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Some history

Chris Paige, Anne Greenbaum, the Lanczos process

Following his seminal PhD thesis (Paige, 1971), Chris Paige published a
sequence of papers (Paige, 1972; Paige, 1976; Paige, 1980) on the error
analysis of the finite-precision behavior of the symmetric Lanczos process.

His results form the basis of Anne Greenbaum’s celebrated “backward error
analysis” (Greenbaum, 1989) of the finite-precision symmetric Lanczos and
CG methods, compare with (Greenbaum and Strakoš, 1992).

For an introduction and a general exposition especially on the finite-precision
symmetric Lanczos and CG methods see also (Meurant, 2006; Meurant and
Strakoš, 2006).

Thus far, this is maybe the only successful error analysis ever carried out for a
perturbed short-term Krylov subspace method.
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Some history

An example: Lanczos’ method

We used the diagonal matrix

A = diag([linspace(0,1,50),3])

and the starting vector
e = ones(51,1)

in an implementation of Lanczos’ method in MATLAB on a PC conforming to
ANSI/IEEE 754 with machine precision eps(1) = 2−52 ≈ 2.2204 · 10−16.

At step 10 the first Ritz value has converged (up to machine precision) to the
eigenvalue 3, at step 27 the second one has converged. Detoriation reaches
a maximum at step 19 = d(10 + 27)/2e.

Eigenvalues and eigenvectors are computed using MRRR, i.e., LAPACK’s
routine DSTEGR, since MATLAB’s eig (using LAPACK’s DSYEV, i.e., the QR
algorithm implemented as DSTEQR) fails in delivering accurate eigenvectors.
Additionally, we heavily used the symbolic toolbox, i.e., MAPLE.
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Some history

The finite precision behavior
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Some history

The finite precision behavior
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Hessenberg matrices Hessenberg decompositions

Hessenberg decompositions

Essential features of Krylov subspace methods can be described by a
Hessenberg decomposition

AQk = Qk+1Hk = QkHk + qk+1hk+1,keT
k . (1)

Here, Hk denotes an unreduced Hessenberg matrix.

In the perturbed case, e.g., in finite precision and/or based on inexact
matrix-vector multiplies, we obtain a perturbed Hessenberg decomposition

AQk + Fk = Qk+1Hk = QkHk + qk+1hk+1,keT
k . (2)

The matrix Hk of the perturbed variant will, in general, still be unreduced.
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Hessenberg matrices Hessenberg decompositions

Hessenberg decompositions

In (Z, 2007) we did consider in an abstract manner the matrix equation

AQk + Fk = Qk+1Hk = QkHk + qk+1hk+1,keT
k (3)

and came up with polynomial expressions in A for

I the basis vectors q j,
I the Ritz vectors yj := Qksj, where sj is an eigenvector of Hk to the

eigenvalue θj,
I and the angles between Ritz vectors and eigenvectors of A.

The results were based on eigenvalue–eigenmatrix relations (Z, 2006).

This talk: Application to the (symmetric) Lanczos process (in finite precision);
Aim: generalize (Paige, 1971; Paige, 1972; Paige, 1976; Paige, 1980) to the
general (non-symmetric) Lanczos process (with general perturbations).
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Hessenberg matrices Hessenberg decompositions

Hessenberg decompositions

In case of the symmetric Lanczos process we have

AQk + Fk = Qk+1Tk = QkTk + qk+1βkeT
k , (4)

where

I A = AH ∈ Cn×n is Hermitean,

I Tk = TT
k ∈ Rk×k is unreduced tridiagonal symmetric,

I Fk ∈ Cn×k is “small”.

The elements of the tridiagonal matrix Tk are denoted by

Tk =


α1 β1

β1 α2
. . .

. . . . . . βk−1
βk−1 αk

 , βj > 0 ∀ 1 6 j 6 k. (5)

(If off-diagonal elements were negative, impose diagonal scaling.)
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Hessenberg matrices Hessenberg decompositions

Hessenberg decompositions

We encounter four Hessenberg decompositions in this talk. The first two are
based on knowledge of A.

