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Rayleigh Quotient Iteration John William Strutt's RQI

Original RQI

In the second edition of the first volume of his book “The Theory of Sound”
(Strutt, 1894), John William Strutt, 3rd Baron Rayleigh, included on page 110
the following passage:

The stationary property of the roots of Lagrange’s determinant
(8) § 84, suggests a general method of approximating to their
values. Beginning with assumed rough approximations to the
ratios 4,: 4,:4,...... we may calculate a first approximation to
p? from ]
Ps=* cendl?+3cndld+ ... +cd 4, +. .. ®)
fandlitiandl+ ... ta,did,+ ... T )
With this value of p* we may recalculate the ratios 4,:4,... from
any (m — 1) of equations (5) § 84, then again by application of (3)
determine an improved value of p? and so on.]
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Rayleigh Quotient Iteration John William Strutt's RQI

Original RQI

In modern notation, Lord Rayleigh starts with an approximate eigenvector v,
k = 0, of a Hermitean matrix (Hermitean pencil), computes its Rayleigh
quotient

_ v Avy

p(Vi) = Ho
V. Vi

and iterates for some suitably chosenj € {1,2,...,n},

o (A (L)
A = p(viL) el

k=0,1,...

where j may vary, depending on the computed approximate eigenvector.
The Rayleigh quotient uniquely solves the least squares problem

p(vi) = argmin ¢ [[Ave — vipl|.
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Rayleigh Quotient Iteration Wielandt's Inverse Iteration

Inverse lteration

Closely connected to RQl is inverse iteration (Wielandt, 1944). In its most
basic variant the shift 7 is never updated, but the right-hand side is replaced
by the latest approximate eigenvector:

(A I TI,,)_lvk

=—— —~  k=0,1,...
Vit1 ||(A—TIn)_1Vk||7 s Ly

The shift can be updated by using the approximate eigenvalues obtained by

the shift update strategy

1
T =Tt
ko & e]T(A — Tkln)_lvk

The latter variant is described in (Wielandt, 1944, Seite 9, Formel (20)) and
converges locally quadratically.
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Rayleigh Quotient Iteration “Modern” RQI

Modern variants of RQI

Combination gives (symmetric/Hermitean) RQI:

o (A (L) v
A = p(voL) e

k=0,1,...

This iteration is also used for nonsymmetric A.

Crandall was the first who investigated the three variants (the original
Rayleigh quotient iteration; inverse iteration with fixed shift; symmetric RQlI),
see (Crandall, 1951).

Ostrowski proved that unsymmetric RQI still has a quadratic convergence
rate, (Ostrowski, 1959¢). In (Ostrowski, 1959c), he devised two-sided RQI:

(W ve) - wH Avy Vit = (A = p(we, vi)L) "', k=01
k’ k = , — 5 PICIENE
wivg Wirt = (A — p(wi, vo)L,) "Hwy,

This trick recovers the cubic convergence rate of RQI at the expense of an
additional system. Parlett’s alternating RQI preserves monotonicity.
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The Opitz-Larkin Method Classical Root Finding

Classical methods

Methods for the computation of a root of a rational function

f:CHC,f@%=ﬂQ,pﬂ€Pm
q(z)
include Newton’s method
_ J(zk)
BT f' ()
and the secant method:
R i)
p 2k, zk—1]f
The secant method has R-order of convergence given by the golden ratio
¢ = 1+2\/§ ~ 1.618.

Two steps of the secant method are as costly as one step of Newton’s
method. This makes the secant method the winner:

=9+ 1~2618>2.
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The Opitz-Larkin Method Schréder’s and Kénig's Methods

Schréder’s and Kénig’s methods

Newton’s method has been generalized to incorporate higher order
derivatives and to exhibit a higher order of convergence. Well-known
generalized Newton’s methods are Halley’s and Laguerre’s methods.

In 1870 E. Schrdder from Pforzheim came up with two infinite families of
generalizations (Schréder, 1870). In 1884 Julius Kénig proved a theorem on
the limiting behavior of certain ratios of Taylor coefficients (Kénig, 1884),
enabling a simpler derivation of Schroder’s family A, with A = 0.

