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Krylov subspace methods Hessenberg decompositions

Hessenberg decompositions

Essential features of Krylov subspace methods can be described by a
Hessenberg decomposition

AQn = Qn-HHn = Qan + qn+lhn+1,ne1—- (1)

Here, H,, denotes an unreduced Hessenberg matrix.

In the perturbed case, e.g., in finite precision and/or based on inexact
matrix-vector multiplies, we obtain a perturbed Hessenberg decomposition

AQ, +F, = Qi 1H, = QH, + qui1hpi1 €] ()

The matrix H, of the perturbed variant will, in general, still be unreduced.
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Krylov subspace methods Hessenberg decompositions

Generalized Hessenberg decompositions

In case of IDR, we have to consider generalized Hessenberg decompositions
AQ,U, = Q1 H, = Q.H, + quy1hyi1 ) 3)
and perturbed generalized Hessenberg decompositions
AQ,U, +F, = Qu1H, = Q.H, + Quyihui1ne; 4)

with upper triangular (possibly even singular) U,.

Generalized Hessenberg decompositions correspond to a skew projection of
the pencil (A, 1) to the pencil (H,,U,) as long as Q,; has full rank.
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Krylov subspace methods QOR/QMR/Ritz-Galérkin

QOR/QMR/Ritz-Galérkin

There are three well-known approaches based on such Hessenberg
decompositions., namely

QOR: approximate x = A~ 'r by x, := Q,H, 'e;|ro|.,
QMR: approximate x = A~'ry by x, := Q,Hle, [|ro]|.,
Ritz-Galérkin: approximate J = V~='AV by J, := S, 'H,S,.,
andV by V, :=Q,S,.

To every method from one class corresponds a method of the other.
These approaches extend easily to generalized Hessenberg decompositions.

IDR is of type QOR.
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Krylov subspace methods OrthoRes-type methods

OrthoRes-type methods

The entries of the Hessenberg matrices of these Hessenberg decompositions

are defined in different variations.

Three well-known ways for implementing the QOR/QMR approach are
commonly denoted as OrthoRes/OrthoMin/OrthoDir.

OrthoRes-type methods have a generalized Hessenberg decomposition

AR, U, =R, H) = RH;, + 1,157, e,

where e'H? = o], e = (1,...,1)., and the matrix
o ( lxll [l
R4 = (ro,..., 1, :Q,,ldlag< e
( ) i [l (-1

is diagonally scaled to be the matrix of residual vectors.
IDR is of type OrthoRes.
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Krylov subspace methods LTPM

Lanczos-type Product Methods

Krylov subspace methods can roughly be divided into the classes of
short-term and long-term recurrences.

Lanczos ~ CG ~ MinRes are based on short-term recurrences, whereas
Arnoldi ~ GMRes are based on long-term recurrences.

A large class of short-term recurrences is obtained by multiplication of (simple,
block, any number of left- and right-hand sides) Lanczos polynomials with
another polynomial. At the same time the need for the transpose is eliminated.

Methods of this class are, e.g., (original) IDR, CGS, BiCGStab, BiCGStab2,
BiCGStab(¢), ML(k)BiCGStab, and IDR(s).

We show how IDR fits into the LTPM framework.

Jens-Peter M. Zemke Eigenvalue Perspectives of the IDR Family SIAM LA09, October 27th, 2009



DR IDR(s)ORes

Th e p rototype I D R (S) (without the recurrences for x;, and thus already slightly rewritten)

rp =b — Axo A few remarks:
compute R,y = Ro;; = (o, ..., 1) Using, e.g., ORTHORES
VR =1(7r1, T © VEs) = (F1 = Fo,e ooy s = Fi) We can start with any
n—s+1,j— .
while not converged (simple) Krylov
¢n = (PR, _gn1) " 'PMr,_, subspace method.
Vn—1 =Tp—1 — vl{n—s:n—lcn
compute w; The steps in the s-loop

