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The basic idea behind IDR History

Is IDR a new method?

IDR is yet another acronym, here, for Induced Dimension Reduction.

I The original IDR method was developed in 1976 by Peter Sonneveld
while preparing a lecture in numerical analysis for students of TU Delft.

I It was presented in 1979 at a CFD conference and published in 1980.
I In 2006, Peter Sonneveld and Martin van Gijzen reconsidered the original

variant and constructed something “new”, namely, IDR(s).
I Is IDR/IDR(s) really new? Are parts of it new?

Spoiler:

I IDR marks the beginning of a new era in Krylov subspace methods,
I IDR(s) is closely related to ML(k)BiCGStab by Yeung and Chan.
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The basic idea behind IDR History

The origin of IDR: poor man’s secant method

In 1976 Peter Sonneveld (Sonneveld, 2006; Sonneveld, 2008) prepared notes
for a course on Numerical Analysis at TU Delft. The secant method was part
of the course. He generalized it to a multidimensional secant method . . .

Let f (x) := b− Ax, where A ∈ Cn×n and b ∈ Cn are given. Then

Fk := f (Xk) :=
(

f (x0) · · · f (xn)
)
∈ Cn×(n+1)

is rank deficient. For every solution x̂ of Ax = b,

Fk = A(x̂eT − Xk), where e := ones(n + 1, 1).

Thus, for Fkck = on and eTck 6= 0,

beTck = Ax̂eTck = AXkck ⇒ x̂ =
Xkck

eTck
.
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The basic idea behind IDR History

The origin of IDR: poor man’s secant method

For genuine non-linear (smooth) functions f , we replace A by the Jacobi
matrix and b by the function evaluation at an initial guess.

Then the process described gives a linearization and updates iterates to give
better approximations.

Updating all columns of Fk is ill-conditioned, as all columns converge to the
same vector f := f (x̂). Sonneveld updated only the last two columns:

Fk :=
(
Fconst

n−1 fk−1 fk
)
.

Therefore, with A := ∇ f (x̂),

Fk =
(
A(x̂eT − Xn−1) + En−1 A(x̂− xk−1) + dk−1 A(x̂− xk) + dk

)
,

where En−1 is a constant matrix and the vectors dk converge to zero.
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The basic idea behind IDR History

The origin of IDR: poor man’s secant method

Sonneveld used the example Ax = on and mimicked the non-linearity by the
presence of a constant matrix En−1 in the process.

If used for a matrix of dimension n ∈ N, the process gave (an approximation
to) the value zero in step 2n. In the following example I used Maple to exclude
finite precision and a badly conditioned matrix A of size 5.

‖r0‖2 = 7.416198487, ‖r1‖2 = 31.28897569,
‖r2‖2 = 3.838120391, ‖r3‖2 = 3.944190988,
‖r4‖2 = 1.035754508, ‖r5‖2 = 1.035728492,
‖r6‖2 = 0.983756197, ‖r7‖2 = 0.983648677,
‖r8‖2 = 0.520741201, ‖r9‖2 = 0.520740892,
‖r10‖2 = ‖r2n‖2 = 0.

He analyzed this startling behavior: the first IDR method was born.
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The basic idea behind IDR History

The origin of IDR: poor man’s secant method

To analyze, he realized that ck is of interest up to a scalar non-zero factor. He
considered the case that cn−1 + cn = 1, i.e., that the sum of the last two
elements is scaled to be one. He sets cn−1 := γk and thus cn = 1− γk.

Now, for c(k)
n−1, we have to solve the overdetermined consistent linear system

Fn−1c(k)
n−1 = −fk − γk(fk − fk−1).

As Fn−1 ∈ Cn×(n−1), there exists a non-zero vector p ∈ Cn in the left null space
of Fn−1. With this vector,

0 = pH Fn−1c(k)
n−1 = pH(−fk − γk(fk − fk−1)),

i.e., γk is uniquely (in case of no breakdown) determined by

γk := − pH fk

pH(fk − fk−1)
.
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The basic idea behind IDR History

The origin of IDR: poor man’s secant method

The vector c(k)
n−1 is then (because of the consistency of the given

overdetermined system) given by

c(k)
n−1 := −F†n−1(fk + γk(fk − fk−1)).

