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Abstract Krylov methods Krylov decompositions

Krylov decompositions

We consider a given Krylov decomposition

AQk = Qk+1Ck = QkCk + qk+1ck+1,keT
k . (1)

We suppose that

A ∈ C(n,n) is a general square matrix,

Qk+1 =
(
Qk qk+1

)
∈ C(n,k+1) is a matrix of basis vectors,

Ck =

(
Ck

ck+1,keT
k

)
∈ C(k+1,k) is unreduced extended Hessenberg.

We do not consider perturbations. We remark that important parts of the
results carry over to general rectangular approximations Ck of A which not
necessarily have to be Hessenberg.
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QMR for eigenpairs QMR eigenpairs

QMR eigenpairs

We proceed similar to the QMR approach often applied to linear systems,

min
z,y=Qkv

‖zy− Ay‖
‖y‖

(2)

We always suppose that the columns of Qk+1 have been scaled to unit length.

Definition (QMR eigenpair)

The pair (θ̀, ỳ = Qkv̀) is a QMR eigenpair, iff

‖(θ̀Ik − Ck)v̀‖
‖v̀‖

= min loc
z∈C,v∈Ck,‖v‖=1

‖(zIk − Ck)v‖
‖v‖

, (3)

where “min loc” denotes a (not necessarily strict) local minimum.

TUHH Jens-Peter M. Zemke Quasi-Minimal Residual Eigenpairs IWASEP 7 4 / 16



QMR for eigenpairs QMR eigenpairs

QMR eigenpairs

We proceed similar to the QMR approach often applied to linear systems,

min
z,y=Qkv

‖zy− Ay‖
‖y‖

(2)

We always suppose that the columns of Qk+1 have been scaled to unit length.

Definition (QMR eigenpair)
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The pair (θ̀, ỳ = Qkv̀) is a QMR eigenpair, iff

‖(θ̀Ik − Ck)v̀‖
‖v̀‖

= min loc
z∈C,v∈Ck,‖v‖=1

‖(zIk − Ck)v‖
‖v‖

, (3)

where “min loc” denotes a (not necessarily strict) local minimum.

TUHH Jens-Peter M. Zemke Quasi-Minimal Residual Eigenpairs IWASEP 7 4 / 16



QMR for eigenpairs QMR eigenpairs

QMR eigenpairs

We proceed similar to the QMR approach often applied to linear systems,

min
z,y=Qkv

‖zy− Ay‖
‖y‖

6
σmax(Qk+1)

σmin(Qk+1)
·min

z,v

‖(zIk − Ck)v‖
‖v‖

. (2)

We always suppose that the columns of Qk+1 have been scaled to unit length.

Definition (QMR eigenpair)
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QMR for eigenpairs SVD-based characterization

QMR eigenpairs: SVD characterization

We denote the SVD of zCk ≡ zIk − Ck by U(z)Σ(z)V(z)H = U Σ(z)VH.

Since for every z ∈ C

σk(z) = ‖σk(z)uk‖ =
‖zCkvk‖
‖vk‖

= min
v

‖zCkv‖
‖v‖

,

the QMR eigenvalues can be characterized by

θ̀ = arg min loc
z∈C

σk(z)

,

(4)

the QMR eigenvector can be chosen as a corresponding right singular vector,

v̀ = vk(θ̀), (5)

the QMR eigenresidual is given by σk(θ̀).
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QMR for eigenpairs SVD-based characterization
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QMR for eigenpairs SVD-based characterization

QMR eigenpairs: SVD steepest descent

Simple singular values σ(z) and corresponding singular vectors vk, uk of the
complex matrices zCk = zIk − Ck are real analytic (Sun, 1988),

σ(z + w) = σ(z) + σz(z)w + σz(z)w + O(|w|2) (6)

= σ(z) + 2<((uH
k Ikvk)w) + O(|w|2). (7)

