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Krylov subspace methods Hessenberg decompositions

Hessenberg decompositions

Essential features of Krylov subspace methods can be described by a
Hessenberg decomposition

AQn = Qn+1Hn = QnHn + qn+1hn+1,neT
n . (1) eq:Hessenberg_decomposition

Here, Hn denotes an unreduced Hessenberg matrix.

In the perturbed case, e.g., in finite precision and/or based on inexact
matrix-vector multiplies, we obtain a perturbed Hessenberg decomposition

AQn + Fn = Qn+1Hn = QnHn + qn+1hn+1,neT
n . (2) eq:perturbed_Hessenberg_decomposition

The matrix Hn of the perturbed variant will, in general, still be unreduced.

TUHH Jens-Peter M. Zemke IDR(s)ORes and eigenvalues ETH Zürich, September 11th, 2009 3 / 16



Krylov subspace methods Hessenberg decompositions

Hessenberg decompositions

Essential features of Krylov subspace methods can be described by a
Hessenberg decomposition

AQn = Qn+1Hn = QnHn + qn+1hn+1,neT
n . (1)

Here, Hn denotes an unreduced Hessenberg matrix.

In the perturbed case, e.g., in finite precision and/or based on inexact
matrix-vector multiplies, we obtain a perturbed Hessenberg decomposition

AQn + Fn = Qn+1Hn = QnHn + qn+1hn+1,neT
n . (2)

The matrix Hn of the perturbed variant will, in general, still be unreduced.

TUHH Jens-Peter M. Zemke IDR(s)ORes and eigenvalues ETH Zürich, September 11th, 2009 3 / 16



Krylov subspace methods Hessenberg decompositions

Hessenberg decompositions

Essential features of Krylov subspace methods can be described by a
Hessenberg decomposition

AQn = Qn+1Hn = QnHn + qn+1hn+1,neT
n . (1)

Here, Hn denotes an unreduced Hessenberg matrix.

In the perturbed case, e.g., in finite precision and/or based on inexact
matrix-vector multiplies, we obtain a perturbed Hessenberg decomposition

AQn + Fn = Qn+1Hn = QnHn + qn+1hn+1,neT
n . (2)

The matrix Hn of the perturbed variant will, in general, still be unreduced.

TUHH Jens-Peter M. Zemke IDR(s)ORes and eigenvalues ETH Zürich, September 11th, 2009 3 / 16



Krylov subspace methods Hessenberg decompositions

Generalized Hessenberg decompositions

In case of IDR, we have to consider generalized Hessenberg decompositions

AQnUn = Qn+1Hn = QnHn + qn+1hn+1,neT
n (3) eq:generalized_Hessenberg_decomposition

and perturbed generalized Hessenberg decompositions

AQnUn + Fn = Qn+1Hn = QnHn + qn+1hn+1,neT
n (4) eq:perturbed_generalized_Hessenberg_decomposition

with upper triangular (possibly even singular) Un.

Generalized Hessenberg decompositions correspond to a skew projection of
the pencil (A, I) to the pencil (Hn, Un) as long as Qn+1 has full rank.
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Krylov subspace methods QOR/QMR/Ritz-Galërkin

QOR/QMR/Ritz-Galërkin

There are three well-known approaches based on such Hessenberg
decompositions.

, namely

QOR: approximate x = A−1r0 by xn := QnH−1
n e1‖r0‖

,

QMR: approximate x = A−1r0 by xn := QnH†
ne1‖r0‖

,

Ritz-Galërkin: approximate J = V−1AV by Jn := S−1
n HnSn

,

and V by Vn := QnSn.

To every method from one class corresponds a method of the other.

These approaches extend easily to generalized Hessenberg decompositions.

IDR is of type QOR.

TUHH Jens-Peter M. Zemke IDR(s)ORes and eigenvalues ETH Zürich, September 11th, 2009 5 / 16



Krylov subspace methods QOR/QMR/Ritz-Galërkin

QOR/QMR/Ritz-Galërkin

There are three well-known approaches based on such Hessenberg
decompositions, namely

QOR: approximate x = A−1r0 by xn := QnH−1
n e1‖r0‖.