The new residual fk+1 = on − Axk+1 satisfies

fk+1 = −
A(Xn−1c(k)

n−1 + xk + γk(xk − xk−1))

eTc(k)
n−1 + 1

=
(En−1 − Fn−1)c(k)

n−1 − fk − γk(fk − fk−1)

eTc(k)
n−1 + 1

=
En−1c(k)

n−1

eTc(k)
n−1 + 1

=
En−1F†n−1(fk + γk(fk − fk−1))

eTF†n−1(fk + γk(fk − fk−1))− 1
= ρkB(fk + γk(fk − fk−1))
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The basic idea behind IDR History

The origin of IDR: poor man’s secant method

As the method usually converges, the vector ck in the null space of F(k)
n will not

change much, thus the scaling will not change much, thus for k� 1

ρk :=
1

eTF†n−1(fk + γk(fk − fk−1))− 1
=

1
eTck

≈ const 6= 0.

The finite termination property of the resulting three-term recurrence

fk+1 = ρkB(fk + γk(fk − fk−1))

can thus not depend on the scaling, but only on the way γk and thus fk is
computed. For this reason, Sonneveld considered the case ρk = 1 for all k.

Do we need the information that the matrix B ∈ Cn×n is defined by

B := En−1F†n−1?
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The basic idea behind IDR History

The origin of IDR: poor man’s secant method

The constant matrix En−1 was arbitrarily chosen. Thus, we could represent
every at most rank n− 1 matrix with the same kernel as F†n−1.

The right kernel of F†n−1 is the left kernel of Fn−1, i.e., it is spanned by the
vector p used in the computation of γk,

γk := − pH fk

pH(fk − fk−1)
.

The simplified (i.e., scaled) three-term recurrence

fk+1 = B(fk + γk(fk − fk−1))

is “immune” to changes in B in direction of p, as the γk are chosen to construct
vectors orthogonal to p.

We could use any B ∈ Cn×n without spoiling the finite termination property!
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The basic idea behind IDR History

The origin of IDR: primitive IDR

Sonneveld first made experiments and then gave a rigorous proof. It is easy to
see that apart from the first two (arbitrarily chosen) residuals the constructed
residuals are in the B image of the space S := p⊥.

The same argument proves that in general (observe that the first two
residuals f0, f1 are usually not in S) for k > 1

f2k, f2k+1 ∈ Gk :=

k⋂
j=1

B j(S) =
( k
+
j=1

B−j H {p}
)⊥

=
(
Kk(B−H,B−H p)

)⊥
.

Sonneveld proved that the dimensions of the spaces constructed are
shrinking. This is the essence of the first IDR Theorem. He did not use the
description as an orthogonal complement of a Krylov subspace as it is done
here. We remark that generically dim(Kn(B−H,B−H p)) = n.

Using the Krylov subspace point of view and the explicit orthogonalization
against p before multiplication with B, we see that indeed f2n = Bon = on.
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The basic idea behind IDR History

The origin of IDR: primitive IDR
The three-term recurrence

fk+1 = B(fk + γk(fk − fk−1)), where γk =
pH fk

pH(fk−1 − fk)
,

is an “implementation” of the Induced Dimension Reduction (IDR) Theorem.
The vectors constructed live in spaces of shrinking dimensions. Methods like
this are called “IDR Algorithms”.

Another implementation by Sonneveld can be used to solve “genuine” linear
systems. The idea is to rewrite the linear system to Richardson iteration form,

Ax = b ⇒ x = (I− A)x + b =: B x + b.

The classical Richardson iteration with a starting guess x0 is then given by

xk+1 = (I− A)xk + b.
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The basic idea behind IDR History

The origin of IDR: primitive IDR
With r0 := b− Ax0, the Richardson iteration is carried out as follows:

xk+1 = xk + rk, rk+1 = (I− A)rk.

In a Richardson-type IDR Algorithm, the second equation is replaced by the
update

rk+1 = (I− A)(rk + γk(rk − rk−1)), γk =
pH rk

pH(rk−1 − rk)
.

