On Generalized Schur Algorithms

Jens-Peter M. Zemke
zemke@tu-harburg.de

Institut flir Numerische Simulation
Technische Universitat Hamburg-Harburg

13.12.2006

Technische Universitit Hamburg-Harburg

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag 1/54

http://www.tu-harburg.de/~matjz/
http://www.tu-harburg.de/mat/
http://www.tu-harburg.de/

Outline

Classification and normal forms of functions
Schur functions
Jacobi transformation
Cayley transform
Carathéodory functions
Matrix decomposition

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Classification and normal forms of functions
Schur functions
Jacobi transformation
Cayley transform
Carathéodory functions
Matrix decomposition

Schur algorithm; modern form
Reformulation of Schur’s expansion
Displacement structure
Cholesky decomposition
The Schur algorithm

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag 2/54

Classification and normal forms of functions
Schur functions
Jacobi transformation
Cayley transform
Carathéodory functions
Matrix decomposition

Schur algorithm; modern form
Reformulation of Schur’s expansion
Displacement structure
Cholesky decomposition
The Schur algorithm

Generalized Schur algorithms
Displacement structure
Fundamental properties
A generalized Schur algorithm

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag 2/54

Classification and normal forms of functions Schur functions

Outline

Classification and normal forms of functions
Schur functions

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Classification and normal forms of functions Schur functions

Schur functions

Schur [Schur, 1917/1918] investigated analytic functions bounded by one in
modulus in the open unit disc D. These functions are nowadays known as
Schur functions.

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Classification and normal forms of functions Schur functions

Schur functions

Schur [Schur, 1917/1918] investigated analytic functions bounded by one in
modulus in the open unit disc D. These functions are nowadays known as
Schur functions.

Schur denoted the set of all such functions by €. In modern notation, when
s € ¢,

s(z) = iskzk, Is(z)| <1, Jzl < 1. (1)
k=0

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag 4/54

Classification and normal forms of functions Schur functions

Schur functions

Schur [Schur, 1917/1918] investigated analytic functions bounded by one in
modulus in the open unit disc D. These functions are nowadays known as
Schur functions.

Schur denoted the set of all such functions by €. In modern notation, when
s € ¢,

s(z) = iskzk, Is(z)| <1, Jzl < 1. (1)
k=0

In network theory, Schur functions are known as scattering functions.

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag 4/54

Classification and normal forms of functions Schur functions

Schur functions

Schur [Schur, 1917/1918] investigated analytic functions bounded by one in
modulus in the open unit disc D. These functions are nowadays known as
Schur functions.

Schur denoted the set of all such functions by €. In modern notation, when
s € ¢,

s(z) = iskzk, Is(z)| <1, Jzl < 1. (1)
k=0

In network theory, Schur functions are known as scattering functions.

It turns out that the coefficients s, of the power series are not that useful when
investigating Schur functions. Instead, the so-called Schur coefficients better
describe their properties, and thus, play the dominant réle.

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Classification and normal forms of functions Schur functions

Expansion of Schur functions

Schur used that for o € C with |a| < 1 the “linear” transformation (Blaschke
factor, no normalization; Moebius transformation)

I—

B(z) =)

1—az

maps D to itself.

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag 5/54

Classification and normal forms of functions Schur functions

Expansion of Schur functions

Schur used that for o € C with |a| < 1 the “linear” transformation (Blaschke
factor, no normalization; Moebius transformation)

-«
maps D to itself and by Schwarz’'s Lemma (set f(z) = zs(z))
{ls)I <1, ld <1} & Alas@@)I<1, [z <1} 3)

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Classification and normal forms of functions Schur functions

Expansion of Schur functions

Schur used that for o € C with |a| < 1 the “linear” transformation (Blaschke
factor, no normalization; Moebius transformation)

I—«

Bl =15, (2)
maps D to itself and by Schwarz’s Lemma (set f(z) = zs(z))
{ls)I <1, ld <1} & Alas@)I<1, [z <1}, 3)

to propose a recursive expansion (kettenbruchartiger Algorithmus) of a Schur
function s € €.

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Classification and normal forms of functions Schur functions

Expansion of Schur functions

Schur used that for o € C with |a| < 1 the “linear” transformation (Blaschke
factor, no normalization; Moebius transformation)

I—

Bl =15, (2)
maps D to itself and by Schwarz’s Lemma (set f(z) = zs(z))
{ls)I <1, ld <1} & Alas@)I<1, [z <1}, 3)

to propose a recursive expansion (kettenbruchartiger Algorithmus) of a Schur
function s € €. Set s = s and perform

_lsi(z) = .
siv1(z) = gﬁl&(z), i = 5i(0). (4)

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag 5/54

Classification and normal forms of functions Schur functions

Expansion of Schur functions

Schur used that for o € C with |a| < 1 the “linear” transformation (Blaschke
factor, no normalization; Moebius transformation)

I—«

Bl =15, (2)
maps D to itself and by Schwarz’s Lemma (set f(z) = zs(z))
{ls)I <1, ld <1} & Alas@)I<1, [z <1}, 3)

to propose a recursive expansion (kettenbruchartiger Algorithmus) of a Schur
function s € €. Set s = s and perform

1 si(z) — i

21— F5:(2) i = 5i(0). (4)

siv1(z) =

Then all {s;}, satisfy |s;(z)| < 1.

