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Philosophical considerations A matrix equation

A matrix-theoretical beginning

We start with the equation

AQk

+ Fk

= Qk+1Ck

= QkCk + qk+1ck+1,keT
k .

(1)

This equation is known as

perturbed

Krylov decomposition.

Here, we suppose that

A ∈ C(n,n) is a general square matrix,

Qk+1 =
(
Qk qk+1

)
∈ C(n,k+1) is a matrix of “basis” vectors,

Ck =

(
Ck

ck+1,keT
k

)
∈ C(k+1,k) is an extended Hessenberg matrix,

Fk ∈ C(n,k) is a general perturbation.

TUHH Jens-Peter M. Zemke Abstract Perturbed Krylov Methods GAMM 2006 3 / 40



Philosophical considerations A matrix equation

A matrix-theoretical beginning

We start with the equation

AQk

+ Fk

= Qk+1Ck

= QkCk + qk+1ck+1,keT
k .

(1)

This equation is known as

perturbed

Krylov decomposition.

Here, we suppose that

A ∈ C(n,n) is a general square matrix,

Qk+1 =
(
Qk qk+1

)
∈ C(n,k+1) is a matrix of “basis” vectors,

Ck =

(
Ck

ck+1,keT
k

)
∈ C(k+1,k) is an extended Hessenberg matrix,

Fk ∈ C(n,k) is a general perturbation.

TUHH Jens-Peter M. Zemke Abstract Perturbed Krylov Methods GAMM 2006 3 / 40



Philosophical considerations A matrix equation

A matrix-theoretical beginning

We start with the equation

AQk + Fk = Qk+1Ck

= QkCk + qk+1ck+1,keT
k .

(1)

This equation is known as perturbed Krylov decomposition.

Here, we suppose that

A ∈ C(n,n) is a general square matrix,

Qk+1 =
(
Qk qk+1

)
∈ C(n,k+1) is a matrix of “basis” vectors,

Ck =

(
Ck

ck+1,keT
k

)
∈ C(k+1,k) is an extended Hessenberg matrix,

Fk ∈ C(n,k) is a general perturbation.

TUHH Jens-Peter M. Zemke Abstract Perturbed Krylov Methods GAMM 2006 3 / 40



Philosophical considerations A matrix equation

A matrix-theoretical beginning

We start with the equation

AQk + Fk = Qk+1Ck

= QkCk + qk+1ck+1,keT
k .

(1)

This equation is known as perturbed Krylov decomposition.

Here, we suppose that

A ∈ C(n,n) is a general square matrix,

Qk+1 =
(
Qk qk+1

)
∈ C(n,k+1) is a matrix of “basis” vectors,

Ck =

(
Ck

ck+1,keT
k

)
∈ C(k+1,k) is an extended Hessenberg matrix,

Fk ∈ C(n,k) is a general perturbation.

TUHH Jens-Peter M. Zemke Abstract Perturbed Krylov Methods GAMM 2006 3 / 40



Philosophical considerations A matrix equation

A matrix-theoretical beginning

We start with the equation

AQk + Fk = Qk+1Ck

= QkCk + qk+1ck+1,keT
k .

(1)

This equation is known as perturbed Krylov decomposition.

Here, we suppose that

A ∈ C(n,n) is a general square matrix,

Qk+1 =
(
Qk qk+1

)
∈ C(n,k+1) is a matrix of “basis” vectors,

Ck =

(
Ck

ck+1,keT
k

)
∈ C(k+1,k) is an extended Hessenberg matrix,

Fk ∈ C(n,k) is a general perturbation.

TUHH Jens-Peter M. Zemke Abstract Perturbed Krylov Methods GAMM 2006 3 / 40



Philosophical considerations A matrix equation

A matrix-theoretical beginning

We start with the equation

AQk + Fk = Qk+1Ck

= QkCk + qk+1ck+1,keT
k .

(1)

This equation is known as perturbed Krylov decomposition.

Here, we suppose that

A ∈ C(n,n) is a general square matrix,

Qk+1 =
(
Qk qk+1

)
∈ C(n,k+1) is a matrix of “basis” vectors,

Ck =

(
Ck

ck+1,keT
k

)
∈ C(k+1,k) is an extended Hessenberg matrix,

Fk ∈ C(n,k) is a general perturbation.