The update of the iterates has to be modified accordingly,

−A(xk+1 − xk) = rk+1 − rk = (I− A)(rk + γk(rk − rk−1))− rk

= (I− A)(rk − γkA(xk − xk−1))− rk

= −A(rk + γk(I− A)(xk − xk−1))

⇔ xk+1 − xk = rk + γk(I− A)(xk − xk−1)

= rk + γk(xk − xk−1 + rk − rk−1).
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The basic idea behind IDR History

The origin of IDR: primitive IDR

Sonneveld terms the outcome the Primitive IDR Algorithm (Sonneveld, 2006):

r0 = b− Ax0
x1 = x0 + r0
r1 = r0 − Ar0

For k = 1, 2, . . . do

γk = pTrk/pT(rk−1 − rk)
sk = rk + γk(rk − rk−1)
xk+1 = xk + γk(xk − xk−1) + sk

rk+1 = sk − Ask

done

xold = x0
rold = b− Axold
xnew = xold + rold
rnew = rold − Arold

While “not converged” do

γ = pTrnew/pT(rold − rnew)
s = rnew + γ(rnew − rold)
xtmp = xnew + γ(xnew− xold) + s
rtmp = s− As
xold = xnew, xnew = xtmp
rold = rnew, rnew = rtmp

done

On the next slide we compare Richardson iteration (red) and PIA (blue).
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The basic idea behind IDR History

The origin of IDR: primitive IDR

Impressions of “finite termination” and acceleration in finite precision:
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The basic idea behind IDR History

The origin of IDR: primitive IDR

Sonneveld never did use PIA, as he considered it to be too unstable, instead
he went on with a corresponding acceleration of the Gauß-Seidel method. In
(Sonneveld, 2008) he terms this method Accelerated Gauß-Seidel (AGS) and
refers to it as “[t]he very first IDR-algorithm [..]”, see page 6, Ibid.

This part of the story took place “in the background” in the year 1976.

In September 1979 Sonneveld did attend the IUTAM Symposium on
Approximation Methods for Navier-Stokes Problems in Paderborn, Germany.
At this symposium he presented a new variant of IDR based on a variable
splitting I− ωjA, where ωj is fixed for two steps and otherwise could be chosen
freely, but non-zero.

This algorithm with minimization of every second residual is included in the
proceedings from 1980 (Wesseling and Sonneveld, 1980). The connection to
Krylov methods, e.g., BiCG/Lanczos, is also given there.
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The basic idea behind IDR History

The origin of IDR: classical IDR

A numerical comparison of Richardson iteration, original IDR, and PIA.
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The basic idea behind IDR A sketch of IDR(s)

Building blocks of IDR(s)

IDR(s) is a Krylov subspace method based on two building blocks:

I Multiplication by polynomials in A.
(IDR(s): linear, IDR(s)Stab(`): higher degree)

I Oblique projection perpendicular to P ∈ Cn×s.

IDR(s) constructs nested subspaces of shrinking dimensions.

The prototype IDR(s) method constructs spaces Gj as follows:

I Define G0 := K(A, r0) = span {r0,Ar0,A2r0, . . .}.
I Iterate Gj := (I− ωjA)(Gj−1 ∩ S), j = 1, 2, . . . , C 3 ωj 6= 0

Only sufficiently many vectors in each space are constructed.

TUHH Jens-Peter M. Zemke IDR @ Oxford 2011-05-26 19 / 46



The basic idea behind IDR A sketch of IDR(s)

Building blocks of IDR(s)

IDR(s) is a Krylov subspace method based on two building blocks:

I Multiplication by polynomials in A.
(IDR(s): linear, IDR(s)Stab(`): higher degree)

I Oblique projection perpendicular to P ∈ Cn×s.

IDR(s) constructs nested subspaces of shrinking dimensions.

The prototype IDR(s) method constructs spaces Gj as follows:

I Define G0 := K(A, r0) = span {r0,Ar0,A2r0, . . .}.
I Iterate Gj := (I− ωjA)(Gj−1 ∩ S), j = 1, 2, . . . , C 3 ωj 6= 0

Only sufficiently many vectors in each space are constructed.