The first one is the original Lanczos Hessenberg decomposition

AQk + Fk = Qk+1Tk = QkTk + qk+1βkeT
k . (HessA1)

With a given eigenpair vH
i A = λivH

i and a given Ritz value θj we define

Ã := A− (λi − θj)
vivH

i

vH
i vi

and F̃k := (λi − θj)
vivH

i

vH
i vi

Qk + Fk. (6)

Then we obtain the shifted Lanczos Hessenberg decomposition

ÃQk + F̃k = Qk+1Tk = QkTk + qk+1βkeT
k . (HessA2)

This Hessenberg decomposition is interesting especially in case that λi − θj is
“small”, i.e., “comparable” to Fk.
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Hessenberg matrices Hessenberg decompositions

Hessenberg decompositions

The next two Hessenberg decompositions are based on Tk in place of A.
These form the essential part of Chris Paige’s analysis.

Let Wk+1 := QH
k Qk+1, define Gk := ekβkqH

k+1Qk + QH
k Fk − FH

k Qk. Then

TkWk + Gk = Wk+1Tk = WkTk + wk+1βkeT
k . (HessT1)

The fourth Hessenberg decomposition, mainly used by Chris Paige, is based
on an additive splitting of Wk+1.

Let Wk+1 = RH
k + Dk + Rk+1 with Rk+1 = sut(Wk+1) and Dk diagonal. Then

TkRk + Ek = Rk+1Tk = RkTk + rk+1βkeT
k (HessT2)

with Ek upper triangular and small if Fk is small and local orthogonality is
preserved.
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k Qk+1, define Gk := ekβkqH

k+1Qk + QH
k Fk − FH

k Qk. Then

TkWk + Gk = Wk+1Tk = WkTk + wk+1βkeT
k . (HessT1)

The fourth Hessenberg decomposition, mainly used by Chris Paige, is based
on an additive splitting of Wk+1.

Let Wk+1 = RH
k + Dk + Rk+1 with Rk+1 = sut(Wk+1) and Dk diagonal. Then

TkRk + Ek = Rk+1Tk = RkTk + rk+1βkeT
k (HessT2)

with Ek upper triangular and small if Fk is small and local orthogonality is
preserved.
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Hessenberg matrices Hessenberg eigenvectors

Hessenberg eigenvectors and eigenvector derivatives

According to (Z, 2006) we can describe the eigenvectors (and principal
vectors) of Hessenberg matrices in terms of certain polynomial vectors.

We have that (ν̌(z)T = ν̂(z)H)

(zIk − Tk)ν(z) = e1
χ(z)
β1:k−1

, ν̌(z)T(zIk − Tk) =
χ(z)
β1:k−1

eT
n (7)

with χ(z) := det (zIk − Tk) and β1:k−1 :=
∏k−1

j=1 βj > 0.

Inner products between the left and right eigenvector polynomials are given by

ν̂(z)Hν(w) =
χ[z,w]
β1:k−1

=
1

β1:k−1


χ(z)− χ(w)

z− w
, z 6= w

χ′(z), z = w.
(8)

In (Z, 2006) we used differentiation and the above relations to construct
eigenvectors and corresponding principal vectors.
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Hessenberg matrices Hessenberg eigenvectors

Hessenberg eigenvectors and eigenvector derivatives

In case of Hermitean/symmetric matrices A and Tk we know that the left and
right eigenvector are parallel and can be scaled to unit length.

Thus, the eigenvector of A used in the shifted Lanczos Hessenberg
decomposition is assumed to have unit length, ‖vi‖2 = 1.

The right and left eigenvectors ν j := ν(θj) and ν̌ j := ν̌(θj) are parallel and
non-zero in the first and last entry, as

ν(z) :=
(
χj+1:k(z)
βj:k−1

)k

j=1
and ν̌(z) :=

(
χ1:j−1(z)
β1:j−1

)k

j=1
, (9)

where

χi:j(z) := det (zIj−i+1 − Ti:j) and βi:j :=
j∏
`=i

β`, 0 6 i 6 j < k. (10)

To be more precise: νk(z) ≡ 1 ≡ ν̌1(z).
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Hessenberg matrices Hessenberg eigenvectors

Hessenberg eigenvectors and eigenvector derivatives

Unit length eigenvectors sj of Tk to the eigenvalue θj are defined by

sj :=
ν j

‖ν j‖2
. (11)

This ensures that the last component skj of sj is positive and given by

skj =
1
‖ν j‖2

=
1

‖ν(θj)‖2
> 0. (12)

In case of an error-free process we have with the Ritz vector yj := Qksj the
(backward- and forward-error) bound

min
λ
|λ− θj| 6

‖Ayj − yjθj‖2

‖yj‖2
= βkskj. (13)
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Chris Paige’s approach On the length of the Ritz vectors

Chris Paige’s approach

Chris Paige bounded the deviation of ‖yj‖2 from one by something of the form

∣∣‖yj‖2
2 − 1

∣∣ 6 O(Fk)
min 6̀=j |θj − θ`|

. (14)

The length of the Ritz vector yj is close to one as long as the perturbation
term is small and no other Ritz value is close to θj.