,
QMR: approximate x = A−1r0 by xn := QnH†

ne1‖r0‖

,

Ritz-Galërkin: approximate J = V−1AV by Jn := S−1
n HnSn

,

and V by Vn := QnSn.

To every method from one class corresponds a method of the other.

These approaches extend easily to generalized Hessenberg decompositions.

IDR is of type QOR.

TUHH Jens-Peter M. Zemke IDR(s)ORes and eigenvalues ETH Zürich, September 11th, 2009 5 / 16



Krylov subspace methods QOR/QMR/Ritz-Galërkin

QOR/QMR/Ritz-Galërkin

There are three well-known approaches based on such Hessenberg
decompositions, namely

QOR: approximate x = A−1r0 by xn := QnH−1
n e1‖r0‖,

QMR: approximate x = A−1r0 by xn := QnH†
ne1‖r0‖.

,
Ritz-Galërkin: approximate J = V−1AV by Jn := S−1

n HnSn

,

and V by Vn := QnSn.

To every method from one class corresponds a method of the other.

These approaches extend easily to generalized Hessenberg decompositions.

IDR is of type QOR.

TUHH Jens-Peter M. Zemke IDR(s)ORes and eigenvalues ETH Zürich, September 11th, 2009 5 / 16



Krylov subspace methods QOR/QMR/Ritz-Galërkin

QOR/QMR/Ritz-Galërkin

There are three well-known approaches based on such Hessenberg
decompositions, namely

QOR: approximate x = A−1r0 by xn := QnH−1
n e1‖r0‖,

QMR: approximate x = A−1r0 by xn := QnH†
ne1‖r0‖,

Ritz-Galërkin: approximate J = V−1AV by Jn := S−1
n HnSn.

,
and V by Vn := QnSn.

To every method from one class corresponds a method of the other.

These approaches extend easily to generalized Hessenberg decompositions.

IDR is of type QOR.

TUHH Jens-Peter M. Zemke IDR(s)ORes and eigenvalues ETH Zürich, September 11th, 2009 5 / 16



Krylov subspace methods QOR/QMR/Ritz-Galërkin

QOR/QMR/Ritz-Galërkin

There are three well-known approaches based on such Hessenberg
decompositions, namely

QOR: approximate x = A−1r0 by xn := QnH−1
n e1‖r0‖,

QMR: approximate x = A−1r0 by xn := QnH†
ne1‖r0‖,

Ritz-Galërkin: approximate J = V−1AV by Jn := S−1
n HnSn,

and V by Vn := QnSn.

To every method from one class corresponds a method of the other.

These approaches extend easily to generalized Hessenberg decompositions.

IDR is of type QOR.

TUHH Jens-Peter M. Zemke IDR(s)ORes and eigenvalues ETH Zürich, September 11th, 2009 5 / 16



Krylov subspace methods QOR/QMR/Ritz-Galërkin

QOR/QMR/Ritz-Galërkin

There are three well-known approaches based on such Hessenberg
decompositions, namely

QOR: approximate x = A−1r0 by xn := QnH−1
n e1‖r0‖,

QMR: approximate x = A−1r0 by xn := QnH†
ne1‖r0‖,

Ritz-Galërkin: approximate J = V−1AV by Jn := S−1
n HnSn,

and V by Vn := QnSn.

To every method from one class corresponds a method of the other.

These approaches extend easily to generalized Hessenberg decompositions.

IDR is of type QOR.

TUHH Jens-Peter M. Zemke IDR(s)ORes and eigenvalues ETH Zürich, September 11th, 2009 5 / 16



Krylov subspace methods QOR/QMR/Ritz-Galërkin

QOR/QMR/Ritz-Galërkin

There are three well-known approaches based on such Hessenberg
decompositions, namely

QOR: approximate x = A−1r0 by xn := QnH−1
n e1‖r0‖,

QMR: approximate x = A−1r0 by xn := QnH†
ne1‖r0‖,

Ritz-Galërkin: approximate J = V−1AV by Jn := S−1
n HnSn,

and V by Vn := QnSn.

To every method from one class corresponds a method of the other.

These approaches extend easily to generalized Hessenberg decompositions.