TUHH Jens-Peter M. Zemke IDR @ Oxford 2011-05-26 19 / 46



The basic idea behind IDR A sketch of IDR(s)

Building blocks of IDR(s)

IDR(s) is a Krylov subspace method based on two building blocks:

I Multiplication by polynomials in A.
(IDR(s): linear, IDR(s)Stab(`): higher degree)

I Oblique projection perpendicular to P ∈ Cn×s.

IDR(s) constructs nested subspaces of shrinking dimensions.

The prototype IDR(s) method constructs spaces Gj as follows:

I Define G0 := K(A, r0) = span {r0,Ar0,A2r0, . . .}.
I Iterate Gj := (I− ωjA)(Gj−1 ∩ S), j = 1, 2, . . . , C 3 ωj 6= 0

Only sufficiently many vectors in each space are constructed.

TUHH Jens-Peter M. Zemke IDR @ Oxford 2011-05-26 19 / 46



The basic idea behind IDR A sketch of IDR(s)

Building blocks of IDR(s)

IDR(s) is a Krylov subspace method based on two building blocks:

I Multiplication by polynomials in A.
(IDR(s): linear, IDR(s)Stab(`): higher degree)

I Oblique projection perpendicular to P ∈ Cn×s.

IDR(s) constructs nested subspaces of shrinking dimensions.

The prototype IDR(s) method constructs spaces Gj as follows:

I Define G0 := K(A, r0) = span {r0,Ar0,A2r0, . . .}.
I Iterate Gj := (I− ωjA)(Gj−1 ∩ S), j = 1, 2, . . . , C 3 ωj 6= 0

Only sufficiently many vectors in each space are constructed.

TUHH Jens-Peter M. Zemke IDR @ Oxford 2011-05-26 19 / 46



The basic idea behind IDR Variants & Relatives

IDR is Lanczos times something

It turns out that:

I IDR(s) is a transpose-free variant of a Lanczos process with one
right-hand side and s left-hand sides.

I IDR(s) is a Lanczos-type product method, i.e., most residuals can be
written as

rIDR
j(s+1)+k = Ωj(A)ρjs+k(A)r0, 1 6 k 6 s

where ρjs+k are residual polynomials of the Lanczos process.

Reminder: Residual polynomials are polynomials that

I satisfy rk = ρk(A)r0 and
I are normalized by the condition ρk(0) = 1.
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written as

rIDR
j(s+1)+k = Ωj(A)ρjs+k(A)r0, 1 6 k 6 s

where ρjs+k are residual polynomials of the Lanczos process.

Reminder: Residual polynomials are polynomials that

I satisfy rk = ρk(A)r0 and
I are normalized by the condition ρk(0) = 1.

TUHH Jens-Peter M. Zemke IDR @ Oxford 2011-05-26 20 / 46



The basic idea behind IDR Variants & Relatives

IDR is Lanczos times something

It turns out that:

I IDR(s) is a transpose-free variant of a Lanczos process with one
right-hand side and s left-hand sides.

I IDR(s) is a Lanczos-type product method, i.e., most residuals can be
written as

rIDR
j(s+1)+k = Ωj(A)ρjs+k(A)r0, 1 6 k 6 s

where ρjs+k are residual polynomials of the Lanczos process.

Reminder: Residual polynomials are polynomials that

I satisfy rk = ρk(A)r0 and
I are normalized by the condition ρk(0) = 1.

TUHH Jens-Peter M. Zemke IDR @ Oxford 2011-05-26 20 / 46



Points of View

Outline

The basic idea behind IDR

History

A sketch of IDR(s)

Variants & Relatives

Points of View

Polynomials

Generalized Hessenberg Decompositions

Numerical Experiments

An Expected Deviation

“Ghost” Polynomial Roots

Enhanced Stability vs. Higher Cost

TUHH Jens-Peter M. Zemke IDR @ Oxford 2011-05-26 21 / 46



Points of View Polynomials

Krylov subspace: try thinking in polynomials

IDR/IDR(s)/IDR(s)Stab(`) are classes of Krylov subspace methods, they
construct approximations from Krylov subspaces

Kk(A, r0) := span {r0,Ar0, . . . ,Ak−1r0}.