People working in perturbation theory immediately recognize that the
right-hand side (14) measures the sensitivity of the eigenvector sj of Tk to
perturbations of size O(Fk) in the matrix Tk.

We might guess that it is indeed a perturbation of the eigenvector that causes
the deviation. But where to look for this perturbation? Where do we find the
underlying sensitivity analysis?
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Chris Paige’s approach On the length of the Ritz vectors

Chris Paige’s approach

LANCZOS ALGOFUTHM 243 

We use (3.13) to obtain the significant part of the (t+ 1)st column of RK: 

v,=u,+ 1= Y@)b, , 
,(U 

erTbtA _lr 

Pt+ 1771:) ’ 
(3.18) 

which with (3.10) and (3.5) gives 

(3.19) 

(3.20) 

k-l t J’) 
=-xc w 

t=1 r-1 Cl?) -cl’,‘;!, 

(3.21) 
i-l 
i#i 

ifs(r) 

The last equation has this form because t of the v,!~) in (3.4) are the 

eigenvalues p, . (t) The index s(r) indicates that the numerator of aSc,,(t+ 1, 

j, k) cancels with l/(py) --CL:)) in (3.20), and we know s(r)# j. These three 

equations give some useful insights. From (3.17), 11 zjk) 1) will be significantly 

different from unity only if the right hand sides of these last three equations 

are large. In this case (3.19) shows there must be a small &=flt+l [r&t)), and 

some 1-1, (t) has therefore stabilized. Equation (3.20) shows that some pv) must 

be close to py), and combining this with (3.19) we will show that at least one 

such ~1, (t) has stabilized. Finally from (3.21) we see that there is at least one 

p(k) close to I, so that j_~(ik) cannot be a well-separated eigenvalue of Tk. 
Conversely if ~7) is a well-separated eigenvalue of Tk, then (3.16) holds, and 

if j.+ ck) has stabilized, then it and z/‘) are a satisfactory approximation to an 

eigenvalue-eigenvector pair of A. We will now quantify these results. 

We note from (3.12) and (2.21) 

(3.22) 
r=l r=l s=l 

and using the Cauchy-Schwarz inequality, 

Chris Paige used the splitting

yH
j yj = sH

j QH
k Qksj

= sH
j (RH

k + Dk + Rk)sj

= 1 + sH
j (Dk − Ik)sH

j

+ 2Re (sH
j Rksj)

(15)

Caution: notational changes!

C. Paige: this talk:

z(k)
j ⇔ yj

y(k)
j ⇔ sj

βk+1η
(k)
kj ⇔ βkskj

µ
(k)
j ⇔ θ

(k)
j = θj
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Chris Paige’s approach On the length of the Ritz vectors

Chris Paige’s approach

The error analysis by Chris Paige is beautiful and gives quantified bounds.

The approach is by no means straightforward nor easily generalizable.

We intend to show that there is hope that a more “natural” way exists to gain
understanding. We consider the first Hessenberg decomposition where only
Tk is involved:

TkWk + Gk = Wk+1Tk = WkTk + wk+1βkeT
k . (HessT1)

Here, the basis vectors wj describe the loss of orthogonality and the
perturbation term has a large rank-one part (i.e., large last row),

Wk+1 := QH
k Qk+1,

Gk := ekβkqH
k+1Qk + QH

k Fk − FH
k Qk.

