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Optimal eigenvalue inclusions Lehmann’s concept of optimality

Lehmann’s work on eigenvalues

Between 1948 and 1966 N. J. Lehmann published several papers related to
“Optimale EigenwerteinschlieBungen”. Lehmann was interested in selfadjoint
and normal linear operators (matrices).

In his works we can find eigenvalue inclusions using the Temple-Quotient,
shifted harmonic Ritz values, and the relation of shifted harmonic Ritz to
Ritz-Galérkin, all for selfadjoint matrices.

He was interested in generalizing his results [Seite 246, 1963]:

“Fur Aufgaben mit komplexen Eigenwerten stehen viele der
Untersuchungen allerdings noch aus. Mit diesen Problemen befal3t
sich eine in Arbeit befindliche Dissertation.”

We extend his approach to general complex square matrices by replacing
“Lehmann optimality” by “backward error”.
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Optimal eigenvalue inclusions Lehmann’s concept of optimality

Lehmann’s results summarized

Lehmann used the information included in Q0 € C"%) and W = AQ € Ch),
where A € C*" s selfadjoint. We use a generic x = Qv € C".

Lehmann imposed the least-squares optimality conditions [(5a), 1963]

(A = 2Dx]l3 _ [I(W — z0)vIi3
%113 lovIi3

and thus (by differentation) the eigenvalue (SVD) problem [(8a), 1963]
0"(A —z2D)!(A — ) Qv = *(2)0" Qv

min = 02(z) =

Lehmann was interested in optimal shifts, i.e., shifts z resulting in a minimal
radius o(z) of the inclusion. These are [Satz 4, 1963] among the stationary
points of o2(z),
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Optimal eigenvalue inclusions Lehmann’s concept of optimality

Lehmann’s little-known results

Differentiating an expression involving the Temple quotient T, (x), he obtained
the shifted harmonic Ritz values [(20a)+(28), 1963] of Morgan (1991) and
Freund (1992),

QA —TDH Qv = ;_TQH(A —7D*(A — 11)Qv.

6(r)

Lehmann noticed already that poles occur in the shifted harmonic Ritz
approach when using the Ritz values as shifts.

He (defined and) noted certain interesting symmetries/properties, namely

T =2zF0(2), 0(1) =z £ 0(2), [(Seite 251),1963]
0(1) = T-(x), T;(x) = "CH([;; (;IZ T(?);xﬂ)’-c +7,  [(15),1963]

v—rr8(r),  2-od)=r-8(r). [(8b)+(21),1963]
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Abstract Krylov methods Krylov decompositions

Krylov decompositions

We consider a given Krylov decomposition

AQi = Qi1 C = OkCr + quy1Chr1 k€ - (1)
We suppose that
A ectn is a general square matrix,
Qi1 = (Qx  quyr) € CWHHD is a matrix of basis vectors,
C, = (qﬁ’; e}{) € CW+14) is an extended Hessenberg matrix.

We assume that C, is unreduced. We do not consider perturbations.

We remark that important parts of the results carry over to general
rectangular approximations C, which not necessarily have to be Hessenberg.
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QMR for eigenpairs QMR eigenpairs

QMR eigenpairs

We proceed similar to the QMR approach when applied to linear systems,

(et — Gl
o

We always suppose that the columns of Q;., have been scaled to unit length.

—A
i |zy — Ay||

()
wy=0w |1yl

< R(Qkr1) - min

Definition (QMR eigenpair)

The pair (6, y = O,V) is a QMR eigenpair, when

I, — C,)v| = minl L — Cvll, 3
1004 = CoMl = _ minoc iz — Cvll 3)

where “min loc” denotes a (not necessarily strict) local minimum.
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QMR for eigenpairs SVD-based characterization

QMR eigenpairs: SVD characterization

We denote the SVD of :C, = zI, — C, by U(2)Z(z)V(2)" = U Z(z)V".
Since forevery z € C

FCvell . IFC
Uk(z) = ||Uk(z)uk|| = ”_V];” = mvm ||vk|| )

the QMR eigenvalues can be characterized by

6 = arg minloc o4 (z), (4)
zeC

the QMR eigenvector can be chosen as a corresponding right singular vector,
v =wi(6), )

the QMR eigenresidual is given by o(6).
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QMR for eigenpairs SVD-based characterization

QMR eigenpairs: SVD steepest descent

Simple singular values o(z) and corresponding singular vectors vy, u; of the
complex matrices *C, = zI, — C, are real analytic (Sun, 1988),

o(z+w) = 0(2) + ox(2)w + o=(2)w + O(|wl?) (6)
= 0(2) + 2R((uf Lve)w) + O(|wl?). (7)

We obtain steepest descent by subtracting the conjugate of the gradient o.(z):

HyH
Znew = 2 — aufl vy = 2 — a v [ uy (8)

(0% (0%
=z2— — WL (& — G =2 — —vi/ (el — Ci)v. 9
o o

We note that oy(z) is the backward error of the approximate eigenvalue z.
Setting o = oy yields alternating projections and is nearly optimal:

Znew = VkHCka- (10)
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QMR for eigenpairs SVD-based characterization

QMR eigenpairs: SVD Newton

Steepest descent exhibits linear convergence. The real-analyticity of simple
singular values can also be used to adopt Newton’s method for stationary
points.