We obtain steepest descent by subtracting the conjugate of the gradient σz(z):

znew = z− α uH
k Ikvk = z− α vH

k IH
k uk (8)

= z− α

σk
vH

k IH
k (zIk − Ck)vk = z− α

σk
vH

k (zIk − Ck)vk. (9)

We note that σk(z) is the backward error of the approximate eigenvalue z.
Setting α = σk yields alternating projections and is nearly optimal:

znew = vH
k Ckvk. (10)
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QMR for eigenpairs SVD-based characterization

QMR eigenpairs: SVD Newton

Steepest descent exhibits linear convergence. The real-analyticity of simple
singular values can also be used to adopt Newton’s method for stationary
points.

Newton’s method exhibits the usual locally quadratic convergence behavior,
but in most cases for Newton’s method good starting values have to be used,
better than, say, the Ritz values.

In general Newton’s method has problems with clustered and multiple singular
values and if far from a solution, as the function to be optimized is almost
linear far from stationary points.

Enhancement: Damped Newton’s method or simply BFGS.

Remark: Multiple singular values can not occur in the symmetric case due to
the unreduced Hessenberg structure, but still may be pathologically close,
compare with results by Lehmann and Wilkinson.
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QMR for eigenpairs Grassmannian characterization

QMR eigenpairs: Grassmannian Optimization

Given an QMR eigenvector v̀, we obtain θ̀ by the Rayleigh quotient with Ck, as

θ̀ =
v̀HCkv̀

v̀H v̀
= arg min

z∈C

‖(zIk − Ck)v̀‖
‖v̀‖

. (11)

We could try to use only those z defined by the Rayleigh quotient, thus we set

z = z(v) =
vHCkv

vHv
. (12)

It can then be shown that the QMR eigenvectors give minima of the resulting
real-analytic function

λ : G1(Ck) → R>0,

λ : v 7→ λ(v) =
‖(z(v)Ik − Ck)v‖2

‖v‖2 =
vH(Ck)

HCkv
vHv

−
∣∣∣vHCkv

vHv

∣∣∣2
. (13)

The stationary points of real-analytic λ are always singular vectors.
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QMR for eigenpairs Grassmannian characterization

QMR eigenpairs: Grassmannian Optimization

If the stationary point gives a minimum and the associated singular value is
simple, then

I the stationary point v̀ = v is an QMR eigenvector,
I the associated QMR eigenvalue is characterized by θ̀ = v̀HCkv̀,

and

I the QMR eigenresidual is given by σ(θ̀) =
√

λ(v̀).

We experimented with steepest descent and Newton’s method for
minimization of (the real-analytic) λ on the first (complex) Grassmannian in
the framework of optimization on Riemannian manifolds (as recently
developed by Smith; Edelman, Arias & Smith; Manton).

For Newton’s method we have to compute the second covariant derivative,
i.e., to use the Levi-Civita connection on the Grassmannian. This is simplified
if using orthonormal frames, compare with the introductory textbook by
Boothby.
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QMR for eigenpairs Grassmannian characterization

QMR eigenpairs: Grassmannian Newton

for j = 1:convergence

[Q,R] = qr(v); W = Q(:,2:k); v = Q(:,1);

z = v’*Ck*v; zuCk = z*uIk-uCk;
zuCkW = zuCk*W; zuCkv = zuCk*v;
slambda = norm(zuCkv);
y = zuCkW’*zuCkv;
grad = 2*[real(y);imag(y)];
res = norm(grad);

A = zuCkW’*zuCkW; zCk = uIk’*zuCk;
g1 = (zCk*W)’*v; r1 = real(g1); c1 = imag(g1);
g2 = W’*(zCk*v); r2 = real(g2); c2 = imag(g2);
outer1 = [r1+r2;c1+c2];
outer2 = [c2-c1;r1-r2];
Hesse = 2*[real(A) imag(A)’;...