(16)
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Chris Paige’s approach On the length of the Ritz vectors

Chris Paige’s approach

The derivation of (HessT1) is really simple: Multiplication of (HessA1),

AQk + Fk = Qk+1Tk = QkTk + qk+1βkeT
k , (HessA1)

with QH
k from the left gives

QH
k AQk + QH

k Fk = QH
k QkTk + QH

k qk+1βkeT
k , (17)

and (17)−(17)H gives

TkWk + Gk = Wk+1Tk = WkTk + wk+1βkeT
k (HessT1)

with
Gk = ekβkqH

k+1Qk + QH
k Fk − FH

k Qk, (18)

since A = AH and Tk = TT
k are self-adjoint.
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Chris Paige’s approach On the length of the Ritz vectors

Chris Paige’s approach

We can use the results of (Z, 2007) on the angles between eigenvectors and
Ritz vectors to obtain the following formula:

yH
j yj = sjQH

k Qksj = sH
j Wksj

=
β1:k−1

ω(θj)
ν̂(θj)HWkν(θj)

=
1

ω(θj)

(
Ak(θj, θj)ν̂(θj)HQH

k q1 +
k∑
`=1

β1:`−1A`+1:k(θj, θj)ν̂(θj)Hg`

)

= ν̂(θj)HQH
k q1 +

k∑
`=1

β1:k−1

ω(θj)
ν′`(θj)ν̂(θj)Hg`

= ν̂(θj)HQH
k q1 +

ν(θj)HGkν
′(θj)

ν(θj)Hν(θj)

= ν̂(θj)HQH
k q1 +

βkqH
k+1Qkν

′(θj)
ν(θj)Hν(θj)

+
ν(θj)H(QH

k Fk − FH
k Qk)ν′(θj)

ν(θj)Hν(θj)
.

(19)

Here, ω(θj) := χ′(θj) and A`+1:k(z,w) := χ`+1:k[z,w]

= β`:k−1ν`[z,w].
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Chris Paige’s approach On the length of the Ritz vectors

Chris Paige’s approach

We consider the terms in this representation of ‖yj‖2
2. We start with the first

term.

In the exact case, i.e., if Qk is orthonormal,

ν̂(θj)HQH
k q1 = 1, since ν̂1(z) ≡ 1. (20)

In the perturbed case the elements in the scalar product are given by

ν̂(θj)HQH
k q1 =

k∑
l=1

χ1:l−1(θj)
β1:l−1

qH
l q1. (21)

The term should be of order one plus “small” times “sensitivity”, the ratio
measures the “closeness” of older Ritz values to θj. At “sensitive” steps we
can have a large loss of orthogonality. It is not known how we should prove
this assertion.
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Chris Paige’s approach Eigenvector sensitivity

Chris Paige’s approach

Both other terms in our expression for ‖yj‖2
2 are of the form

ν(θj)HXkν
′(θj)

ν(θj)Hν(θj)
=

ν̂(θj)HXkν
′(θj)

ν̂(θj)Hν(θj)
. (22)

This looks like perturbation theory! (If we look long enough :-)

For those not familiar with eigenvector perturbations:

| sin ∠(ν(θj + ∆θj),ν(θj))| =
‖Pν(θj)⊥ν(θj + ∆θj)‖2

‖ν(θj + ∆θj)‖2
(23)

measures the sensitivity of the eigenvector to structured perturbations
affecting “only” the Ritz value. The right eigenvector polynomial is not affected
if we alter the elements in the first row of Tk.
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Chris Paige’s approach Eigenvector sensitivity

Chris Paige’s approach

Using Taylor expansion we obtain

| sin ∠(ν(θj + ∆θj),ν(θj))| =
‖Pν(θj)⊥ν′(θj)‖2

‖ν(θj)‖2
|∆θj|+ O(|∆θj|2). (24)

Thus, we need “nice” expressions for

ν(θi)Hν′(θj)
‖ν(θi)‖2‖ν(θj)‖2

=
ν̂(θi)Hν′(θj)
‖ν̂(θi)‖2‖ν(θj)‖2

. (25)

It turns out to be easy to obtain analytic expressions for

ν̂(θi)Hν′(θj)
ν̂(θj)Hν(θj)

=



1
θj − θi

,

j 6= i,

∑
`6=j

1
θj − θ`

,

j = i.
(26)
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Chris Paige’s approach

Since ν̂(θj) and ν(θj) are parallel, by the Cauchy-Schwarz (in)equality

|ν̂(θj)Hν(θj)| = ‖ν̂(θj)‖2‖ν(θj)‖2. (27)
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1
|θj − θi|

, j 6= i,∣∣∣∣∣∣
∑
` 6=j

1
θj − θ`

∣∣∣∣∣∣ , j = i.

