matrices U, € CF** such that we obtain a generalized Hessenberg
decomposition

AQ;U; = Qi 1H,.
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Points of View Generalized Hessenberg Decompositions

Hessenberg decompositions: basic linear algebra

The implementation and (round-off error) analysis of IDR is more closely
related to so-called generalized Hessenberg decompositions.
“Classical” Krylov subspace methods generate

> “basis” matrices Qi1 = (Qx, gir1) € C*¥+D) and
» unreduced extended Hessenberg matrices H, € CKk+1)xk

which form the Hessenberg decomposition

AQ; = Qi1 H,.

IDR based Krylov subspace methods additionally generate upper triangular
matrices U, € CF** such that we obtain a generalized Hessenberg
decomposition

AQ Ui = Qi 1H,.
IDR based methods include BiCGStab (rewritten version of IDR), and CGS.
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Points of View Generalized Hessenberg Decompositions

Karl Hessenberg & “his” matrix + decomposition

Behandlung linearer Eigenwertaufgaben mit Hilfe
der Hamilton-Cayleyschen Gleichung, Karl
Hessenberg, 1. Bericht der Reihe ,Numerische
Verfahren®, July, 23rd 1940, page 23:

lsn kann nun die Vektoren 3,”” (v = 1,2,...,n) ebenfalls in einer
latrix zusammenfassen, und zwar ist nach Gleichung (55) und (56)
(57 C3eaz 300 0030 3 p,

worin die Matrix R zur Abkiirzung gesetzt ist fiir

(58)

» Hessenberg decomposition, Egn. (57),
» Hessenberg matrix, Eqn. (58).

Karl Hessenberg (* September 8th, 1904,  February 22nd, 1959)
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Points of View Generalized Hessenberg Decompositions

IDR: Sonneveld pencil and Sonneveld matrix

We consider the prototype IDR(s) by Sonneveld/van Gijzen (IDR(s)ORes).
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We consider the prototype IDR(s) by Sonneveld/van Gijzen (IDR(s)ORes).

The IDR(s)ORes pencil, the so-called Sonneveld pencil (Y°,Y,,ij‘)), can be

depicted by
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OO0O0OXXXX0o0000
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OXXXX0000000
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XXX00000000O0
XX0000000000
X00000000000

00000000 XXXX
0000000XXXX+
000000 XXXX+o0
0O0000XXXX+0o0
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O0O0OXXXX+4+0000
0OO0OXXXX4+00000
OXXXX+00000O0
XXXX+000000O0
XXX+0000000O0O
XX4+0000000O0O0
X4+o0oo0oo00000000
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Points of View Generalized Hessenberg Decompositions

IDR: Sonneveld pencil and Sonneveld matrix

We consider the prototype IDR(s) by Sonneveld/van Gijzen (IDR(s)ORes).

The IDR(s)ORes pencil, the so-called Sonneveld pencil (Yg,Y,,DfJ‘)), can be
depicted by

0000000000+ X
00000000 0+XX
0000000 0+XXX
0000000+XXXX
0O00000+XXXXO
0O000O0+XXXXO0O0
0000+ XXXX00oO0
OO0 O0+XXXX000O0
OO0+FXXXX000O0O0
O0+XXXX00000O0
+XXXX000000O0
XXXX0000000O0
00000000000 X
0000000000 XX
000000000 XXX
00000000 XXXNX
O0OO0OO0OO0O0O0OXXXXO
O0OO0OO0OO0OO0OXXXXO0O
O0OO0OO0O0OXXXX0O0O0
OO0OO0OOXXXX0000
OO0OXXXX00000
OOXXXX0000O0O0
OXXXX000000O0
XXXX0000000O0

The upper triangular matrix Y,D{"” could be inverted, which results in the
Sonneveld matrix, a full unreduced Hessenberg matrix.
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Points of View Generalized Hessenberg Decompositions

Understanding IDR: Purification

We know the eigenvalues ~ roots of kernel polynomials 1/w;. We are only
interested in the other eigenvalues.
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Points of View Generalized Hessenberg Decompositions

Understanding IDR: Purification

We know the eigenvalues ~ roots of kernel polynomials 1/w;. We are only
interested in the other eigenvalues.

The purified IDR(s)ORes pencil (Y;,UnDS’)), that has only the remaining
eigenvalues and some infinite ones as eigenvalues, can be depicted by

000000000 0+X
00000000 0+XX
00000000+ XXX
0000000+XXXX
0O00000+XXXXO
00000+ XXXXO0O0
0O00O0+XXXX00oO0
OO0O0O+XXXX000O0
OO0+XXXX0000O0
0O4+XXXX00000O0
+XXXX000000O0
XXXX0000000O0
0000000000 0X
000000000 0XX
000000000XXX
000000000000
0000000X000O0
0O0000O0OXXO00O0O0
0O00O0O0OXXX0000
000000000000
000OX0000000O0
OO0OXXO00000000
OXXX00000000
000000000000
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Points of View Generalized Hessenberg Decompositions

Understanding IDR: Purification

We know the eigenvalues ~ roots of kernel polynomials 1/w;. We are only
interested in the other eigenvalues.