This family is nowadays known as “Kénig’s method”:

(1/)¢7Y ()

A R,

Zkt1 =2k + S

Kénig’s method for s = 1 is Newton’s method,

anmns D@ @) S@)
Ry @) P [(F)? )
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The Opitz-Larkin Method The Opitz-Larkin Method

The Opitz-Larkin method

There is a natural extension of Kénig’s method using divided differences in
place of the derivatives. This natural extension (without the connection to
Koénig’'s method) was published in 1958 by Giinter Opitz in a two-page article
in ZAMM.

He published few additional papers on the subject (including his most famous
“Steigungsmatrizen” paper). A more complete presentation can be found in
his “Habilitationsschrift”. There, he even pointed out the connection to Kénig’s
method.

Independently, 23 years later F. M. Larkin re-developed Opitz’ method, see
(Larkin, 1981) and the predecessor (Larkin, 1980).

We will refer to this method as the Opitz-Larkin method. The Opitz-Larkin
method is based on iterations of the form

(21,22, - - 2e—1] (1/f)
21,22, w1, ] (1/f)

Xk+1 = 2k +
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The Opitz-Larkin Method The Opitz-Larkin Method

The Opitz-Larkin method

Mostly, the z; are all distinct and the next iterate is used as new evaluation
POoINt Zx+1 = Xt 1,

(21,225 -y 2—1] (1/f)
21,22,y zk—1, 2] (L/f)

This variant of the Opitz-Larkin method converges with R-order 2.

Zk+1 = 2+

Frequently, the Opitz-Larkin method is used with truncation:

[Zk—pv ement ,Zk—l](l/f)
Zpy s U1, 2] (1/f)

see (Opitz, 1958, Seite 277, Gleichung (9)) and (Larkin, 1981, Section 4,
pages 98-99).

Zk+1 = 2+ [
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The Opitz-Larkin Method The Opitz-Larkin Method

The Opitz-Larkin method

It is possible to use confluent divided differences, i.e., multiple points of
evaluation, i.e., higher order derivatives of 1/f.

When we use only confluent divided differences in the truncated Opitz-Larkin
method with truncation parameter p = s, we recover Konig’s method:

JENC
Tl = 2%+ (2, 2] (1/F)
(Zs - 2k 2k (L/S)
————

s+1
D@D (1A ()
TR T ANO@S AT A9
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The Opitz-Larkin Method The Opitz-Larkin Method

The Opitz-Larkin method

Truncated Opitz-Larkin with p = 1 is the secant method,

[zx—1](1/f)
S TS (1)

111, Zh—1 — Tk
fa—1) 1/f(z—1) = 1/f(z)
F@)f(a—1) a1 — %

flz—1)  fla) — f(ze-1)
[z

(i1, 2| f

=Zx +

=Zx +

Confluent truncated Opitz-Larkin with p = 1 is Newton’s method.

Jens-Peter M. Zemke RQI and Opitz-Larkin IWASEP 8, 2010/06/28

14/30



The Opitz-Larkin Method The Opitz-Larkin Method

The Opitz-Larkin method

In general, the Opitz-Larkin method is closely connected to rational
interpolation of the inverse function (Larkin, 1981, Theorem 1, page 96):

Theorem (Larkin 1981)

If, for any integer k > 1, there exists a rational function of the form

rk(z) = qd(Z) , Vg,

where q, is a polynomial of degree d < k — 2, such that q,(a)) # 0 and

n(g) =f@) ", j=1,2,... .k

then [ 1049)
21,225« -y Tk—1 _
& 222z (F)
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The Hessenberg-Matrix Point Of View
Simplification

By the implicit Q-Theorem we obtain a unique Hessenberg matrix given
nonderogatory A € C"*" and q € C" if we fix the signs of the elements in the
lower diagonal, e.g., to be non-negative real.

We use the implicit Q-Theorem to unitarily transform the pair (A, q) with
llql|> = 1 to the pair (H,,e;), where H, is upper Hessenberg and e; denotes
the first standard unit vector.

The following Matlab-code gives the transformed pair:

[Q,R] = gr(q);

[P,H] = hess(Q’'+AxQ);

signs = sign(diag(H,-1));

S = diag(cumprod([l;signs]));
H = S’ xHxS;

Any left vector is modified accordingly.
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The Hessenberg-Matrix Point Of View
Simplification

We set °H,, := (zI, — H,)). By the first resolvent identity (Chatelin, 1993)

(ZlHn)Al(Zan)71 = (len - Hn)il(ZZIn - Hn)¥1 (1 a)
_ (ZlHn)_Z2 :S;Hn)_ _ —[11722] (an)—l_ (1 b)

The first resolvent identity is based on the trivial observation that
(ZZIn - Hn) v, (len a0 Hn) = (ZZ - Zl)In~

Generalization (see also (Dekker and Traub, 1971)):

k

TIEH) ™ = (=) [z, 2] CH) 2

i=1

Confluent divided differences are well-defined.