(28)
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Chris Paige’s approach Eigenvector sensitivity

Chris Paige’s approach
Observe that the norms of the eigenvectors

‖ν̂(θj)‖2
2 =

1
s2

1j
(29)

are related to the squares of the first components of the normalized
eigenvectors, which are the weights in Gaussian quadrature.

In general, we can make use of the relations

s2
kj =

χ1:k−1(θj)
ω(θj)

=
1

‖ν(θj)‖2
2
,

s2
1j =

χ2:k(θj)
ω(θj)

=
1

‖ν̂(θj)‖2
2
,

(30)

where the reduced polynomial ω = ωj is defined as before by

ω(z) =
∏
` 6=j

(z− θ`). (31)
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Chris Paige’s approach Eigenvector sensitivity

Chris Paige’s approach

By classical perturbation theory

| sin ∠(ν̂(θj),ν(θj) + ν′(θj)∆θj)| .
|∆θj|

min` 6=j |θj − θ`|
. (32)

This is not easy to deduce here, we only have seen thus far that

sin2 ∠(ν̂(θj),ν(θj) + ν′(θj)∆θj) =
‖Pν̂(θj)⊥ν′(θj)‖2

2

‖ν(θj)‖2
2

|∆θj|2 + O(|∆θj|3)

=
|∆θj|2

s2
1j

∑
` 6=j

s2
1`

(θj − θ`)2 + O(|∆θj|3).
(33)

Maybe the relations collected on the following slides will provide helpful.
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Chris Paige’s approach

A first tool of trade that works in the symmetric case is the identity

β2
1:k−1 = χ1:k−1(θj) · χ2:k(θj), (34)

valid for all Ritz values θj.

This identity proves that if β2
1:k−1 is “moderate”, then in case of “large” ω(θj), at

least one of s1j and skj has to be “small” and thus at least one of ‖ν̂(θj)‖2 and
‖ν(θj)‖2 has to be “large”,

(s1jskj)2 =
β2

1:k−1

ω(θj)2 = (‖ν̂(θj)‖2‖ν(θj)‖2)−2. (35)

A relation without squares follows easily using (Z, 2006), (Z, 2007) and
Cauchy-Schwarz, we have

s1jskj =
β1:k−1

ω(θj)
=

1
ν̂(θj)Hν(θj)

. (36)
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Chris Paige’s approach

For k > 3 we observe that we can obtain the upper bound

|s1jskj| <
1
2
, (37)

since for a vector x with non-zero structure as follows,

x =


x
0
...
0
y

 , max
x2+y2=1

|xy| = 1
2
. (38)

There can not be two consecutive zeros in an eigenvector of a tridiagonal
matrix, as then the three-term recurrence would construct only zeros,

sT
j (β`e`+1 = (Tk − α`)e` − β`−1e`−1) . (39)

Thus, |ω(θj)| = |χ′(θj)| > 2β1:k−1.
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Chris Paige’s approach

To give a partial resume: There seems to be a relation to perturbation theory,
but it really is not fully understood.

We reconsider
ν(θj)HXkν

′(θj)
ν(θj)Hν(θj)

=
ν̂(θj)HXkν

′(θj)
ν̂(θj)Hν(θj)

. (40)

Inserting the identity matrix gives

ν̂(θj)HXkν
′(θj)

ν̂(θj)Hν(θj)
=

k∑
i=1

ν̂(θj)HXkν(θi)
ν̂(θi)Hν(θi)

ν̂(θi)Hν′(θj)
ν̂(θj)Hν(θj)

=
∑
i 6=j

1
θj − θi

(
ν̂(θj)HXkν(θi)
ν̂(θi)Hν(θi)

+
ν̂(θj)HXkν(θj)
ν̂(θj)Hν(θj)

)
.

(41)

Again, we have to treat the norms of the eigenvector polynomials in some (not
specified) manner to make this a successful approach.
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Chris Paige’s approach Closer to the original

Chris Paige’s approach

We only used the first Hessenberg decomposition with Tk. We can stick closer
to what Chris Paige did, and use the second one:

TkRk + Ek = Rk+1Tk = RkTk + rk+1βkeT
k . (HessT2)

Here, Ek is upper triangular, and Wk+1 = RH
k + Dk + Rk+1 with

Rk+1 = sut(Wk+1) and Dk diagonal.