Newton’s method exhibits the usual locally quadratic convergence behavior,
but in most cases for Newton’s method good starting values have to be used,
better than, say, the Ritz values.

In general Newton’s method has problems with clustered and multiple singular
values and when far from a solution, as the function to be optimized is almost
linear far from stationary points.

The latter problem is resolved when a damped Newton’s method is used.

Multiple singular values can not occur in the symmetric case due to the
unreduced Hessenberg structure, but still may be pathologically close,
compare with results by Lehmann and Wilkinson.
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QMR for eigenpairs Grassmannian characterization

QMR eigenpairs: Grassmannian Optimization

It can be shown that the QMR eigenvectors are minima of real-analytic

A G] ((Ck) — R)o

AW) = I C = CvIP = v () Cv — P Covl. (11)
The stationary points of real-analytic \ are always singular vectors.

When the stationary point is a minimum and the associated singular value is
simple, then v = v is an QMR eigenvector.

The associated QMR eigenvalue is characterized by 0 = V¥ C,, and the QMR
eigenresidual is given by o(0) = \/A(V).

We experimented with steepest descent and Newton’s method for the
minimization of the real-analytic A on the first (complex) Grassmannian in the
framework of optimization on Riemannian manifolds (as recently developed by
Smith; Edelman, Arias & Smith; Manton).
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QMR for eigenpairs Grassmannian characterization

QMR eigenpairs: Grassmannian Newton

for j = l:convergence . . .
(This is to convince you
[Q/R] = qr(v); W=0(:,2:k); v =00, 1); that the code is short
z = v/ xCkxv; zuCk = zxulk-uCk; enough ’[O f|t onone page)

zuCkW = zuCk=*W; zuCkv = zuCk=*v;
slambda = norm(zuCkv);

y = zuCkW’ »zuCkv;

grad = 2*[real(y);imag(y)];

res = norm(grad);

A = zuCkW’ »zuCkW; zCk = ulk’=xzuCk;

gl = (zCkxW)’xv; rl = real(gl); cl = imag(gl);
g2 = W x(zCk*v); r2 = real(g2); c2 = imag(g2);
outerl = [rl+r2;cl+c2];
outer2 = [c2-cl;rl-r2];
Hesse = 2x[real (A) imag(A)’;...
imag (A) real(A)]-...
2xslambda”2*I-...

2xouterl+outerl’ -2+«outer2*outer2’;
ab = Hesse\grad;
u = -Wx(ab(l:k-1)+i*ab(k:2+k=-2));
normu = norm(u);
v = vxcos (normu)+uxsin (normu) /normu;

end
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Examples & Pictures Graphics guide

A graphical representation

We associate with every real or complex approximate eigenpair (4,5 = Q;5) a
point (z,w) in the plane R x R or C x R:

g o 6L 12
| -

The former gives the approximate eigenvalue, the latter gives the norm of the
(quasi-)residual of the approximate eigenpair.

The norm of the residual of an eigenpair gives the backward error, i.e.,

w:min{||AA|| : (A+AA)5z:5;§}. (13)

Without additional knowledge a small backward error is the best we can
achieve.

There exist “graphical” bounds for general and “Rayleigh” approximations.
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Examples & Pictures An Example

A beautiful example

As an example we use 010
1 0 1
Its Ritz values are given by 001
013 = FV2~ F1.41421356, 6, =0, (15)
its harmonic Ritz values are given by
0,5 =FV2~ F1.41421356, 0, = oo, (16)
its p-values (Rayleigh quotients with harmonic Ritz vectors) are given by
2
pia=TFV2- 3~ F0.9428090, pr =0, (17)
and its QMR eigenvalues are given by (where y = 276081 + 21504+/2i)
. V2 R
013 = Fle V13 + 2Ry ~ F1.37898323557, 6, = 0. (18)
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- Abeauiful example

characteristics of a 4 x 3 extended symmetric tridiagonal matrix
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Examples & Pictures An Example

A beautiful example

Why are the p-values on the “borders” of the transformed unit sphere?

In the symmetric case it is easy to characterize these “borders” and to prove
that the vectors defining them are indeed harmonic Ritz vectors for two certain
shifts. These shifts as well as the harmonic Ritz values are expressed using
stationary points along straight lines in the graphical interpretation ...

Given the harmonic Ritz pair, it is even easier to find the direction along which
the vector is a stationary point.

The QMR eigenvectors are harmonic Ritz vectors, the shifts are given by
7+ =0+ or(0), (19)

in accordance with Lehmann’s results for the symmetric case, see also van
den Eshof’s doctoral thesis (2003).

The Ritz vectors are harmonic Ritz vectors with shifts 7 = Fo0.
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Appendix

A Jordan block: infinitely many QMR eigenvalues

A more startling example is

Q4=

[sNeNel
[=Nel =N
— o O OO

—

N

o

=

0
0
0
1
0
d

We have Jordan blocks at # = 0, 6 = oo and p = 0.

For k € N this is an example of an infinite set of QMR eigenvalues,

5. — L ib
0y cos(k+1>e, ¢ € [0,2m). (21)

The residual of the corresponding QMR eigenpairs is given by

ot~ ol =sin (27) o 2)
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| A Jordan block: infinitely many QMR eigenvalues
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| A Jordan block: infinitely many QMR eigenvalues
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| A Jordan block: infinitely many QMR eigenvalues
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ly locally optimal ...
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