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Philosophical considerations A matrix equation

A matrix-theoretical beginning

We start with the equation

AQx = Or1Cy

T
= OkCr + Grr1Ck+1 1€ -

(1)
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A matrix-theoretical beginning

We start with the equation

AQi + Fi = Oir1Cy

T
= OkCr + Gt 1€kt 1,46 -

(1)

This equation is known as perturbed Krylov decomposition.

Here, we suppose that

A ecln is a general square matrix,

Oir1 = (O qus1) € CHAHD is a matrix of “basis” vectors,
C, = (ckj”; e}{) e C*10 s an extended Hessenberg matrix,
F € CwR) is a general perturbation.
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Philosophical considerations The iterative point of view

The dependence on the iteration

We investigate this matrix equation iteratively:

AQre; + Frep = Qk+1gkel
= OkCrer + iy 1€kt 1,101
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Philosophical considerations The iterative point of view

The dependence on the iteration

We investigate this matrix equation iteratively:

AQre; + Frep = Qry1Cre

(2)
= OkCrer + Giy1Ckr1 40k, VI < k.

Observations:
» The perturbations {f; = Fre,;}_, enter stage after step L.
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Philosophical considerations The iterative point of view

The dependence on the iteration

We investigate this matrix equation iteratively:

AQre; + Frep = Qry1Cre

(2)
= OkCrer + iy 1€kt 1,101 VI < k.

Observations:
» The perturbations {f; = Fre,;}_, enter stage after step L.

» Without perturbations, the Hessenberg structure results in polynomial
dependence of the basis vectors {q; = Qxe;}i_, from A.

» We are concerned with quantities from Krylov subspaces. These are
represented as linear combinations Q,z for some z € Ck.

Idea:

» Interpret perturbed Krylov methods as overlay of several polynomial
methods.
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Philosophical considerations The polynomial point of view

Introducing: polynomials

We study polynomials based on the computed C; or C, with certain useful
properties.
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Philosophical considerations The polynomial point of view

Introducing: polynomials

We study polynomials based on the computed C; or C, with certain useful
properties.

These polynomials are named by their property.

In [Z, 2005] we considered the following five types of polynomials:

» basis polynomials By,

adjugate polynomials Ay,

Lagrange polynomials £i[z~!] and £;[z7'],
Lagrange polynomials £i[1 — d,0] and L;[1 — 0],
residual polynomials R and R,.

vV V. v VY

We restrict ourselves to Ay, Li[z7!], Li[1 — 0] and Ry.
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The resultson ... Ritz vectors

Adjugate polynomials

First we consider certain bivariate polynomials — the adjugate polynomials.
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The resultson ... Ritz vectors

Adjugate polynomials

First we consider certain bivariate polynomials — the adjugate polynomials.

» Property:
Ai(z, C) = adj(zlk — Ci).

» This implies [Z, 2006]
Ak(ej, Ck)el = Sj, Cij = aij
for all eigenvalues (Ritz values) 6; of C.

» Definition:
xi(0) — xi(2)
e,

Ai(0,2) = -

» Generalization:

2(0) — .
Ap(0,2) = ERE ; — ;"“"‘(Z), 1=0,1,...,k
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The resultson ... Ritz vectors

Adjugate polynomials and Ritz vectors

Theorem (Ritz vectors)

Let Ci.Sy = S¢Jy (for a certain Sy). Let the Ritz matrix be given by Y,

Then
A (6,A) A 14(0,A)
1(6,4) ;+1:k(97A)
vec(Yy) = c q1 + Z Cli—1 : Jis
(a—1)! (a - 1).

with derivation with respect to the shift 6.

= OiSe-

@)
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The resultson ... Ritz vectors

Adjugate polynomials and Ritz vectors

Theorem (Ritz vectors)

Let C1.Sy = S¢Jy (for a certain Sy). Let the Ritz matrix be given by Yy = QSp.
Then

A (6,A) Ar1:1(0,A)
,/((9,A) k ;+1:k(9’A)
vec(Yy) = : q1 + Z Cri-1 : Jis 3)
AV (0,4) = Al (6,4)
(a—1)! (—1)!

with derivation with respect to the shift 6.

We might scale differently such that (here only for approximate eigenvectors)

A(0,A ¢ A, 1k 0,A fi
=1 CZJFI,Z =1 H[ I+1 C[+1 Vi Cl+l l
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The resultson ... QOR iterates

Lagrange polynomials

We consider Lagrange interpolation polynomials interpolating the inverse and
a singularly perturbed identity.
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The resultson ... QOR iterates

Lagrange polynomials

We consider Lagrange interpolation polynomials interpolating the inverse and
a singularly perturbed identity.