imag(A) real(A)]-...
2*slambda^2*I-...
2*outer1*outer1’-2*outer2*outer2’;

ab = Hesse\grad;
u = -W*(ab(1:k-1)+i*ab(k:2*k-2));
normu = norm(u);
v = v*cos(normu)+u*sin(normu)/normu;

end

(This is to convince you
that the code is short

enough to fit on one page.)
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Examples & Pictures Graphics guide

A graphical representation

We associate with every real or complex approximate eigenpair (θ̃, ỹ = Qkṽ) a
point (z, w) in the plane R× R or C× R

:

z = θ̃, w =
‖(θ̃Ik − Ck)ṽ‖

‖ṽ‖
. (14)

The former gives the approximate eigenvalue, the latter gives the norm of the
(quasi-)residual of the approximate eigenpair.

The norm of the residual of (θ̃, ỹ) gives the backward error, i.e.,

w = min
{
‖∆A‖ : (A + ∆A)ỹ = ỹ θ̃

}
. (15)

Remark 1: Without additional knowledge a small backward error is the best
we can achieve.

Remark 2: There exist “graphical” bounds for general and “Rayleigh”
approximations.
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The norm of the residual of (θ̃, ỹ) gives the backward error, i.e.,

w = min
{
‖∆A‖ : (A + ∆A)ỹ = ỹ θ̃
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Examples & Pictures An example

A beautiful example
As an example we use

C3 =


0 1 0
1 0 1
0 1 0
0 0 1

 . (16)

Its Ritz values are given by

θ1,3 = ∓
√

2 ≈ ∓1.41421356, θ2 = 0, (17)

its harmonic Ritz values are given by

θ1,3 = ∓
√

2 ≈ ∓1.41421356, θ2 = ∞, (18)

its ρ-values (Rayleigh quotients with harmonic Ritz vectors) are given by

ρ1,3 = ∓
√

2 · 2
3
≈ ∓0.9428090, ρ2 = 0, (19)
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Conclusion and Outview

Conclusion and Outview

I We have introduced the concept of QMR eigenpairs.

I We have sketched several algorithms for the computation of QMR
eigenpairs.

I We indicated relations between known Krylov-subspace-based eigenpair
extraction methods; those are based on the concept of QMR eigenpairs.

I We have introduced a powerful graphical concept which we think is
capable to visualize and find important extraction related aspects.

I We have weakened and generalized Lehmann’s approaches for optimal
eigenvalue inclusions.

Important open questions related to our concept include:

I What about the usefulness? Do we “need” QMR eigenpairs? Should they
be “computed” or “otherwise approximated”?

I Are there applications?
I Is there an “algebraic” characterization of all QMR eigenvalues?
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Conclusion and Outview

Conclusion and Outview

The last item has been resolved partially, the QMR eigenvalues are the zeros
of a polyanalytic polynomial of (in the generic case) total degree k2, the other
points are stationary points in both the SVD and Grassmannian descriptions.

This knowledge has been used together with some Computer Algebra (i.e.,
Maple) to compute the exact values of some QMR eigenvalues.

There are cases of infinitely many QMR eigenpairs, namely, QMR eigenvalues
on a circle, the zeros of zz− c2 = 0. Mostly, we obtain slightly less than k QMR
eigenvalues. We need to know the number of zeros of a real algebraic variety.

It remains an open question to come up with a “simple” description of these
polyanalytic polynomials in terms of the matrices Ck.

Thank you for your attention!
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Appendix Loss of QMR eigenvalues

A warning: loss of QMR eigenvalues; academic

An academic example is

Ck =


0 1 0
1 0 1
0 1 0
0 0 2

 . (21)

In this special case (one Ritz value being zero), replacing “2” by an arbitrary
number does not alter the Ritz, harmonic Ritz and ρ-values.