Vr, = —VR_gp_1€n — WjAvn—l

b il = A7 e B only differ from the first

VRysmet = (VEness -, Viaet) block in that no new ;
fork=1,...,s is computed.
Cn = (PHVRnfs:nfl)_lPHrnfl
Va1 = Tp—1 — VRn—s:n—ch IDR(s)ORes is based
VEn = =VRy—sin—1€n = WAV, on oblique projections.
rn:rn—l+vrn1n<_n+1 .
VR, g1 = (VEus, .., VI, 1) and s+ 1 (_:onsequtlve
end for multiplications with the
Je=j+1 same linear factor
end while I A
=< wj .
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IDR  IDR(s)ORes
The underlying Hessenberg decomposition

The IDR recurrences of IDR(s)ORes can be summarized by

Vo1 ‘= Ty I_VRn —sn—1Cn = Ry—s_1:n—1Yn

=(1- )r,, D /A (% 041 ’Ys(ﬁ)e) Ty_¢—1 + ’Yl(n) Y1, | (7)

1- r, = (I T WjA) Vy—1.

Here, n > s, and the index of the scalar w; is defined by

7\ n
J = s+1|’

compare with the so-called “index functions” (Yeung/Boley, 2005).

Removing v,_; from the recurrence we obtain the generalized Hessenberg
decomposition
AR, Y, D, =R, |Y,. (8)
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IDR Sonneveld pencil and Sonneveld matrix

Sonneveld pencil and Sonneveld matrix

The IDR(s)ORes pencil, the so-called Sonneveld pencil (Y;,Y,,DEI’)), can be

depicted by
XXXX0000000O0 XXXX000000O0O0
+XXXXoo0o00000 OXXXX000000O0
OF+XXXX00000O0 OO0OXXXXO0OO0O0O0O0O0
0OO0+XXXX0000O0 OO0OOXXXXO0O00O0O0
O0O0+XXXX0O00O0 OO0OO0OXXXXO00O0O0
O0O0O0+XXXX0O0O0 OO0OO0O0O0OXXXXO0OO0O0
OO0O00O0+XXXX00 |7] 000000XXXXO0O
0000004+ XXXXO 000000 O0OXXXXO
0000000+ XXXX 00000000 XXXNX
00000000+XXX 000000000 XXX
000000000+XX 0000000000 XX
000000000 0+X 0000000000 0X

The upper triangular matrix YnDﬁf‘) could be inverted, which results in the
Sonneveld matrix, a full unreduced Hessenberg matrix.
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IDR Purified pencil

Purification

We know the eigenvalues ~ roots of kernel polynomials 1/w;. We are only
interested in the other eigenvalues.

The purified IDR(s)ORes pencil (Y;,UnDSj’)), that has only the remaining
eigenvalues and some infinite ones as eigenvalues, can be depicted by

000000000 0+X
00000000 0+XX
00000000 +XXX
0000000+XXXX
0O00000+XXXXO
00000+ XXXXO0O0
0000+ XXXX00O0
OO0O0+XXXX000O0
OO0+XXXX000O0O0
0O+XXXX00000O0
+XXXX000000O0
XXXX0000000O0
0000000000 O0X
000000000 0XX
000000000XXX
000000000000
0O0O0000O0OXO0OO0O0O0
0O0000O0OXXO00O0O0
0O00O0O0OXXX0000
000000000000
0O0OO0OX00O0O0O0OO0O0O0
OOXXO0O00000O0O0
OXXX00000000
000000000000

We get rid of the infinite eigenvalues using a change of basis (Gauf3/Schur).
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IDR Deflated pencil and deflated matrix

Gaussian elimination

The deflated purified IDR(s)ORes pencil, after the elimination step
(YSG,, U,,DE,”)), can be depicted by

XAXAXAKXXXX 00000 XXX O0O0O0000O0O0O0
F+XXXXXX00000 OXX0000000O0O0
O+ XXXXX0000O0 OO0OX0O00O00000O0
000+00000000 000000000000
OO0++XXXXXXXO0 OO0OO0OOXXXO0OO0O0O0O0
OO0 00+FXXXXXXO OO0O0O0OO0OXXO0OO0O0O0O
0O000O0+XXXXX0 || coooo00X0000O0
0000000+0000 000000000000
0000004+ XXXX 00000000 XXXO
00000000+ XXX 0O0000000O0XXO
000000000+ XX 0000000000 XO
00000000000+ 000000000000