IDR is of type QOR.

TUHH Jens-Peter M. Zemke IDR(s)ORes and eigenvalues ETH Zürich, September 11th, 2009 5 / 16



Krylov subspace methods QOR/QMR/Ritz-Galërkin

QOR/QMR/Ritz-Galërkin

There are three well-known approaches based on such Hessenberg
decompositions, namely

QOR: approximate x = A−1r0 by xn := QnH−1
n e1‖r0‖,

QMR: approximate x = A−1r0 by xn := QnH†
ne1‖r0‖,

Ritz-Galërkin: approximate J = V−1AV by Jn := S−1
n HnSn,

and V by Vn := QnSn.

To every method from one class corresponds a method of the other.

These approaches extend easily to generalized Hessenberg decompositions.

IDR is of type QOR.

TUHH Jens-Peter M. Zemke IDR(s)ORes and eigenvalues ETH Zürich, September 11th, 2009 5 / 16



Krylov subspace methods OrthoRes-type methods

OrthoRes-type methods

The entries of the Hessenberg matrices of these Hessenberg decompositions
are defined in different variations.

Three well-known ways for implementing the QOR/QMR approach are
commonly denoted as OrthoRes/OrthoMin/OrthoDir.

OrthoRes-type methods have a

generalized

Hessenberg decomposition

ARn

Un

= Rn+1H◦
n = RnH◦

n + rn+1h◦n+1,neT
n , (5) eq:OrthoRes_Hessenberg_decomposition

where eTH◦
n = oT

n , eT = (1, . . . , 1) and the matrix

Rn+1 =
(
r0, . . . , rn

)
= Qn+1 diag

(
‖r0‖
‖q1‖

, . . . ,
‖rn‖
‖qn+1‖

)
(6) eq:residual_matrix

is diagonally scaled to be the matrix of residual vectors.

IDR is of type OrthoRes.
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Krylov subspace methods LTPM

Lanczos-type Product Methods

Krylov subspace methods can roughly be divided into the classes of
short-term and long-term recurrences.

Lanczos ≈ CG ≈ MinRes are based on short-term recurrences, whereas
Arnoldi ≈ GMRes are based on long-term recurrences.

A large class of short-term recurrences is obtained by multiplication of (simple,
block, any number of left- and right-hand sides) Lanczos polynomials with
another polynomial. At the same time the need for the transpose is eliminated.

Methods of this class are, e.g., (original) IDR, CGS, BiCGStab, BiCGStab2,
BiCGStab(`), ML(k)BiCGStab, and IDR(s).

We show how IDR fits into the LTPM framework.
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IDR IDR(s)ORes

The prototype IDR(s) (without the recurrences for xn and thus already slightly rewritten)

r0 = b− Ax0
compute Rs+1 = R0:s =

`
r0, . . . , rs

´
using, e.g., ORTHORES

∇R1:s =
`
∇r1, . . . ,∇rs

´
=

`
r1 − r0, . . . , rs − rs−1

´
n← s + 1, j← 1
while not converged

cn = (PH∇Rn−s:n−1)
−1PHrn−1

vn−1 = rn−1 −∇Rn−s:n−1cn
compute ωj
∇rn = −∇Rn−s:n−1cn − ωjAvn−1
rn = rn−1 +∇rn, n← n + 1
∇Rn−s:n−1 =

`
∇rn−s, . . . ,∇rn−1

´
for k = 1, . . . , s

cn = (PH∇Rn−s:n−1)
−1PHrn−1

vn−1 = rn−1 −∇Rn−s:n−1cn
∇rn = −∇Rn−s:n−1cn − ωjAvn−1
rn = rn−1 +∇rn, n← n + 1
∇Rn−s:n−1 =

`
∇rn−s, . . . ,∇rn−1

´
end for
j← j + 1

end while

A few remarks:

We can start with any
(simple) Krylov
subspace method.

The steps in the s-loop
only differ from the first
block in that no new ωj

is computed.