The Lagrange interpolation of the inverse is denoted by £;[z7!](z)-
» Property:
Lilz7')(C) = ¢
» Definition:
Xk(0) —xu(z) _ Ax(0,2)

L0 ="20 0 T o)

» Generalization:

_ £(0) — x414(2) A1:4(0,2)
Croale(2) = X ) AR 0,k
wle(2) z2X1+1:4(0) Xi+1:x(0)
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The resultson ... QOR iterates

Lagrange polynomials and QOR iterates

Theorem (QOR iterates)

Suppose all C1y1 are regular. Define z, = C; ey ||ro| and xy = Qxzi.-
Then

xe = L[z (A)ro — Zzlk Lotz 1(A) £ (4)
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Then

xe = L[z (A)ro — Zzlk Lotz 1(A) £ (4)

Really sloppily speaking, in case of convergence,

Xoo = A7 g+ AT Fogze = A_l(ro + FooZoo)-
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The resultson ... QOR iterates

Lagrange polynomials and QOR iterates

Theorem (QOR iterates)

Suppose all C1y1 are regular. Define z, = C; ey ||ro| and xy = Qxzi.-
Then

xe = L[z (A)ro — Zzlk Lotz 1(A) £ (4)

Really sloppily speaking, in case of convergence,

Xoo = A7 g+ AT Fogze = A_l(ro + FooZoo)-

Proving convergence is the hard task.
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The resultson ... QOR residuals

Lagrange polynomials (continued)

We consider Lagrange interpolation polynomials interpolating the inverse and
a singularly perturbed identity.
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Lagrange polynomials (continued)

We consider Lagrange interpolation polynomials interpolating the inverse and
a singularly perturbed identity.

The Lagrange interpolation of the singularly perturbed identity is denoted by
L1 = 5,0](2).
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The resultson ... QOR residuals

Lagrange polynomials (continued)

We consider Lagrange interpolation polynomials interpolating the inverse and
a singularly perturbed identity.

The Lagrange interpolation of the singularly perturbed identity is denoted by
L1 = 5,0](2).
» Properties:

L1 = 60)(C) =T, L{[1 = 6)(0) = 0.
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The resultson ... QOR residuals

Lagrange polynomials (continued)

We consider Lagrange interpolation polynomials interpolating the inverse and
a singularly perturbed identity.

The Lagrange interpolation of the singularly perturbed identity is denoted by
L1 = 5,0](2).
» Properties:
LN —60l(C) =L, LY —5,](0) =0.

» Definition:

91— 5.0)(3) = % e
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The resultson ... QOR residuals

Lagrange polynomials (continued)

We consider Lagrange interpolation polynomials interpolating the inverse and
a singularly perturbed identity.

The Lagrange interpolation of the singularly perturbed identity is denoted by
L1 = 5,0](2).
» Properties:

L1 = 60)(C) =T, L{[1 = 6)(0) = 0.

» Definition:

91— 5.0)(3) = % e

» Generalization:

Xi+1:£(0) — Xi1:4(2)

1+1 w1 = 0:0](2) = Xim12(0)

=Lz @)z 1=0,1,...,k
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The resultson ... QOR residuals

Residual polynomials

We consider the well-known residual polynomials [Stiefel, 1995] denoted by
Ri(z2).
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We consider the well-known residual polynomials [Stiefel, 1995] denoted by
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» Properties:
Ri(Cy) = O, Ri(0) = 1.

» Definition:
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=

Jens-Peter M. Zemke Abstract Perturbed Krylov Methods GAMM 2006

11/40



The resultson ... QOR residuals

Residual polynomials

We consider the well-known residual polynomials [Stiefel, 1995] denoted by
Ri(z2).

» Properties:
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» Definition:

Ri(z) = X]’:((g)) 1= L0l = 60)(2) = det(l — 2C.).
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» Generalization:

*\Z
Riyix(z) = Xivil2) 1= L% 1= 60](z).  1=0,1,...,k
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The resultson ... QOR residuals

Residual polynomials

We consider the well-known residual polynomials [Stiefel, 1995] denoted by
Ri(z2).

» Properties:
Ri(Cy) = O, Ri(0) = 1.