Krylov subspaces are isomorphic (up to a certain degree) to polynomial
spaces,

x ∈ Kk ⇔ x =
k−1∑
j=0

Ajr0cj = pk−1(A)r0, pk−1(z) =
k−1∑
j=0

cj z j.

Residual polynomials arise because

rk := r0 − Axk = (I− Apk−1(A))r0 =: ρk(A)r0.
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Points of View Polynomials

IDR: a Lanczos process with multiple left-hand sides

The derivation and the theoretical properties of IDR are easy to describe
using the language of polynomials.

Denote Ωk(A) :=
∏k

`=1(I− ω`A). It can easily be proven that (S := P⊥)

G0 = K(A, r0), where K(A, r0) denotes the full Krylov subspace,

Gj =

j−1⋂
k=0

Ωk(A)−1Ωj(A)(S) =
( j−1
+

k=0
Ωj(A)−H Ωk(A) H {P}

)⊥
=
(

Ωj(A)−HKj(AH,P)
)⊥

= Ωj(A)
(
Kj(AH,P)

)⊥
.

This has to be compared with Theorem 4.2 in (Sleijpen et al., 2008) and with
Theorem 4.1 in (Simoncini and Szyld, 2009) (similar result; slightly different
method of proof).

TUHH Jens-Peter M. Zemke IDR @ Oxford 2011-05-26 23 / 46



Points of View Polynomials

IDR: a Lanczos process with multiple left-hand sides

The derivation and the theoretical properties of IDR are easy to describe
using the language of polynomials.

Denote Ωk(A) :=
∏k

`=1(I− ω`A). It can easily be proven that (S := P⊥)

G0 = K(A, r0), where K(A, r0) denotes the full Krylov subspace,

Gj =

j−1⋂
k=0

Ωk(A)−1Ωj(A)(S) =
( j−1
+

k=0
Ωj(A)−H Ωk(A) H {P}

)⊥
=
(

Ωj(A)−HKj(AH,P)
)⊥

= Ωj(A)
(
Kj(AH,P)

)⊥
.

This has to be compared with Theorem 4.2 in (Sleijpen et al., 2008) and with
Theorem 4.1 in (Simoncini and Szyld, 2009) (similar result; slightly different
method of proof).

TUHH Jens-Peter M. Zemke IDR @ Oxford 2011-05-26 23 / 46



Points of View Polynomials

IDR: a Lanczos process with multiple left-hand sides

The derivation and the theoretical properties of IDR are easy to describe
using the language of polynomials.

Denote Ωk(A) :=
∏k

`=1(I− ω`A). It can easily be proven that (S := P⊥)

G0 = K(A, r0), where K(A, r0) denotes the full Krylov subspace,

Gj =

j−1⋂
k=0

Ωk(A)−1Ωj(A)(S) =
( j−1
+

k=0
Ωj(A)−H Ωk(A) H {P}

)⊥
=
(

Ωj(A)−HKj(AH,P)
)⊥

= Ωj(A)
(
Kj(AH,P)

)⊥
.

This has to be compared with Theorem 4.2 in (Sleijpen et al., 2008) and with
Theorem 4.1 in (Simoncini and Szyld, 2009) (similar result; slightly different
method of proof).

TUHH Jens-Peter M. Zemke IDR @ Oxford 2011-05-26 23 / 46



Points of View Polynomials

IDR: a Lanczos process with multiple left-hand sides

Recall that G0 := K(A, r0), Gj := (I− ωjA)(Gj−1 ∩ S), j = 1, 2, . . .