The purified IDR(s)ORes pencil (Y D(”)) that has only the remaining
eigenvalues and some infinite ones as eigenvalues, can be depicted by

XXXX0000000O0 XXXO0O0000000O0
+XXXXooo00000 OXX0O000000O0O0
O04+XXXX00000O0 0OO0OX0O0000000O0
0OO0+XXXX0000O0 000000000000
OO0O0+XXXX000O0 OO0OO0OOXXXO0O000O0
0000+ XXXX0O0O0 O0O0O0O0OXXO0000O0
O000O04+XXXX00 || 0c0o0000X000O0O0
O00000+XXXXO 000000000000
000000 0+XXXX 00000000 XXXO
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We get rid of the infinite eigenvalues using a change of basis (Gauf3/Schur).
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Generalized Hessenberg Decompositions

Points of View
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Points of View Generalized Hessenberg Decompositions

Understanding IDR: Gaussian elimination

The deflated purified IDR(s)ORes pencil, after the elimination step
(YSG,, U,,Dfu”)), can be depicted by

XAXAKAXXXX 00000 XXX O0O0000O0O0O0
F+XXXXXX00000 OXX0O000000O0O0
O+ XXXXX0000O0 OO0OXO0O00O0000O0O0
000+00000000 000000000000
OO0++XXXXXXXO0 OO0OO0OOXXXO0O0O0O0O0
OO0 0O0+FXXXXXXO OO0O0O0OO0OXXO0OO0O0O0O
0O000O0+XXXXX0 || ocoooo00X0000O0
0000000+0000 000000000000
0000004+ XXXX 00000000 XXXO
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00000000000+ 000000000000

Using Laplace expansion of the determinant of 2U,DY — Y:G, we can get rid
of the trivial constant factors corresponding to infinite eigenvalues. This
amounts to a deflation.
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Points of View Generalized Hessenberg Decompositions

Understanding IDR: Deflation

Let D denote an deflation operator that removes every (s + 1)th column and
row from the matrix the operator is applied to.
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Points of View Generalized Hessenberg Decompositions

Understanding IDR: Deflation

Let D denote an deflation operator that removes every (s + 1)th column and
row from the matrix the operator is applied to.

The deflated purified IDR(s)ORes pencil, after the deflation step
(D(Y2G,),D(U,D)), can be depicted by
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The block-diagonal matrix D(UnDSj’)) has invertible upper triangular blocks
and can be inverted to expose the underlying Lanczos process.
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Points of View Generalized Hessenberg Decompositions

IDR: a Lanczos process with multiple left-hand sides

Inverting the block-diagonal matrix D(U,,Dﬁj’))) gives an algebraic eigenvalue
problem with a block-tridiagonal unreduced upper Hessenberg matrix
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Points of View Generalized Hessenberg Decompositions

IDR: a Lanczos process with multiple left-hand sides

Inverting the block-diagonal matrix D(U,,Dﬁj’))) gives an algebraic eigenvalue
problem with a block-tridiagonal unreduced upper Hessenberg matrix
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This is the matrix of the underlying BiORes(s, 1) process.
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Points of View Generalized Hessenberg Decompositions

IDR: a Lanczos process with multiple left-hand sides

Inverting the block-diagonal matrix D(U,,Dﬁj’))) gives an algebraic eigenvalue
problem with a block-tridiagonal unreduced upper Hessenberg matrix

L, := D(Y2G,) - D(UDW)) ! =

+XXXXX00o0
XXX XXX00o0

This is the matrix of the underlying BiORes(s, 1) process.

This matrix (in the extended version) satisfies

AQn = Qn+1Ln7

where the reduced residuals q s+, k =0,...,s—1,j=0,1,..., are given by

Q(A)qjs1k = (s41)+k-
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Numerical Experiments

Outline

Numerical Experiments

Jens-Peter M. Zemke IDR @ Oxford 2011-05-26 34/46



Numerical Experiments An Expected Deviation

IDR is based on a short-term recurrence, e.g., a Lanczos method. It is well
known that Lanczos methods tend to deviate. Thus, we might expect the
same behaviour in IDR based methods.
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known that Lanczos methods tend to deviate. Thus, we might expect the
same behaviour in IDR based methods.

At least we might expect some deviation, as IDR is based on short term
recurrences.

In the following plots we depict (known) behavior of Lanczos algorithms and
compare if to the (yet to be analyzed) behavior of IDR algorithms.
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Numerical Experiments An Expected Deviation

IDR is based on a short-term recurrence, e.g., a Lanczos method. It is well
known that Lanczos methods tend to deviate. Thus, we might expect the
same behaviour in IDR based methods.

At least we might expect some deviation, as IDR is based on short term
recurrences.

In the following plots we depict (known) behavior of Lanczos algorithms and
compare if to the (yet to be analyzed) behavior of IDR algorithms.