TUHH Jens-Peter M. Zemke Abstract Perturbed Krylov Methods GAMM 2006 3 / 40



Philosophical considerations A matrix equation

A matrix-theoretical beginning

We start with the equation

AQk + Fk = Qk+1Ck

= QkCk + qk+1ck+1,keT
k .

(1)

This equation is known as perturbed Krylov decomposition.

Here, we suppose that

A ∈ C(n,n) is a general square matrix,

Qk+1 =
(
Qk qk+1

)
∈ C(n,k+1) is a matrix of “basis” vectors,

Ck =

(
Ck

ck+1,keT
k

)
∈ C(k+1,k) is an extended Hessenberg matrix,

Fk ∈ C(n,k) is a general perturbation.

TUHH Jens-Peter M. Zemke Abstract Perturbed Krylov Methods GAMM 2006 3 / 40



Philosophical considerations A matrix equation

A matrix-theoretical beginning

We start with the equation

AQk + Fk = Qk+1Ck

= QkCk + qk+1ck+1,keT
k .

(1)

This equation is known as perturbed Krylov decomposition.

Here, we suppose that

A ∈ C(n,n) is a general square matrix,

Qk+1 =
(
Qk qk+1

)
∈ C(n,k+1) is a matrix of “basis” vectors,

Ck =

(
Ck

ck+1,keT
k

)
∈ C(k+1,k) is an extended Hessenberg matrix,

Fk ∈ C(n,k) is a general perturbation.

TUHH Jens-Peter M. Zemke Abstract Perturbed Krylov Methods GAMM 2006 3 / 40



Philosophical considerations The iterative point of view

The dependence on the iteration

We investigate this matrix equation iteratively:

AQkel + Fkel = Qk+1Ckel

= QkCkel + qk+1ck+1,kδkl, ∀l 6 k.
(2)

Observations:

I The perturbations {fl = Fkel}k
l=1 enter stage after step l.

I Without perturbations, the Hessenberg structure results in polynomial
dependence of the basis vectors {qj = Qkej}k

j=1 from A.
I We are concerned with quantities from Krylov subspaces. These are

represented as linear combinations Qkz for some z ∈ Ck.

Idea:

I Interpret perturbed Krylov methods as overlay of several polynomial
methods.
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Philosophical considerations The polynomial point of view

Introducing: polynomials

We study polynomials based on the computed Ck or Ck with certain useful
properties.

These polynomials are named by their property.

In [Z, 2005] we considered the following five types of polynomials:

I basis polynomials Bk,
I adjugate polynomials Ak,
I Lagrange polynomials Lk[z−1] and Lk[z

−1],
I Lagrange polynomials Lk[1− δz0] and Lk[1− δz0],
I residual polynomials Rk and Rk.

We restrict ourselves to Ak, Lk[z−1], Lk[1− δz0] and Rk.
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The results on . . . Ritz vectors

Adjugate polynomials

First we consider certain bivariate polynomials – the adjugate polynomials.

I Property:
Ak(z, Ck) = adj(zIk − Ck).

I This implies [Z, 2006]

Ak(θj, Ck)e1 = sj, Cksj = θjsj

for all eigenvalues (Ritz values) θj of Ck.
I Definition:

Ak(θ, z) ≡ χk(θ)− χk(z)
θ − z

.

I Generalization:

Al+1:k(θ, z) ≡ χl+1:k(θ)− χl+1:k(z)
θ − z

, l = 0, 1, . . . , k.
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The results on . . . Ritz vectors

Adjugate polynomials and Ritz vectors

Theorem (Ritz vectors)

Let CkSθ = SθJθ (for a certain Sθ). Let the Ritz matrix be given by Yθ ≡ QkSθ.
Then

vec(Yθ) =


Ak(θ, A)
A′k(θ, A)

...
A(α−1)

k (θ, A)

(α− 1)!

 q1 +
k∑

l=1

c1:l−1


Al+1:k(θ, A)
A′l+1:k(θ, A)

...
A(α−1)

l+1:k (θ, A)

(α− 1)!

 fl, (3)

with derivation with respect to the shift θ.