Chris Paige proved that Ek is “small”.

Based on the identity

‖yj‖2
2 − 1 = sH

j (Dk − Ik)sj + 2Re (sH
j Rksj) (42)

Chris Paige bounded the deviation of ‖yj‖ from one.
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Chris Paige’s approach Closer to the original

Chris Paige’s approach

We can again use the characterization of the angles to compute his results in
terms of the derivative,

sH
j Rksj

=
β1:k−1

ω(θj)
ν̂(θj)HRkν(θj)

=
1

ω(θj)

(
Ak(θj, θj)ν̂(θj)Hr1 +

k∑
`=1

β1:`−1A`+1:k(θj, θj)ν̂(θj)HEke`

)

=
k∑
`=1

β1:k−1

ω(θj)
ν′`(θj)ν̂(θj)HEke` =

ν̂(θj)HEkν
′(θj)

ν̂(θj)Hν(θj)
.

(43)

Thus,

‖yj‖2
2 − 1 = sH

j (Dk − Ik)sj + 2Re
(

ν̂(θj)HEkν
′(θj)

ν̂(θj)Hν(θj)

)
. (44)
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Chris Paige’s approach

We can reformulate this by our “perturbation analysis”:

ν̂(θj)HEkν
′(θj)

ν̂(θj)Hν(θj)
=
∑
` 6=j

1
θj − θi

(
ν̂(θj)HEkν(θi)
ν̂(θi)Hν(θi)

+
ν̂(θj)HEkν(θj)
ν̂(θj)Hν(θj)

)
. (45)

The last ratio in parentheses is a Rayleigh quotient of a small matrix and thus
small. Chris Paige denoted this Rayleigh quotient by ε(k)

jj .

Obviously, using
sH

j

(
TkRk + Ek = RkTk + rk+1βkeT

k

)
sj, (46)

proves that loss of orthogonality and “convergence” go hand in hand,

ε
(k)
jj = sH

j QH
k qk+1βkeT

k sj = yH
j qk+1βkskj. (47)
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Chris Paige’s approach Closer to the original

Chris Paige’s approach

Again, we can express part of the relations in terms of perturbations of
eigenvectors, but the first term in the parentheses has not been treated fully
satisfactory.

Perhaps we need to better understand the derivative of the eigenvector
polynomial. In (Z, 2006) it was proven that this vector is the first principal
vector if the eigenvalue is multiple, which is never true in our setting.

It turns out that the derivative of the eigenvector polynomial is in some sense
obtained by inverse iteration with shifted A. This can be seen with the aid of
the shifted Hessenberg decomposition.
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Our approach The shifted decomposition

A new approach

Consider the shifted Lanczos Hessenberg decomposition

ÃQk + F̃k = Qk+1Tk = QkTk + qk+1βkeT
k (HessA2)

where for a given eigenpair Avi = viλi and a given Ritz value θj we defined

Ã := A− (λi − θj)vivH
i and F̃k := (λi − θj)vivH

i Qk + Fk. (48)

This definitions ensure that the Hessenberg decomposition is still balanced
and that now

vH
i Ã = vH

i (A− (λi − θj)vivH
i ) = λivH

i − (λi − θj)vH
i vivH

i = θjvH
i , (49)

i.e., vi is a left eigenvector to the eigenvalue θj.
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Our approach The shifted decomposition

A new approach

The angle between the eigenvector vi and a scaled Ritz vector is given by

β1:k−1

ω(θj)
vH

i Qkν(θj) = vH
i q1 +

β1:k−1

ω(θj)
vH

i F̃kν
′(θj), (50)

in other words,

vH
i Qkν(θj) =

ω(θj)
β1:k−1

vH
i q1 + vH

i F̃kν
′(θj)

=
ω(θj)
β1:k−1

vH
i q1 + (λi − θj)vH

i Qkν
′(θj) + vH

i Fkν
′(θj).