In a recent report, Collignon, Sleijpen and van Gijzen show that IDR can be
interpreted as a sort of preconditioning based on deflation; the preconditioned
matrix has the polynomial roots as eigenvalues.
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Numerical Experiments An Expected Deviation

Lanczos’ method in finite precision

comparison of 29 steps of symbolic and floating point Lanczos
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Numerical Experiments An Expected Deviation

Lanczos’ method in finite precision

The theory of the Lanczos method in case of non-selfadjoint matrices is still
less satisfactory. Some of the conclusions carry over, and the behavior in
finite precision shows some similarities.
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The theory of the Lanczos method in case of non-selfadjoint matrices is still
less satisfactory. Some of the conclusions carry over, and the behavior in
finite precision shows some similarities.

The next example uses the matrix pores_2 of size 1224 x 1224 from Matrix
Market. The left and right starting vectors have been chosen such that all
components are equal.
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less satisfactory. Some of the conclusions carry over, and the behavior in
finite precision shows some similarities.

The next example uses the matrix pores_2 of size 1224 x 1224 from Matrix
Market. The left and right starting vectors have been chosen such that all
components are equal.

As there does not exist the best Lanczos method, we have chosen one of the
more stable ones, namely the variant described in (Bai, 1994).
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Numerical Experiments An Expected Deviation

Lanczos’ method in finite precision

The theory of the Lanczos method in case of non-selfadjoint matrices is still
less satisfactory. Some of the conclusions carry over, and the behavior in
finite precision shows some similarities.

The next example uses the matrix pores_2 of size 1224 x 1224 from Matrix
Market. The left and right starting vectors have been chosen such that all
components are equal.

As there does not exist the best Lanczos method, we have chosen one of the
more stable ones, namely the variant described in (Bai, 1994).

We note that we can observe multiple copies, but this time the approximation
quality is reduced after a couple of steps, all Ritz values computed after
certain steps show worse behavior than before.
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Numerical Experiments An Expected Deviation

Lanczos’ method in finite precision

non-Hermitean Lanczos applied to pores 2
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Numerical Experiments

IDR, IDR(1), and BiCGStab

An Expected Deviation

Lanczos- and BiCGStab-Ritz values closest to maximal eigenvalue
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Numerical Experiments An Expected Deviation

IDR, IDR(1), and BiCGStab

Lanczos- and BiCGStab-Ritz values (excerpt)
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Numerical Experiments An Expected Deviation

Understanding IDR: 600 steps fo
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Numerical Experiments “Ghost” Polynomial Roots

“Ghost” Polynomial Roots
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Numerical Experiments Enhanced Stability vs. Higher Cost

Some issues in IDR(s)

» IDR(s) uses larger subspaces and thus is advantageous with respect to
performance (BLAS 3 instead of BLAS 1).
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» Experiments by Seiji Fujino indicate that IDR(s) applied to SPD matrices
is comparable to CG, both with the best available preconditioners, yet
IDR(s) is a general purpose solver.
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Numerical Experiments Enhanced Stability vs. Higher Cost

Some issues in IDR(s)

» IDR(s) uses larger subspaces and thus is advantageous with respect to
performance (BLAS 3 instead of BLAS 1).

» Influences of round-off errors are diminished, as more information is used
in the cycles.

» Experiments by Seiji Fujino indicate that IDR(s) applied to SPD matrices
is comparable to CG, both with the best available preconditioners, yet
IDR(s) is a general purpose solver.

» Using real values for the polynomial roots gives bad results. To use real
arithmetic, IDR(s)Stab(¢) can be used, e.g., £ = 2,4, 8. Unfortunately, in
this case (£ + 1) - s vectors have to be stored.
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Conclusion
Conclusion and Qutview

» IDR, dating to 1976, marks the beginning of transpose-free Lanczos
methods/Lanczos-type product methods (LTPM).
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» IDR(s) is based on Lanczos with multiple left-hand sides.

» IDR/IDR(s) are short term Krylov subspace methods, but came into
existence in disguise.

» The error analysis and convergence theory of IDR(s) is much more
complicated than for the classical (symmetric) Lanczos process.

» There are no multiple Ritz values, but “ghost polynomial roots”.

» We currently work on variants: IDREig (with Olaf Rendel and Anisa
Rizvanolli); analysis of IDRStab (with Anisa Rizvanolli); QMRIDR (with
Olaf Rendel, Gerard Sleijpen, and Martin van Gijzen).
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» IDR, dating to 1976, marks the beginning of transpose-free Lanczos
methods/Lanczos-type product methods (LTPM).

» IDR is the forgotten predecessor of CGS and BiCGStab.
» IDR(s) is based on Lanczos with multiple left-hand sides.

» IDR/IDR(s) are short term Krylov subspace methods, but came into
existence in disguise.

» The error analysis and convergence theory of IDR(s) is much more
complicated than for the classical (symmetric) Lanczos process.

» There are no multiple Ritz values, but “ghost polynomial roots”.

» We currently work on variants: IDREig (with Olaf Rendel and Anisa
Rizvanolli); analysis of IDRStab (with Anisa Rizvanolli); QMRIDR (with
Olaf Rendel, Gerard Sleijpen, and Martin van Gijzen).

» What about “continous” IDR?
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Thank you for your attention!
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