» Definition:

Ri(z) = X]]:(((Z))) =1— LYl — 6,0)(z) = det(lx — zC; ).

=

» Generalization:

*\Z
Riyix(z) = Xivil2) 1= L% 1= 60](z).  1=0,1,...,k
Xi+1:4(0)

Two types of polynomials = two expressions for the QOR residuals.
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The resultson ... QOR residuals

Residual polynomials and QOR residuals

Theorem (QOR residuals)

Suppose g1 = ry/||rol| and let all Ci,.1. be invertible. Let x;, denote the QOR
iterate and r, = ry — Ax; the corresponding residual.

Then
k
re =Ri(A)ro + D 2 Lfy 14 [1 — 5)(A)fi
=1
k
= Ri(A)ro — > zu Rip1x(A) fi + Fizi
=1

(®)
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The resultson ... QOR residuals

Residual polynomials and QOR residuals

Theorem (QOR residuals)

Suppose g1 = ry/||rol| and let all Ci,.1. be invertible. Let x;, denote the QOR
iterate and r, = ry — Ax; the corresponding residual.
Then

k

re =Ri(A)ro + D 2 Lfy 14 [1 — 5)(A)fi
=1
k

= Ri(A)ry — Z 2 Riv1:x(A) fi + Fizg.
=1

(®)

First expression: related to perturbation amplification.
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The resultson ... QOR residuals

Residual polynomials and QOR residuals

Theorem (QOR residuals)

Suppose g1 = ry/||rol| and let all Ci,.1. be invertible. Let x;, denote the QOR
iterate and r, = ry — Ax; the corresponding residual.
Then

k

re =Ri(A)ro + D 2 Lfy 14 [1 — 5)(A)fi
=1

) (5)

= Ri(A)ro — > zu Rip1x(A) fi + Fizi
=1

First expression: related to perturbation amplification.
Second expression: related to the attainable accuracy.
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A “numerical” experiment Eigenvectors using Lanczos’ method

An example: Lanczos’ method

We used the diagonal matrix
A =diag([linspace(0,1,50),3])

and the starting vector
e =ones (51,1)

in an implementation of Lanczos’ method in MATLAB on a PC conforming to
ANSI/IEEE 754 with machine precision eps (1) =272 ~2.2204 - 1071,
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and the starting vector

e =ones (51,1)
in an implementation of Lanczos’ method in MATLAB on a PC conforming to
ANSI/IEEE 754 with machine precision eps (1) =272 ~2.2204 - 1071,

At step 10 the first Ritz value has converged (up to machine precision) to the
eigenvalue 3, at step 27 the second one has converged.
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An example: Lanczos’ method

We used the diagonal matrix
A =diag([linspace(0,1,50),3])

and the starting vector
e =ones (51,1)

in an implementation of Lanczos’ method in MATLAB on a PC conforming to
ANSI/IEEE 754 with machine precision eps (1) =272 ~2.2204 - 1071,

At step 10 the first Ritz value has converged (up to machine precision) to the
eigenvalue 3, at step 27 the second one has converged.

Eigenvalues and eigenvectors are computed using MRRR, i.e., LAPACK’s
routine DSTEGR, since MATLAB’s eig (using LAPACK’s DSYEV, i.e., the QR
algorithm implemented as DSTEQR) fails in delivering accurate eigenvectors.
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A “numerical” experiment Eigenvectors using Lanczos’ method

An example: Lanczos’ method

We used the diagonal matrix
A =diag([linspace(0,1,50),3])

and the starting vector

e =ones (51,1)
in an implementation of Lanczos’ method in MATLAB on a PC conforming to
ANSI/IEEE 754 with machine precision eps (1) =272 ~2.2204 - 1071,

At step 10 the first Ritz value has converged (up to machine precision) to the
eigenvalue 3, at step 27 the second one has converged.

Eigenvalues and eigenvectors are computed using MRRR, i.e., LAPACK’s
routine DSTEGR, since MATLAB’s eig (using LAPACK’s DSYEV, i.e., the QR
algorithm implemented as DSTEQR) fails in delivering accurate eigenvectors.