IDR(s)ORes is based
on oblique projections
and s + 1 consecutive
multiplications with the
same linear factor
I− ωjA.
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IDR IDR(s)ORes

The underlying Hessenberg decomposition

The IDR recurrences of IDR(s)ORes can be summarized by

vn−1 := rn−1 −∇Rn−s:n−1cn = Rn−s−1:n−1yn

= (1− γ
(n)
s ) rn−1 +

∑s−1
`=1 (γ

(n)
s−`+1 − γ

(n)
s−`) rn−`−1 + γ

(n)
1 rn−s−1 ,

rn := (I− ωjA) vn−1 .

(7) eq:recurrence_s_GE_1

Here, n > s, and the index of the scalar ωj is defined by

j :=

⌊
n

s + 1

⌋
,

compare with the so-called “index functions” (Yeung/Boley, 2005).

Removing vn−1 from the recurrence we obtain the generalized Hessenberg
decomposition

ARnYnDω = Rn+1Y◦
n . (8) eq:IDR_residuals
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IDR Sonneveld pencil and Sonneveld matrix

Sonneveld pencil and Sonneveld matrix

The IDR(s)ORes pencil, the so-called Sonneveld pencil (Y◦
n , YnD(n)

ω ), can be
depicted by 

××××◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
+××××◦ ◦ ◦ ◦ ◦ ◦ ◦
◦+××××◦ ◦ ◦ ◦ ◦ ◦
◦ ◦+××××◦ ◦ ◦ ◦ ◦
◦ ◦ ◦+××××◦ ◦ ◦ ◦
◦ ◦ ◦ ◦+××××◦ ◦ ◦
◦ ◦ ◦ ◦ ◦+××××◦ ◦
◦ ◦ ◦ ◦ ◦ ◦+××××◦
◦ ◦ ◦ ◦ ◦ ◦ ◦+××××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦+×××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦+××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦+×


,



××××◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦××××◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦××××◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦××××◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦××××◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦××××◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦××××◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦××××◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦××××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦×××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦×


.

The upper triangular matrix YnD(n)
ω could be inverted, which results in the

Sonneveld matrix, a full unreduced Hessenberg matrix.

TUHH Jens-Peter M. Zemke IDR(s)ORes and eigenvalues ETH Zürich, September 11th, 2009 10 / 16



IDR Sonneveld pencil and Sonneveld matrix

Sonneveld pencil and Sonneveld matrix

The IDR(s)ORes pencil, the so-called Sonneveld pencil (Y◦
n , YnD(n)

ω ), can be
depicted by 

××××◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
+××××◦ ◦ ◦ ◦ ◦ ◦ ◦
◦+××××◦ ◦ ◦ ◦ ◦ ◦
◦ ◦+××××◦ ◦ ◦ ◦ ◦
◦ ◦ ◦+××××◦ ◦ ◦ ◦
◦ ◦ ◦ ◦+××××◦ ◦ ◦
◦ ◦ ◦ ◦ ◦+××××◦ ◦
◦ ◦ ◦ ◦ ◦ ◦+××××◦
◦ ◦ ◦ ◦ ◦ ◦ ◦+××××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦+×××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦+××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦+×


,



××××◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦××××◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦××××◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦××××◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦××××◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦××××◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦××××◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦××××◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦××××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦×××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦×


.

The upper triangular matrix YnD(n)
ω could be inverted, which results in the

Sonneveld matrix, a full unreduced Hessenberg matrix.

TUHH Jens-Peter M. Zemke IDR(s)ORes and eigenvalues ETH Zürich, September 11th, 2009 10 / 16



IDR Purified pencil

Purification

We know the eigenvalues ≈ roots of kernel polynomials 1/ωj. We are only
interested in the other eigenvalues.

The purified IDR(s)ORes pencil (Y◦
n , UnD(n)

ω ), that has only the remaining
eigenvalues and some infinite ones as eigenvalues, can be depicted by

××××◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
+××××◦ ◦ ◦ ◦ ◦ ◦ ◦
◦+××××◦ ◦ ◦ ◦ ◦ ◦
◦ ◦+××××◦ ◦ ◦ ◦ ◦
◦ ◦ ◦+××××◦ ◦ ◦ ◦
◦ ◦ ◦ ◦+××××◦ ◦ ◦
◦ ◦ ◦ ◦ ◦+××××◦ ◦
◦ ◦ ◦ ◦ ◦ ◦+××××◦
◦ ◦ ◦ ◦ ◦ ◦ ◦+××××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦+×××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦+××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦+×


,



×××◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦××◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦×◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦×××◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦××◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦×◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦×××◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦××◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦×◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦


.