Jens-Peter M. Zemke RQI and Opitz-Larkin IWASEP 8, 2010/06/28 18/30



The Hessenberg-Matrix Point Of View
Simplification

For simplicity we assume that H, is unreduced. We denote products of
sub-diagonal elements of the unreduced Hessenberg matrices H,, € C"*" by

J
hi.j = H heti,e.
=i

Polynomial vectors v and © are defined by

v(z) == <M>,—1 and o(z) == <%1(1Z)>J—1 3)

hj:n—l
The elements are v;(z) and 7(z), j = 1,...,n. Observe that v, = 1 = ;.
The polynomials x;.; are the characteristic polynomials of submatrices of H,,,

Xi:j(Z) := det (zHi;j) = det (ZI]'_H_] 5 H,])
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The Hessenberg-Matrix Point Of View
Simplification

For z in the resolvent set

(o) = e o K em)e,
ST ) e N0 o MeZEL Mact V@ _ ey 4y

The repeated application of resolvents to e; results in

k
(TIEB )er = (<" CHL) e )

i=1
= 1 g 2R ©)

Note that I, — *H,, = zI, — (I, — H,) = H,,, i.e., H,(°H,)~! = z(*H,)~! — L.
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The Hessenberg-Matrix Point Of View
Simplification

For the sake of eased understanding, we look at inverse iteration with a
two-sided Rayleigh quotient where the left vector is the last standard unit
vector e!. For this method we have the iterates

k

Vigl = (H(ZiHn)_l)e1, Xpp1 =

i=1

T
€, H,, Vi+1
e,TVk+1

and thus the approximate eigenvalues are given by the Opitz-Larkin method:

_ (1 CH) e e — CH)) ([T, (B e

T (I ) ey (H:1<z > De,
B _eIZ’fH,,(Hle(z"H,,)’l)el_ _e;( H,) ')e
Ry TR P fl e )
— i+ [Zla”-azk—l](l/X) (7¢)

21, a1z (/%)
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The Hessenberg-Matrix Point Of View
Simplification

When we update the shifts by choosing z;1+1 = xx+; we obtain the standard
variant of the Opitz-Larkin method. This method has asymptotically second
order convergence against the roots of the characteristic polynomial .

Inverse iteration with fixed shift 7 = z; = zo = ... = z results in the recurrence

A0 L 1000
CRRTE 7y B (Y TR

Inverse iteration with fixed shift performs one step of Kénig’s method.
Restarting inverse iteration every s steps with updated shift given by the
current eigenvalue approximation converges with order s (divided by steps:
linearly).

(8)

Xkl =T+

Symmetric RQl is very pleasant to analyze, likely-wise is two-sided RQl, but
unsymmetric RQI (and thus, the QR algorithm) and alternating RQI do not fit
into the picture.
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The Hessenberg-Matrix Point Of View
Simplification

The original Rayleigh quotient iteration (Strutt, 1894) with the symmetric
Rayleigh quotient and, because of the symmetry, a tridiagonal Hermitean
Hessenberg matrix H,,, gives the update

e (“H,)""H,(*H,)"'e;  ¢/H,(*H,) %

Tt = el (*H,)H(=H,)"le;, el (*H,) e o
T SH ) (HHL )2

Jery (zkIneI—(ZkII:II:))EZSn) € (9b)

=T O 9%

This is Newton’s method on the meromorphic function r. As the poles of this
meromorphic function are the eigenvalues of a submatrix, they interlace by
Cauchy’s interlace theorem the roots, which are the eigenvalues.

Jens-Peter M. Zemke RQI and Opitz-Larkin IWASEP 8, 2010/06/28 23/30



The Hessenberg-Matrix Point Of View
Simplification

Symmetric RQI for Hermitean matrices gives the update

) 21,215+ -5 Zk—1, 215 2%) (X2 / X) ' (10)
21,215+ 2= 1, Zk—15 %> Zk] (X2:n/ X)

This update has by a result of Tornheim asymptotically a cubic convergence
rate. We have to compute the limit of the real root of the equations

Kkl —2=0, k=1,...