The first equality

Gj =

j−1⋂
k=0

Ωk(A)−1Ωj(A)(S) =

j⋂
k=1

(I− ωjA) · · · (I− ωkA)(S)

follows from the observations that:

I the first s + 1 vectors are in G0 := K(A, r0),
I the next s + 1 vectors in G1 are in the I− ω1A image of S = P⊥,
I the next s + 1 vectors in G2 are in the I− ω2A image of S = P⊥,
I the last s + 1 vectors are in the I− ωjA image of S = P⊥,
I the last vectors are I− ωjA images of linear combinations of previously

obtained images (I− ωj−1A) · · · (I− ωkA) of S = P⊥.
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Points of View Polynomials

IDR: a Lanczos process with multiple left-hand sides

The second equality

j−1⋂
k=0

Ωk(A)−1Ωj(A)(S) =
( j−1
+

k=0
Ωj(A)−H Ωk(A) H {P}

)⊥

is based on
BP⊥ = (B−H P)⊥

and
U⊥ ∩ V⊥ = (U ∪ V)⊥ = (U + V)⊥.

The second relations are basic linear algebra. The first relation follows from

P⊥ =
{

v ∈ Cn | PHv = on
}
⇒ BP⊥ =

{
Bv ∈ Cn | PHv = on

}
,

since, for invertible B,

y ∈ BP⊥ ⇔
{

y = Bv ∧ PHv = on
}
⇔ PHv = PHB−1y = (B−HP)Hy = on.
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Points of View Polynomials

IDR: a Lanczos process with multiple left-hand sides

The third and fourth equality( j−1
+

k=0
Ωj(A)−H Ωk(A) H {P}

)⊥
=
(

Ωj(A)−HKj(AH,P)
)⊥

= Ωj(A)
(
Kj(AH,P)

)⊥

are satisfied

I since the polynomials Ωk(A), 0 6 k < j form a basis of the space of
polynomials of degree less j, and

I by the property proved on the last slide, respectively.

This is of interest in round-off error analysis (Lanczos): “Local orthogonality” is
preserved, the inner products with the oldest basis vectors, i.e., those that are
the columns of P, are “small”.
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Points of View Generalized Hessenberg Decompositions

Hessenberg decompositions: basic linear algebra

The implementation and (round-off error) analysis of IDR is more closely
related to so-called generalized Hessenberg decompositions.

“Classical” Krylov subspace methods generate

I “basis” matrices Qk+1 =
(
Qk,qk+1

)
∈ Cn×(k+1) and

I unreduced extended Hessenberg matrices Hk ∈ C(k+1)×k

which form the Hessenberg decomposition

AQk = Qk+1Hk.

IDR based Krylov subspace methods additionally generate upper triangular
matrices Uk ∈ Ck×k such that we obtain a generalized Hessenberg
decomposition

AQkUk = Qk+1Hk.

IDR based methods include BiCGStab (rewritten version of IDR), and CGS.
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Points of View Generalized Hessenberg Decompositions

Karl Hessenberg & “his” matrix + decomposition

Behandlung linearer Eigenwertaufgaben mit Hilfe
der Hamilton-Cayleyschen Gleichung, Karl
Hessenberg, 1. Bericht der Reihe „Numerische
Verfahren“, July, 23rd 1940, page 23:

I Hessenberg decomposition, Eqn. (57),
I Hessenberg matrix, Eqn. (58).

Karl Hessenberg (* September 8th, 1904, † February 22nd, 1959)
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Points of View Generalized Hessenberg Decompositions

IDR: Sonneveld pencil and Sonneveld matrix

We consider the prototype IDR(s) by Sonneveld/van Gijzen (IDR(s)ORes).

The IDR(s)ORes pencil, the so-called Sonneveld pencil (Y◦n ,YnD(n)
ω ), can be

depicted by 

××××◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
+××××◦ ◦ ◦ ◦ ◦ ◦ ◦
◦+××××◦ ◦ ◦ ◦ ◦ ◦
◦ ◦+××××◦ ◦ ◦ ◦ ◦
◦ ◦ ◦+××××◦ ◦ ◦ ◦
◦ ◦ ◦ ◦+××××◦ ◦ ◦
◦ ◦ ◦ ◦ ◦+××××◦ ◦
◦ ◦ ◦ ◦ ◦ ◦+××××◦
◦ ◦ ◦ ◦ ◦ ◦ ◦+××××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦+×××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦+××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦+×


,



××××◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦××××◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦××××◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦××××◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦××××◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦××××◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦××××◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦××××◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦××××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦×××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦×


.