We get rid of the infinite eigenvalues using a change of basis (Gauß/Schur).
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IDR Deflated pencil and deflated matrix

Gaussian elimination

The deflated purified IDR(s)ORes pencil, after the elimination step
(Y◦

n Gn, UnD(n)
ω ), can be depicted by

×××××××◦ ◦ ◦ ◦ ◦
+××××××◦ ◦ ◦ ◦ ◦
◦+×××××◦ ◦ ◦ ◦ ◦
◦ ◦ ◦+◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦++×××××××◦
◦ ◦ ◦ ◦+××××××◦
◦ ◦ ◦ ◦ ◦+×××××◦
◦ ◦ ◦ ◦ ◦ ◦ ◦+◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦++××××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦+×××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦+××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦+


,



×××◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦××◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦×◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦×××◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦××◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦×◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦×××◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦××◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦×◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦


.

Using Laplace expansion of the determinant of zUnD(n)
ω − Y◦

n Gn we can get rid
of the trivial constant factors corresponding to infinite eigenvalues. This
amounts to a deflation.
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Using Laplace expansion of the determinant of zUnD(n)
ω − Y◦

n Gn we can get rid
of the trivial constant factors corresponding to infinite eigenvalues. This
amounts to a deflation.
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IDR Deflated pencil and deflated matrix

Deflation

The deflated purified IDR(s)ORes pencil, after the deflation step
(D(Y◦

n Gn), D(UnD(n)
ω )), can be depicted by
××××××◦ ◦ ◦
+×××××◦ ◦ ◦
◦+××××◦ ◦ ◦
◦ ◦+××××××
◦ ◦ ◦+×××××
◦ ◦ ◦ ◦+××××
◦ ◦ ◦ ◦ ◦+×××
◦ ◦ ◦ ◦ ◦ ◦+××
◦ ◦ ◦ ◦ ◦ ◦ ◦+×

 ,


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 .

Here, D is an deflation operator that removes every s + 1th column and row
from the matrix the operator is applied to.

The block-diagonal matrix D(UnD(n)
ω ) has invertible upper triangular blocks and

can be inverted to expose the underlying Lanczos process.
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IDR BiORes(s, 1)

A Lanczos process with multiple left-hand sides
Inverting the block-diagonal matrix D(UnD(n)

ω )) gives an algebraic eigenvalue
problem with a block-tridiagonal unreduced upper Hessenberg matrix

Ln := D(Y◦
n Gn) · D(UnD(n)

ω ))−1 =


××××××◦ ◦ ◦
+×××××◦ ◦ ◦
◦+××××◦ ◦ ◦
◦ ◦+××××××
◦ ◦ ◦+×××××
◦ ◦ ◦ ◦+××××
◦ ◦ ◦ ◦ ◦+×××
◦ ◦ ◦ ◦ ◦ ◦+××
◦ ◦ ◦ ◦ ◦ ◦ ◦+×

 .

This is the matrix of the underlying BiORes(s, 1) process.

This matrix (in the extended version) satisfies

AQn = Qn+1Ln,

where the reduced residuals q js+k, k = 0, . . . , s− 1, j = 0, 1, . . ., with Ω0(z) ≡ 1
and Ωj(z) =

∏j
k=1(1− ωkz) are given by

Ωj(A)q js+k = rj(s+1)+k.
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IDR BiORes(s, 1)

A Lanczos process with multiple left-hand sides

The reduced residuals are defined by

Ωj(A)q js+k = rj(s+1)+k = (I− ωjA)vj(s+1)+k−1

and every vj(s+1)+k−1 is orthogonal to P.

Thus, q js+k ⊥ Ωj−1(AH)P.

Using induction one can prove that q js+k ⊥ Kj(AH, P); thus, this is a two-sided
Lanczos process with s left and one right starting vectors.
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Numerical Examples

Selected examples for s = 3
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