We might scale differently such that (here only for approximate eigenvectors)

y =
Ak(θ, A)∏k−1
`=1 c`+1,`

q1 +
k∑

l=1

Al+1:k(θ, A)∏k−1
`=l+1 c`+1,`

fl
cl+1,l

.
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The results on . . . QOR iterates

Lagrange polynomials

We consider Lagrange interpolation polynomials interpolating the inverse and
a singularly perturbed identity.

The Lagrange interpolation of the inverse is denoted by Lk[z−1](z).
I Property:

Lk[z−1](Ck) = C−1
k .

I Definition:
Lk[z−1](z) ≡ χk(0)− χk(z)

zχk(0)
= −Ak(0, z)

χk(0)
.

I Generalization:

Ll+1:k[z−1](z) ≡ χl+1:k(0)− χl+1:k(z)
zχl+1:k(0)

= −Al+1:k(0, z)
χl+1:k(0)

, l = 0, 1, . . . , k.
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The results on . . . QOR iterates

Lagrange polynomials and QOR iterates

Theorem (QOR iterates)

Suppose all Cl+1:k are regular. Define zk ≡ C−1
k e1‖r0‖ and xk ≡ Qkzk.

Then

xk = Lk[z−1](A)r0 −
k∑

l=1

zlk Ll+1:k[z−1](A) fl. (4)

Really sloppily speaking, in case of convergence,

x∞ = A−1r0 + A−1F∞z∞ = A−1(r0 + F∞z∞).

Proving convergence is the hard task.
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The results on . . . QOR residuals

Lagrange polynomials (continued)

We consider Lagrange interpolation polynomials interpolating the inverse and
a singularly perturbed identity.

The Lagrange interpolation of the singularly perturbed identity is denoted by
L0

k [1− δz0](z).
I Properties:

L0
k [1− δz0](Ck) = Ik, L0

k [1− δz0](0) = 0.

I Definition:
L0

k [1− δz0](z) ≡
χk(0)− χk(z)

χk(0)
= Lk[z−1](z)z.

I Generalization:

L0
l+1:k[1− δz0](z) ≡

χl+1:k(0)− χl+1:k(z)
χl+1:k(0)

= Ll+1:k[z−1](z)z. l = 0, 1, . . . , k.
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The results on . . . QOR residuals

Residual polynomials

We consider the well-known residual polynomials [Stiefel, 1995] denoted by
Rk(z).

I Properties:
Rk(Ck) = Ok, Rk(0) = 1.

I Definition:

Rk(z) ≡
χk(z)
χk(0)

= 1− L0
k [1− δz0](z) = det(Ik − zC−1

k ).

I Generalization:

Rl+1:k(z) ≡
χl+1:k(z)
χl+1:k(0)

= 1− L0
l+1:k[1− δz0](z). l = 0, 1, . . . , k.

Two types of polynomials ⇒ two expressions for the QOR residuals.
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The results on . . . QOR residuals

Residual polynomials and QOR residuals

Theorem (QOR residuals)

Suppose q1 = r0/‖r0‖ and let all Cl+1:k be invertible. Let xk denote the QOR
iterate and rk = r0 − Axk the corresponding residual.
Then

rk = Rk(A)r0 +
k∑

l=1

zlk L0
l+1:k[1− δz0](A) fl

= Rk(A)r0 −
k∑

l=1

zlk Rl+1:k(A) fl + Fkzk.

(5)

First expression: related to perturbation amplification.
Second expression: related to the attainable accuracy.
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A “numerical” experiment Eigenvectors using Lanczos’ method

An example: Lanczos’ method

We used the diagonal matrix

A = diag([linspace(0,1,50),3])

and the starting vector
e = ones(51,1)

in an implementation of Lanczos’ method in MATLAB on a PC conforming to
ANSI/IEEE 754 with machine precision eps(1) = 2−52 ≈ 2.2204 · 10−16.

At step 10 the first Ritz value has converged (up to machine precision) to the
eigenvalue 3, at step 27 the second one has converged.

Eigenvalues and eigenvectors are computed using MRRR, i.e., LAPACK’s
routine DSTEGR, since MATLAB’s eig (using LAPACK’s DSYEV, i.e., the QR
algorithm implemented as DSTEQR) fails in delivering accurate eigenvectors.

Additionally, we heavily used the symbolic toolbox, i.e., MAPLE.
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A “numerical” experiment Eigenvectors using Lanczos’ method

An example: Lanczos’ method
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