The upper triangular matrix YnD(n)
ω could be inverted, which results in the
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Points of View Generalized Hessenberg Decompositions

Understanding IDR: Purification

We know the eigenvalues ≈ roots of kernel polynomials 1/ωj. We are only
interested in the other eigenvalues.

The purified IDR(s)ORes pencil (Y◦n ,UnD(n)
ω ), that has only the remaining

eigenvalues and some infinite ones as eigenvalues, can be depicted by
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◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦×××◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦××◦
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◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦


.

We get rid of the infinite eigenvalues using a change of basis (Gauß/Schur).
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Points of View Generalized Hessenberg Decompositions

Understanding IDR: Gaussian elimination

The deflated purified IDR(s)ORes pencil, after the elimination step
(Y◦n Gn,UnD(n)

ω ), can be depicted by

×××××××◦ ◦ ◦ ◦ ◦
+××××××◦ ◦ ◦ ◦ ◦
◦+×××××◦ ◦ ◦ ◦ ◦
◦ ◦ ◦+◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦++×××××××◦
◦ ◦ ◦ ◦+××××××◦
◦ ◦ ◦ ◦ ◦+×××××◦
◦ ◦ ◦ ◦ ◦ ◦ ◦+◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦++××××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦+×××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦+××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦+
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,
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◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦×××◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦××◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦×◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦×××◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦××◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦×◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦


.

Using Laplace expansion of the determinant of zUnD(n)
ω − Y◦n Gn we can get rid

of the trivial constant factors corresponding to infinite eigenvalues. This
amounts to a deflation.
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Points of View Generalized Hessenberg Decompositions

Understanding IDR: Deflation

Let D denote an deflation operator that removes every (s + 1)th column and
row from the matrix the operator is applied to.

The deflated purified IDR(s)ORes pencil, after the deflation step
(D(Y◦n Gn),D(UnD(n)

ω )), can be depicted by
××××××◦ ◦ ◦
+×××××◦ ◦ ◦
◦+××××◦ ◦ ◦
◦ ◦+××××××
◦ ◦ ◦+×××××
◦ ◦ ◦ ◦+××××
◦ ◦ ◦ ◦ ◦+×××
◦ ◦ ◦ ◦ ◦ ◦+××
◦ ◦ ◦ ◦ ◦ ◦ ◦+×

 ,


×××◦ ◦ ◦ ◦ ◦ ◦
◦××◦ ◦ ◦ ◦ ◦ ◦
◦ ◦×◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦×××◦ ◦ ◦
◦ ◦ ◦ ◦××◦ ◦ ◦
◦ ◦ ◦ ◦ ◦×◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦×××
◦ ◦ ◦ ◦ ◦ ◦ ◦××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦×

 .

The block-diagonal matrix D(UnD(n)
ω ) has invertible upper triangular blocks

and can be inverted to expose the underlying Lanczos process.
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Points of View Generalized Hessenberg Decompositions
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Points of View Generalized Hessenberg Decompositions

IDR: a Lanczos process with multiple left-hand sides
Inverting the block-diagonal matrix D(UnD(n)

ω )) gives an algebraic eigenvalue
problem with a block-tridiagonal unreduced upper Hessenberg matrix

Ln := D(Y◦n Gn) · D(UnD(n)
ω ))−1 =


××××××◦ ◦ ◦
+×××××◦ ◦ ◦
◦+××××◦ ◦ ◦
◦ ◦+××××××
◦ ◦ ◦+×××××
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◦ ◦ ◦ ◦ ◦+×××
◦ ◦ ◦ ◦ ◦ ◦+××
◦ ◦ ◦ ◦ ◦ ◦ ◦+×

 .

This is the matrix of the underlying BiORes(s, 1) process.

This matrix (in the extended version) satisfies

AQn = Qn+1Ln,

where the reduced residuals q js+k, k = 0, . . . , s− 1, j = 0, 1, . . ., are given by

Ωj(A)q js+k = rj(s+1)+k.
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Numerical Experiments An Expected Deviation

IDR is based on a short-term recurrence, e.g., a Lanczos method. It is well
known that Lanczos methods tend to deviate. Thus, we might expect the
same behaviour in IDR based methods.