Additionally, we heavily used the symbolic toolbox, i.e., MAPLE.
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nczos’ method

first trailing adjugate polynomials at )\i and maximal 8, step = 7

scaled eigenvector

first adjugate polynomial
second adjugate polynomial
third adjugate polynomial
fourth adjugate polynomial
fifth adjugate polynomial
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nczos’ method

first trailing adjugate polynomials at )\i and maximal 6, step = 8
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nczos’ method

first trailing adjugate polynomials at )\i and maximal 6, step = 9
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nczos’ method

first trailing adjugate polynomials at >\i and maximal 6, step =
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nczos’ method

first trailing adjugate polynomials at >\i and maximal 6, step =
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nczos’ method

first trailing adjugate polynomials at >\i and maximal 8, step = 12
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nczos’ method

first trailing adjugate polynomials at >\i and maximal 6, step =
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nczos’ method

first trailing adjugate polynomials at >\i and maximal 8, step = 14
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nczos’ method

first trailing adjugate polynomials at >\i and maximal 6, step =

scaled eigenvector
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nczos’ method

first trailing adjugate polynomials at >\i and maximal 6, step =

scaled eigenvector

first adjugate polynomial
second adjugate polynomial
third adjugate polynomial
fourth adjugate polynomial
fifth adjugate polynomial
sixth adjugate polynomial

seventh adjugate polynomial
T T

.
15 2 2.5
real eigenvalues

@
2
3
=
=
[
=
=
4
=
=
15
2
=
S
2
=
@
<
8
3
=]
@
]
@
2
=1
o
2
2
©

Jens-Peter M. Zemke Abstract Perturbed Krylov Methods



nczos’ method

first trailing adjugate polynomials at >\i and maximal 6, step =

scaled eigenvector
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nczos’ method

first trailing adjugate polynomials at >\i and maximal 6, step = 18
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nczos’ method

first trailing adjugate polynomials at >\i and maximal 6, step = 19
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nczos’ method

first trailing adjugate polynomials at >\i and maximal 6, step = 20
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nczos’ method

first trailing adjugate polynomials at >\i and maximal 8, step = 21
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nczos’ method

first trailing adjugate polynomials at >\i and maximal 8, step = 22

scaled eigenvector

first adjugate polynomial
second adjugate polynomial
third adjugate polynomial
fourth adjugate polynomial
fifth adjugate polynomial
sixth adjugate polynomial

seventh adjugate polynomial
T T

.
15 2 2.5
real eigenvalues

@
2
3
=
=
[
=
=
4
=
=
15
2
=
S
2
=
@
<
8
3
=]
@
]
@
2
=1
o
2
2
©

Jens-Peter M. Zemke Abstract Perturbed Krylov Methods



nczos’ method

first trailing adjugate polynomials evaluated at Ai for a cluster made of em and emil, step = 23
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0.5 1 1.5 2 2.5
real eigenvalues; cluster size = 1.06484949774e—07
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nczos’ method

first trailing adjugate polynomials evaluated at Ai for a cluster made of em and emil, step = 24
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real eigenvalues; cluster size = 9.11929924671e—10
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nczos’ method

first trailing adjugate polynomials evaluated at Ai for a cluster made of em and emil, step = 25
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nczos’ method

first trailing adjugate polynomials evaluated at Ai for a cluster made of em and emil, step = 26
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nczos’ method

first trailing adjugate polynomials evaluated at Ai for a cluster made of em and emil, step = 27
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nczos’ method

first trailing adjugate polynomials evaluated at Ai for a cluster made of em and emil, step = 28
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nczos’ method

first trailing adjugate polynomials evaluated at Ai for a cluster made of em and emil, step = 29
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nczos’ method

first trailing adjugate polynomials evaluated at Ai for a cluster made of em and em,l, step = 30
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nczos’ method

first trailing adjugate polynomials evaluated at Ai for a cluster made of em and emil, step = 31

scaled eigenvector (m)
scaled eigenvector (m—1)
first adjugate (m)
first adjugate (m-1)
second adjugate (m)
second adjugate (m—1)
third adjugate (m)
third adjugate (m—1)
“principal” vector (m)
“principal” vector (m—1)
N

w
=]
2
=
=
[}
=
=
o
s
=
5
2
=
S
2
=
@
<
8
3
=]
@
]
@
2
=1
o
3
2
©

. . n
0.5 1 1.5 2 2.5
real eigenvalues; cluster size = 2.14522996773e—16

Jens-Peter M. Zemke Abstract Perturbed Krylov Methods



nczos’ method

first trailing adjugate polynomials evaluated at Ai for a cluster made of em and emil, step = 32
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nczos’ method

first trailing adjugate polynomials evaluated at Ai for a cluster made of em and em,l, step = 33
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