(51)

Remark: This relation is correct, no matter how close or far away λi and θj are.
The relation can be obtained using any eigenvalue and any Ritz value.
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Our approach The shifted decomposition

A new approach

Sorting gives the following anti-Taylor-like approximation,

vH
i Qk (ν(θj)− ν′(θj)(λi − θj)) =

ω(θj)
β1:k−1

vH
i q1 + vH

i Fkν
′(θj), (52)

weighted summation over all eigenpairs of A gives the inexact inverse
subspace iteration

((θjIn − A)Qk − Fk)ν′(θj) =
ω(θj)
β1:k−1

q1 −Qkν(θj). (53)

There is a good chance that Qkν
′(θj) is a better candidate for a “Ritz vector” if

Qkν(θj) is “small” and θj is close to an eigenvalue of A.

A mixed numerical-symbolic computation I presented at the GAMM annual
meeting 2006 does support this idea in case of a second Ritz copy.
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Our approach The shifted decomposition

An example from my 2006 GAMM talk

0 5 10 15 20 25 30

10
−10

10
0

symbolic Lanczos for 29 steps

0 5 10 15 20 25 30

10
−10

10
0

finite precision Lanczos for 29 steps; Matlab 7.2.0.294 (R2006a)

0 5 10 15 20 25 30

10
−10

10
0

finite precision Lanczos for 29 steps; older version of MRRR

0 5 10 15 20 25 30

10
−10

10
0

finite precision Lanczos for 29 steps; exact eigenvectors
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An example from my 2006 GAMM talk
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third adjugate polynomial
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fifth adjugate polynomial
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seventh adjugate polynomial
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Our approach About higher derivatives

Higher derivatives

There is an alternative way to prove that the first “principal” Ritz vector is
obtained by inexact inverse subspace iteration.

For any z ∈ C and any ` ∈ N we have that

(zIk − Tk)
ν(`)(z)
`!

+
ν(`−1)(z)
(`− 1)!

= e1
χ(`)(z)
β1:k−1

. (54)

This implies that

(zQk −QkTk)
ν(`)(z)
`!

+ Qk
ν(`−1)(z)
(`− 1)!

= Qke1
χ(`)(z)
β1:k−1

= ((zIn − A)Qk − Fk)
ν(`)(z)
`!

+ Qk
ν(`−1)(z)
(`− 1)!

= q1
χ(`)(z)
β1:k−1

.

(55)

We have used the fact that the last ` components of ν(`)(z) are zero.
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For any z ∈ C and any ` ∈ N we have that

(zIk − Tk)
ν(`)(z)
`!

+
ν(`−1)(z)
(`− 1)!

= e1
χ(`)(z)
β1:k−1

. (54)

This implies that

(zQk −QkTk)
ν(`)(z)
`!

+ Qk
ν(`−1)(z)
(`− 1)!

= Qke1
χ(`)(z)
β1:k−1

= ((zIn − A)Qk − Fk)
ν(`)(z)
`!

+ Qk
ν(`−1)(z)
(`− 1)!

= q1
χ(`)(z)
β1:k−1

.

(55)

We have used the fact that the last ` components of ν(`)(z) are zero.
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Our approach About higher derivatives

Higher derivatives

We can now insert any value for z, natural candidates are values in a cluster
and the eigenvalue closest to the Ritz value(s) of interest.

We could use Rolle’s theorem and set z to the unique zero of χ(m−1)(z) in the
cluster interval of Ritz values, where m denotes the number of Ritz values in
the cluster.

We could use any linear combination of the derivatives for a fixed z, as
everything is linear,

((zIn − A)Qk − Fk)
( p∑
`=0

a`
ν(`)(z)
`!

)
+ Qk

( p∑
`=1

a`
ν(`−1)(z)
(`− 1)!

)
= q1

( p∑
`=1

a`
χ(`)(z)
β1:k−1

)
. (56)

TUHH Jens-Peter M. Zemke Chris Paige and the Lanczos process ICS of CAS, September 24th, 2009 46 / 53



Our approach About higher derivatives

Higher derivatives

We can now insert any value for z, natural candidates are values in a cluster
and the eigenvalue closest to the Ritz value(s) of interest.

We could use Rolle’s theorem and set z to the unique zero of χ(m−1)(z) in the
cluster interval of Ritz values, where m denotes the number of Ritz values in
the cluster.

We could use any linear combination of the derivatives for a fixed z, as
everything is linear,

((zIn − A)Qk − Fk)
( p∑
`=0

a`
ν(`)(z)
`!