Yet, this small change results in Ck having only two QMR eigenvalues, which
are given by

θ̀1,2 = ∓
√

11
8
≈ ∓1.17260393996. (22)

At zero a stationary point exists which is a maximum of the smallest singular
value curve and a saddle point of the transformed sphere.
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Appendix Loss of QMR eigenvalues

A warning: loss of QMR eigenvalue; realistic example

An interesting example is extended symmetric and generated using MATLAB’s
randn and hess functions and is approximately given by

Ck ≈


0.46204801 1.75649255 0
1.75649255 0.23525002 −0.70301190

0 −0.70301190 1.90702012
0 0 1.21958322

 . (23)

The computed Ritz, harmonic Ritz and ρ-values all differ. There are only two
QMR eigenvalues. The smallest of all these and the norms of the eigenpair
residuals (denoted by n(·, ·)) are approximately given by

θ1 ≈ −1.490413407713866, n(θ1, v1) ≈ 0.1854320889556417,

θ1 ≈ −1.509143602001304, n(θ1, v1) ≈ 0.1810394571648995,

ρ1 ≈ −1.487425797938723, n(ρ1, v1) ≈ 0.1797320840508472,

θ̀1 ≈ −1.489367749116040, n(θ̀1, v̀1) ≈ 0.1746583392656590.
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residuals (denoted by n(·, ·)) are approximately given by

θ1 ≈ −1.490413407713866, n(θ1, v1) ≈ 0.1854320889556417,

θ1 ≈ −1.509143602001304, n(θ1, v1) ≈ 0.1810394571648995,

ρ1 ≈ −1.487425797938723, n(ρ1, v1) ≈ 0.1797320840508472,

θ̀1 ≈ −1.489367749116040, n(θ̀1, v̀1) ≈ 0.1746583392656590.
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Appendix Loss of QMR eigenvalues

The ‘random’ example
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Appendix Boundaries and ρ-values

Boundaries and ρ-values . . .

Why are the ρ-values on the “borders” of the transformed unit sphere?

In the symmetric case it is easy to characterize these “borders” and to prove
that the vectors defining them are indeed harmonic Ritz vectors for two certain
shifts. These shifts as well as the harmonic Ritz values are expressed using
stationary points along straight lines in the graphical interpretation . . .

Given the harmonic Ritz pair, it is even easier to find the direction along which
the vector is a stationary point.

The QMR eigenvectors are harmonic Ritz vectors, the shifts are given by

τ± = θ̀ ± σk(θ̀), (24)

in accordance with Lehmann’s results for the symmetric case, see also van
den Eshof’s doctoral thesis (2003).

The Ritz vectors are harmonic Ritz vectors with shifts τ± = ±∞.
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Appendix Boundaries and ρ-values

Boundaries and ρ-values . . .

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3
characteristics of a 4 x 3 extended symmetric tridiagonal matrix

location of the approximate eigenvalues

si
ze

 o
f t

he
 a

ss
oc

ia
te

d 
re

si
du

al
s

 

 
transformed unit sphere
Ritz residuals
refined Ritz residuals
harmonic Ritz residuals
refined harmonic Ritz residuals
harmonic Rayleigh residuals
QMReig residuals
singular value curves

TUHH Jens-Peter M. Zemke Quasi-Minimal Residual Eigenpairs IWASEP 7 16 / 16



Appendix Harmonic Ritz and the SVD

Shifted harmonic Ritz values and the SVD

The harmonic Ritz values θ are the eigenvalues of the inverse of a section of
the pseudoinverse,

(C†k Ik)
−1v = v θ

The same is true for the shifted harmonic Ritz values, these are obtained as
the same section of the pseudoinverse of the shifted rectangular matrices,

((Ck − τ Ik)
†Ik)

−1v(τ) = v(τ) (θ(τ) + τ).

As the harmonic Ritz values are not shift-invariant (in contrast to Ritz and
QMR eigenvalues), and by interlacing of singular values and the connection of
the pseudoinverse to the singular value decomposition we might expect to see
relations between shifted harmonic Ritz and the SVD in the pictures.
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Appendix An extended Jordan block

A Jordan block: infinitely many QMR eigenvalues
A startling example used already by Eising in context of the distance to
uncontrollability (given in terms of the the best QMR eigenpair) is

C 4 =


0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (25)

We have Jordan blocks at θ = 0, θ = ∞ and ρ = 0.