Using Laplace expansion of the determinant of 2U,DY — Y:G, we can get rid
of the trivial constant factors corresponding to infinite eigenvalues. This
amounts to a deflation.
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IDR Deflated pencil and deflated matrix

Deflation

The deflated purified IDR(s)ORes pencil, after the deflation step
(D(Y$G,), D(U,D”)), can be depicted by

X
+
o
o
[¢)
o
o
o
o

000000+XX
00000+XXX
0000+XXXX
0004+ XXXXX
OO0+ XXXXXX
O+ XXXX00o0
+XXXXX00o0
XXXXXX00O0
00000000X
0000000XX
000000XXX
00000X0O0O0
0O00O0OXXO0OO0O0
0O0O0OXXXO0O0O0
0O0OX00000O0
OXX00000O0
XXX00000O0

Here, D is an deflation operator that removes every s + 1th column and row
from the matrix the operator is applied to.

The block-diagonal matrix D(UnDSj’)) has invertible upper triangular blocks
and can be inverted to expose the underlying Lanczos process.
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IDR BiORes(s, 1)

A Lanczos process with multiple left-hand sides

Inverting the block-diagonal matrix D(U,,Dg’))) gives an algebraic eigenvalue
problem with a block-tridiagonal unreduced upper Hessenberg matrix

XXXXXX0o0O0

+XXXXX000

O0+XXXX0o0o0

A (1 004X XX XXX

L, := D(YnGn) 'D(UnDJ )T =] 00 0FXXXXX
00004XXXX

0000 O0+XXX

00000 0+XX

0000000+X

This is the matrix of the underlying BiORes(s, 1) process.

This matrix (in the extended version) satisfies

AQn = Qn+an7

where the reduced residuals qjsx, k =0,...,5s = 1,j=0,1,..., with Q(z) = 1
and Q(z) = [T/—, (1 — wiz) are given by

Qi(A) jsk = Tj(s41)4k-
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IDR BiORes(s, 1)

A Lanczos process with multiple left-hand sides

The reduced residuals are defined by

Qi(A) stk = Tjgsr 1)1k = (I = WAy 1) 441

and every vj(,,1)4«—1 is orthogonal to P.
ThUS, qjs+k 1 Qj,I(AH)P.

Using induction one can prove that q .« L IC,-(AH, P); thus, this is a two-sided
Lanczos process with s left and one right starting vectors.
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Numerical Examples

IDReig(3,33)

4.5

=
[}
aQ
g
.E4
(=)
[}
E

£
&)

TUHH

T

I I

I
eigenvalues of A
eigenvalues of Sonneveld pencil
eigenvalues of Sonneveld matrix
eigenvalues of purified pencil
eigenvalues of deflated pencil
eigenvalues of deflated matrix
roots of one—dimensional minimizerg

Jens-Peter M. Zemke

15
real part

Eigenvalue Perspectives of the IDR Family




Numerical Examples
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Numerical Examples
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Numerical Examples
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Conclusion & Outlook

>

We have shown that IDR(s)ORes is a Lanczos-type product method with
an underlying Lanczos process with s left-hand sides and one right-hand
side.

We have shown how to extract approximations to eigenvalues from
IDR(s)ORes.

We have not presented how to extract approximations to eigenvectors.
This can be done at all stages.

The convergence of the Ritz pairs is related to the behavior in finite
precision, thus via monitoring the convergence of Ritz pairs we can guess
the finite precision behavior.

The construction of approximate eigenpairs “on the fly” should enable us
to construct enhanced IDR(s) family members, e.g., IDR with recycling or
deflation.

The analysis of IDR(s)ORes presented carries over to other family
members.

The understanding gained in analysing IDR(s)ORes should enable us to
develop new IDR(s) family members better suited to eigenvalue
computations.
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Conclusion & Outlook

Thank you for your attention.
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