)
+ Qk

( p∑
`=1

a`
ν(`−1)(z)
(`− 1)!

)
= q1

( p∑
`=1

a`
χ(`)(z)
β1:k−1

)
. (56)

TUHH Jens-Peter M. Zemke Chris Paige and the Lanczos process ICS of CAS, September 24th, 2009 46 / 53



Our approach About higher derivatives

Higher derivatives

We can now insert any value for z, natural candidates are values in a cluster
and the eigenvalue closest to the Ritz value(s) of interest.

We could use Rolle’s theorem and set z to the unique zero of χ(m−1)(z) in the
cluster interval of Ritz values, where m denotes the number of Ritz values in
the cluster.

We could use any linear combination of the derivatives for a fixed z, as
everything is linear,

((zIn − A)Qk − Fk)
( p∑
`=0

a`
ν(`)(z)
`!

)
+ Qk

( p∑
`=1

a`
ν(`−1)(z)
(`− 1)!

)
= q1

( p∑
`=1

a`
χ(`)(z)
β1:k−1

)
. (56)

TUHH Jens-Peter M. Zemke Chris Paige and the Lanczos process ICS of CAS, September 24th, 2009 46 / 53



Our approach About higher derivatives

Higher derivatives

We could try to find a linear combination

p∑
`=1

a`
ν(`−1)(z)
(`− 1)!

(57)

that (almost) lies in the null-space of Qk.

This linear combination of the
derivatives would be close to an eigenvector of A, if the corresponding linear
combination

p∑
`=1

a`
χ(`)(z)
β1:k−1

(58)

involving the characteristic polynomial is “small”.

Another example: Choosing p = k and a` = a`(z) appropriately gives the
Taylor approximation to, say, the characteristic polynomial of A at λ.
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Our approach The polynomial point of view
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Our approach The polynomial point of view

Polynomial view on Chris Paige’s result

We can consider the parameter-dependent relation

(Tk − zIk)Rk + Ek = Rk(Tk − zIk) + rk+1βkeT
k . (59)

Remember that Rk is a strictly upper triangular matrix.

Application of ν̂(z)H and ν(z) gives

ν̂(z)HEkν(z) = ν̂(z)Hrk+1βk. (60)

This is an exact polynomial relation with polynomials of degree k − 1, i.e.,
these are k linear equations:

ν̂(z)HEkν(z) =
(
1 · · · zk−1

)? · · · ?
. . .

...
?


zk−1

...
1

 (61)
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Our approach The polynomial point of view

Polynomial view on Chris Paige’s result

This gives the complete characterization of the loss of orthogonality

rk+1βk = QH
k qk+1βk (62)

at step k + 1 in terms of the errors Ek.

Well known is this result when z = θj is any Ritz value, but we could compare,
say, the coefficients of the highest term zk−1:

trace(Ek)zk−1 + · · · = ν̂(z)HEkν(z) = ν̂(z)Hrk+1βk = qH
k qk+1βkzk−1 + · · · . (63)

This is correct. It does not give further insights, but proves that the relation is
sound. The diagonal of Ek is closely related to the local loss of orthogonality.
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Our approach The polynomial point of view

Polynomial view on Chris Paige’s result

Maybe of interest in CG or other OR methods is the relation involving the
constant terms, namely

ν̂(0)HEkν(0) = ν̂(0)HQH
k qk+1βk. (64)

By definition of ν(z), zk defined by

zk
χ(0)

‖r0‖β1:k−1
:= −ν(0) = −(−Tk)−1 χ(0)

β1:k−1
e1, (65)

where r0 := b− Ax0 denotes the starting residual, is the kth QOR solution,
see (Z, 2007).

At this point the talk comes to its end. The true research can start here.
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Summary

Conclusion and Outlook

I We sketched how Chris Paige’s approach of error analysis of the finite
Lanczos process seems to be related to eigenvector sensitivity.

I We have shown that the analytic representation of eigenvectors as
polynomial vectors evaluated at the eigenvalues results in simpler
expressions. These are based on differentiation.

I We failed to give a complete error analysis based solely on our
polynomial description.

I The presented relations mostly carry over to the unsymmetric Lanczos
process, portions of it should help in distinguishing different
implementations of the unsymmetric Lanczos process.
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Summary

The final slide . . .

Děkuji.

Once Again.
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