For k ∈ N this is an example of an infinite set of QMR eigenvalues,

θ̀φ = cos
(

π

k + 1

)
eiφ, φ ∈ [0, 2π). (26)

The residual of the corresponding QMR eigenpairs is given by

‖(θ̀φIk − Ck)s̀φ‖ = sin
(

π

k + 1

)
∀ φ. (27)
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Appendix An extended Jordan block

A Jordan block: infinitely many QMR eigenvalues
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Appendix “Local optimality” is indeed a local property

Always remember: It’s only locally optimal . . .
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Appendix “Local optimality” is indeed a local property

Large matrices and harmonic Ritz
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Appendix Lehmann’s optimal eigenvalue inclusions

Lehmann’s work on eigenvalues

Between 1948 and 1966 N. J. Lehmann published several papers related to
“Optimale Eigenwerteinschließungen”. Lehmann was interested in selfadjoint
and normal linear operators (matrices).

In his works we can find eigenvalue inclusions using the Temple-Quotient,
shifted harmonic Ritz values, and the relation of shifted harmonic Ritz to
Ritz-Galërkin, all for selfadjoint matrices.

He was interested in generalizing his results [Seite 246, 1963]:

“Für Aufgaben mit komplexen Eigenwerten stehen viele der
Untersuchungen allerdings noch aus. Mit diesen Problemen befaßt
sich eine in Arbeit befindliche Dissertation.”

We have extended his approach to general complex square matrices by
replacing “Lehmann optimality” by “backward error”. Thus, we have extended
his work to normal matrices (Qk+1 orthonormal; Arnoldi’s method).
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Appendix Lehmann’s optimal eigenvalue inclusions

Lehmann’s results summarized

Lehmann used the information included in Q ∈ C(n,k) and W = AQ ∈ C(n,k),
where A ∈ C(n,n) is selfadjoint. We used a generic x = Qv ∈ Cn.

Lehmann imposed the least-squares optimality conditions [(5a), 1963]

min = σ2(z) =
‖(A− zI)x‖2

2

‖x‖2
2

=
‖(W − zQ)v‖2

2

‖Qv‖2
2

and thus (by differentiation) the eigenvalue (SVD) problem [(8a), 1963]

QH(A− zI)H(A− zI)Qv = σ2(z)QHQv.

Lehmann was interested in optimal shifts, i.e., shifts z resulting in a minimal
radius σ(z) of the inclusion. These are [Satz 4, 1963] among the stationary
points of σ2(z),

∂σ2(z)
∂z

= 0.
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Appendix Lehmann’s optimal eigenvalue inclusions

Lehmann’s little-known results

Differentiating an expression involving the Temple quotient Tτ (x), he obtained
the shifted harmonic Ritz values [(20a)+(28), 1963] of Morgan (1991) and
Freund (1992),

QH(A− τ I)HQv =
1

θ(τ)− τ
QH(A− τ I)H(A− τ I)Qv.

Lehmann noticed already that poles occur in the shifted harmonic Ritz
approach if using the Ritz values as shifts.

He (defined and) noted certain interesting symmetries/properties, namely

τ = z∓ σ(z), θ(τ) = z± σ(z), [(Seite 251),1963]

θ(τ) = Tτ (x), Tτ (x) =
xH(A− τ I)H(A− τ I)x

xH(A− τ I)Hx
+ τ, [(15),1963]

2z = τ + θ(τ), z2 − σ2(z) = τ · θ(τ). [(8b)+(21),1963]
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Appendix A note on the Grassmannian optimization

QMR eigenpairs: Grassmann Newton

The function λ is stationary only for singular vectors for z = vHCkv. If the
corresponding singular value is simple, we have found a stationary point on
the corresponding singular value surface.