At least we might expect some deviation, as IDR is based on short term
recurrences.

In the following plots we depict (known) behavior of Lanczos algorithms and
compare if to the (yet to be analyzed) behavior of IDR algorithms.

In a recent report, Collignon, Sleijpen and van Gijzen show that IDR can be
interpreted as a sort of preconditioning based on deflation; the preconditioned
matrix has the polynomial roots as eigenvalues.
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Numerical Experiments An Expected Deviation

Lanczos’ method in finite precision
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Numerical Experiments An Expected Deviation

Lanczos’ method in finite precision

50 100 150 200 250 300 350 400 450
10

−120

10
−100

10
−80

10
−60

10
−40

10
−20

10
0

Floating point Lanczos characteristics

step number

di
st

an
ce

 to
 e

ig
en

va
lu

e 
3 

/ d
er

iv
at

iv
e

 

 

positive distance to 3
negative distance to 3
derivative of Ritz value
upper stabilized bound

TUHH Jens-Peter M. Zemke IDR @ Oxford 2011-05-26 37 / 46



Numerical Experiments An Expected Deviation

Lanczos’ method in finite precision

The theory of the Lanczos method in case of non-selfadjoint matrices is still
less satisfactory. Some of the conclusions carry over, and the behavior in
finite precision shows some similarities.

The next example uses the matrix pores_2 of size 1224× 1224 from Matrix
Market. The left and right starting vectors have been chosen such that all
components are equal.

As there does not exist the best Lanczos method, we have chosen one of the
more stable ones, namely the variant described in (Bai, 1994).

We note that we can observe multiple copies, but this time the approximation
quality is reduced after a couple of steps, all Ritz values computed after
certain steps show worse behavior than before.
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Numerical Experiments An Expected Deviation

Lanczos’ method in finite precision
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Numerical Experiments An Expected Deviation

IDR, IDR(1), and BiCGStab
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Numerical Experiments An Expected Deviation

IDR, IDR(1), and BiCGStab
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Numerical Experiments An Expected Deviation

Understanding IDR: 600 steps for s = 2
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Numerical Experiments “Ghost” Polynomial Roots

“Ghost” Polynomial Roots
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Numerical Experiments Enhanced Stability vs. Higher Cost

Some issues in IDR(s)

I IDR(s) uses larger subspaces and thus is advantageous with respect to
performance (BLAS 3 instead of BLAS 1).

I Influences of round-off errors are diminished, as more information is used
in the cycles.

I Experiments by Seiji Fujino indicate that IDR(s) applied to SPD matrices
is comparable to CG, both with the best available preconditioners, yet
IDR(s) is a general purpose solver.

I Using real values for the polynomial roots gives bad results. To use real
arithmetic, IDR(s)Stab(`) can be used, e.g., ` = 2, 4, 8. Unfortunately, in
this case (`+ 1) · s vectors have to be stored.
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Conclusion

Conclusion and Outview

I IDR, dating to 1976, marks the beginning of transpose-free Lanczos
methods/Lanczos-type product methods (LTPM).

I IDR is the forgotten predecessor of CGS and BiCGStab.
I IDR(s) is based on Lanczos with multiple left-hand sides.
I IDR/IDR(s) are short term Krylov subspace methods, but came into

existence in disguise.
I The error analysis and convergence theory of IDR(s) is much more

complicated than for the classical (symmetric) Lanczos process.
I There are no multiple Ritz values, but “ghost polynomial roots”.
I We currently work on variants: IDREig (with Olaf Rendel and Anisa

Rizvanolli); analysis of IDRStab (with Anisa Rizvanolli); QMRIDR (with
Olaf Rendel, Gerard Sleijpen, and Martin van Gijzen).

I What about “continous” IDR?
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Olaf Rendel, Gerard Sleijpen, and Martin van Gijzen).

I What about “continous” IDR?
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Thank you for your attention!
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