This is the maximal eigenvalue of a Hessenberg matrix with one in the lower
diagonal and two in the last column. The approximate eigenvector of all ones
to the approximate eigenvalue 3 gives the backward error 1/v/k and the only
positive real eigenvalue of the matrix is well separated, the other eigenvalues
lie close to a circle of radius one around zero.
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The Hessenberg-Matrix Point Of View
Simplification

The picture changes if we apply the special inverse iteration to a general
unreduced Hessenberg matrix, not necessarily Hermitean or symmetric.

If we take another standard unit vector e, as left vector, we obtain the
Opitz-Larkin method applied to the meromorphic function

@
my(z) = hie—1X144n(2) o

If we take an arbitrary left vector y, we obtain the Opitz-Larkin method applied
to the meromorphic function

x(2) _ X
i Yibicixiea(z)  p(zy)

r(z;y) = 5 p(z;y) € P, (12)

The polynomials x..., have degree deg(xi+:.,) = n — i and leading coefficient
one, thus they form a basis of the space of polynomials of degree less n.
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The Hessenberg-Matrix Point Of View
Simplification

The two-sided RQI variant corresponds to a confluent Opitz-Larkin method
with double nodes. In this method the left vector determines a polynomial,
which is formed as a linear combination of characteristic polynomials of
trailing submatrices.

In single-sided RQI for non-Hermitean matrices, we change the vector y that
determines the denominator polynomial of the rational function

x(z)
p(zy)

r(z;y) =

in every step and apply one step of the Opitz-Larkin method without confluent
nodes.

Convergence of y indicates that we might arrive at second order convergence.
One multi-shift does not change y compared to several consecutive single
shifts. Multiple multi-shifts are locally favourable in the Opitz-Larkin context.
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The Hessenberg-Matrix Point Of View what about Jenkins-Traub?

Jenkins-Traub

The Jenkins-Traub algorithm is related to a generalized RQI. Thus, it should fit
into the Opitz-Larkin framework. By inspection, the three stages correspond
to the following variants of Opitz-Larkin:

First stage: compute iterates using Kénig’s method at zero,

wir =04 (e OUP0_ g (0TOL

[0,...,0,0](1/x) (1/) &0 (0)’ k=0,....p—1. (13)

Second stage: select a fixed shift s € C, compute

0,...,0,s,...,s](1/x)

= =p,...,q— L. 14
Xk+1 = s+ [0 0 s, s]<1/X)7 k P »q ( )

Jens-Peter M. Zemke RQI and Opitz-Larkin IWASEP 8, 2010/06/28 27 /30



The Hessenberg-Matrix Point Of View ...and what about Jenkins-Traub?

Third stage: Set the starting value z, to the one obtained by rational
interpolation of 1/x at 0 and s, i.e.,

[0,...,0,s,...,s](1/x) (15)

DN T 0 0 s sl (LX)

Repeat

[0,~~~70,s7u~,S,ZO;Zl,H';Zkfl,Zk](l/X)
[Oa"'aoasv"'7SaZ0azl7"'azk—lvzkazk](l/x)’

Zky1 = 2k + k=0,... (16)

This proves amongst others the well-known fact that stage three of
Jenkins-Traub, if it converges, does so with R-order ¢*> = ¢ + 1 ~ 2.618.

Thus, Jenkins-Traub is a special form of Opitz-Larkin with, at first glance,
rather strange evaluation scheme. This scheme is natural in view of the
companion matrix interpretation given in (Jenkins and Traub, 1970).
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Conclusions and Outlook

» We have presented the less well-known Opitz-Larkin method, which is a
generalization of Konig’s method using divided differences.

» We have shown that many variants of inverse iteration and Rayleigh
quotient iteration correspond to variants of the Opitz-Larkin method on
certain rational functions with the characteristic polynomial as the
numerator.

» We have indicated why non-symmetric RQI and thus the QR algorithm
are not that easily analyzed using this “missing link”.

» We have shown that the well-known Jenkins-Traub method is a special
instance of a Opitz-Larkin method.

» Next, we want to take a closer look at the global behaviour of these
methods using the Opitz-Larkin framework.

» The local link between one step of Opitz-Larkin and shifts in the QR
algorithm should enable a better understanding of multi-shift strategies
and the development of new ones.

Jens-Peter M. Zemke RQI and Opitz-Larkin IWASEP 8, 2010/06/28 29/30



Thank you for your attention.

Thank you for your attention.
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