The Hessean has negative eigenvalues whenever the singular value σj(z)
found is not a smallest one, since in forming the Hesse matrix we subtract a
positive semidefinite symmetric matrix (of rank less equal two) from the
realification of

A(z) = WH(zCH
k

zCk − σj(z)2Ik)W, W = v⊥j .

The Hermitean matrix A(z) has the eigenvalues σ2
i − σ2

j , i 6= j. The smallest
eigenvalue of the Hesse matrix is bounded from above by Weyl’s Lemma by
λmin 6 σ2

min − σ2
j < 0.

Is every QMR eigenpair obtained through SVD minimization also obtained by
Grassmannian optimization with SPD Hessean and vice versa? How to prove
this?
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Appendix A note on the Grassmannian optimization

QMR eigenpairs: Grassmann Newton

One direction is quite simple: As any QMR eigenpair (θ̀, v̀) from the SVD
minimization satisfies

θ̀ =
v̀HCkv̀

v̀H v̀
= z(v̀),

the minimum is obtained as a function value of the function λ living on the first
Grassmannian.

There can be no smaller function value nearby, since this would result in a
sequence of v(εi), ‖v(εi)‖ = 1, arbitrarily close to v = v̀, ‖v‖ = 1, with

σk(z(v)) = ‖(z(v)Ik − Ck)v‖ > ‖(z(v(εi))Ik − Ck)v(εi)‖ > σk(z(v(εi))),

thus, there would be a sequence zi = z(v(εi)) → z = θ̀ with

σk(θ̀) > σk(zi),

which gives with the continuity of the functions involved a contradiction.
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Appendix A note on the Grassmannian optimization

QMR eigenpairs: Grassmann Newton

If the singular vector to the smallest singular values as a function of the
parameter ε is continuous, which is at least the case if the singular value is
simple and thus real analytic by Sun’s results, we can prove that a minimum of
the vector-valued function is indeed also a minimum of the singular value
surface.

Denote the “smallest” singular vector of (z+ε)Ck by v(ε) = vk(z + ε), i.e.,

((z + ε)Ik − Ck)v(ε) = uk(z + ε)σk(z + ε),

and define

z(ε) =
v(ε)HCkv(ε)

v(ε)Hv(ε)
.

Then, obviously,
σ2

k (z + ε) > ‖z(ε)Ckv(ε)‖2
2 > σ2

k (z(ε)). (28)
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Appendix A note on the Grassmannian optimization

QMR eigenpairs: Grassmann Newton

We now use the “closeness” of the functions σ2
k and λ, i.e.,

σ2
k (z + ε) > λ(v(ε)) = ‖z(ε)Ckv(ε)‖2

2 > σ2
k (z(ε)). (29)

Suppose that we do not have a minimum at z, i.e., let Nz denote a
neighborhood of z,

∀Nz ∃w ∈ Nz : σk(w) < σk(z), (30)

or, by the Axiom of Choice, a sequence of points {εi ∈ C}∞i=1 such that

lim
i→∞

εi = 0 and σk(z + εi) < σk(z) ∀i ∈ N. (31)

Choosing i > i0 such that v(ε) is continuous we know by (29) and (31) that

‖zCkv‖2
2 = σ2

k (z) > σ2
k (z + εi) > ‖z(εi)Ckv(εi)‖2

2 ∀i > i0. (32)

This gives a contradiction.
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Appendix A relation between harmonic Ritz and ρ-values

Harmonic Ritz and ρ-values

It can be shown that the
shifted harmonic Ritz values θ,
the shift (“target”) τ and the re-
sulting ρ-values are related.

In non-homogeneous descrip-
tion with zero shift this relation
is given by

‖Ckvj‖2
2 = θjρj ∈ R+, (33)

i.e., both θj and ρj are on the
same ray originating from zero
and on the same side. −5 −4 −3 −2 −1 0 1 2 3 4
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the ρ−values are on zero rays from the harmonic Ritz values

 

 
rays from the origin
harmonic Ritz values
ρ−values

In the general setting the ρ-values and the harmonic Ritz values θ are, again,
on the same rays, but now originating from the target τ ∈ C.

TUHH Jens-Peter M. Zemke Quasi-Minimal Residual Eigenpairs IWASEP 7 16 / 16



Appendix A relation between harmonic Ritz and ρ-values

Harmonic Ritz and ρ-values

It can be shown that the
shifted harmonic Ritz values θ,
the shift (“target”) τ and the re-
sulting ρ-values are related.

In non-homogeneous descrip-
tion with zero shift this relation
is given by

‖Ckvj‖2
2 = θjρj ∈ R+, (33)

i.e., both θj and ρj are on the
same ray originating from zero
and on the same side. −5 −4 −3 −2 −1 0 1 2 3 4

−4

−3

−2

−1

0

1

2

3

4

5

real part

im
ag

in
ar

y 
pa

rt

the ρ−values are on zero rays from the harmonic Ritz values

 

 
rays from the origin
harmonic Ritz values
ρ−values

In the general setting the ρ-values and the harmonic Ritz values θ are, again,
on the same rays, but now originating from the target τ ∈ C.

TUHH Jens-Peter M. Zemke Quasi-Minimal Residual Eigenpairs IWASEP 7 16 / 16



Appendix A relation between harmonic Ritz and ρ-values

Harmonic Ritz and ρ-values

It can be shown that the
shifted harmonic Ritz values θ,
the shift (“target”) τ and the re-
sulting ρ-values are related.

In non-homogeneous descrip-
tion with zero shift this relation
is given by

‖Ckvj‖2
2 = θjρj ∈ R+, (33)

i.e., both θj and ρj are on the
same ray originating from zero
and on the same side. −5 −4 −3 −2 −1 0 1 2 3 4

−4

−3

−2

−1

0

1

2

3

4

5

real part

im
ag

in
ar

y 
pa

rt

the ρ−values are on zero rays from the harmonic Ritz values

 

 
rays from the origin
harmonic Ritz values
ρ−values

In the general setting the ρ-values and the harmonic Ritz values θ are, again,
on the same rays, but now originating from the target τ ∈ C.

TUHH Jens-Peter M. Zemke Quasi-Minimal Residual Eigenpairs IWASEP 7 16 / 16



Appendix A relation between harmonic Ritz and ρ-values

Harmonic Ritz and ρ-values

It can be shown that the
shifted harmonic Ritz values θ,
the shift (“target”) τ and the re-
sulting ρ-values are related.

In non-homogeneous descrip-
tion with zero shift this relation
is given by

‖Ckvj‖2
2 = θjρj ∈ R+, (33)

i.e., both θj and ρj are on the
same ray originating from zero
and on the same side. −5 −4 −3 −2 −1 0 1 2 3 4

−4

−3

−2

−1

0

1

2

3

4

5

real part

im
ag

in
ar

y 
pa

rt

the ρ−values are on zero rays from the harmonic Ritz values

 

 
rays from the origin
harmonic Ritz values
ρ−values

In the general setting the ρ-values and the harmonic Ritz values θ are, again,
on the same rays, but now originating from the target τ ∈ C.

TUHH Jens-Peter M. Zemke Quasi-Minimal Residual Eigenpairs IWASEP 7 16 / 16


	Abstract Krylov methods
	Krylov decompositions

	QMR for eigenpairs
	QMR eigenpairs
	SVD-based characterization
	Grassmannian characterization

	Examples & Pictures
	Graphics guide
	An example

	Conclusion and Outview
	Appendix
	Loss of QMR eigenvalues
	Boundaries and rho-values
	Harmonic Ritz and the SVD
	An extended Jordan block
	``Local optimality'' is indeed a local property
	Lehmann's optimal eigenvalue inclusions
	A note on the Grassmannian optimization
	A relation between harmonic Ritz and rho-values