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Classification and normal forms of functions Schur functions

Expansion of Schur functions

Schur used that for o € C with |a| < 1 the “linear” transformation (Blaschke
factor, no normalization; Moebius transformation)

-«
maps D to itself and by Schwarz’s Lemma (set f(z) = zs(z))
{ls)I <1, ld <1} & Alas@)I<1, [z <1}, 3)

to propose a recursive expansion (kettenbruchartiger Algorithmus) of a Schur
function s € €. Set s = s and perform

1 si(z) — i

T-ve) T 5i(0). (4)

siv1(z) =

Then all {s;}", satisfy |s;(z)| < 1. The constants ~; are the aforementioned
Schur coefficients or reflection coefficients.

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Classification and normal forms of functions Schur functions

Rational expansion of Schur functions

Schur developed recursions for the expansion by writing the function s in
terms of a rational function,

_alz) Do az

s(z) = bo) - SF b by # 0. (5)

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Classification and normal forms of functions Schur functions

Rational expansion of Schur functions

Schur developed recursions for the expansion by writing the function s in
terms of a rational function,

a(z) _ Yispmd
=% . by #0. 5
=0 = e 7 ©
Using determinal identities Schur proved that the functions {s;}2, can be
expressed according to
Dy(z)
A,‘(Z)‘

si(z) = — (6)

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag 6/54

Classification and normal forms of functions Schur functions

Rational expansion of Schur functions

Schur developed recursions for the expansion by writing the function s in
terms of a rational function,

s(z) = % %Z— Z"Zk, bo # 0. (5)

Using determinal identities Schur proved that the functions {s;}2, can be

expressed according to
Di(z)

i = — 5 6
5i(2) e (6)
where he additionally defined analytic functions

Z a,+kz and h Z bH.ka (7)

k=0

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag 6/54

Classification and normal forms of functions Schur functions

Rational expansion of Schur functions

Schur developed recursions for the expansion by writing the function s in
terms of a rational function,

s(z) = % %Z— Z"Zk, bo # 0. (5)

Using determinal identities Schur proved that the functions {s;}2, can be
expressed according to
Di(z)

i = — 5 6
5i(2) e (6)
where he additionally defined analytic functions

Z a,+kz and h Z bH.ka (7)

k=0

and gave determinal expressions for D;(z) and A;(z) (the next two pages .. .)

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Classification and normal forms of functions Schur functions

Explicit solution of the recursion

(remember that g;(z) = Y0 @izt and hi(z) = 302 bisk)

Di(z) =

Jens-Peter M. Zemke

- Slo o

0 ap dp
0 0 ap
0 0 O
by 0 0
0 by b
0 0 b
0 0 O
a 0 0

On Generalized Schur Algorithms

aj—1
aji—p
ai—3

by

g (2)
gi-1(2)
gi—z(z)

g1(2)
h,- (Z)
hi—1(z)
hi—»(z)

hl-(Z)

Oberseminar-Vortrag

(8)

Classification and normal forms of functions Schur functions

Explicit solution of the recursion

(remember that g;(z) = Y0 @izt and hi(z) = 302 bisk)

by 0 0 a ar --- aiyr gi-1(2)

1_,1 1_,0 0 0 a - ai—3 gi—(2)

b, b 0 0 0 - a4 g3
(o |bic1 bia bp 0 0 - 0 80(2) 9
AR =1%o 0 by bi -+ bia hia(2) ©

a a 0 0 by -+ bi_3 hia(2)

a a, 0 0 0 - big hs(z)

ai—l ai—Z e 50 0 0 R 0 hO(Z)

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Classification and normal forms of functions Schur functions

A Toeplitz reformulation

Following [Toeplitz, 1911] Schur associated matrices to every power series as
follows. Let ¢« and b be the power series defined as

a(z) = Zakzk, b(z) = Zbkzk. (10)
k=0 k=0

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag 9/54

Classification and normal forms of functions Schur functions

A Toeplitz reformulation

Following [Toeplitz, 1911] Schur associated matrices to every power series as
follows. Let ¢« and b be the power series defined as

a(z) = Zakzk, b(z) = Zbkzk. (10)
k=0 k=0

Then infinite upper triangular Toeplitz matrices A and B associated to a and b
are defined by

apg ap --- by by

A= a .|, B= by . (11)

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag 9/54

Classification and normal forms of functions Schur functions

A Toeplitz reformulation

Following [Toeplitz, 1911] Schur associated matrices to every power series as
follows. Let ¢« and b be the power series defined as

a(z) = Zakzk, b(z) = Zbkzk. (10)
k=0 k=0

Then infinite upper triangular Toeplitz matrices A and B associated to a and b
are defined by

apg dadp - b() b]

A= a |, B= by |, (11)

and infinite Hermitean matrices 2l and 8 associated to a and b are defined by
A = A"A and B = BB.

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag 9/54

Classification and normal forms of functions Schur functions

The matrix counterpart

The Schur coefficients are given by

Yi = S,'(O) (1 2)

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Classification and normal forms of functions Schur functions

The matrix counterpart

The Schur coefficients are given by the fractions

i = 5i(0) = -~ (12)

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Classification and normal forms of functions Schur functions

The matrix counterpart

The Schur coefficients are given by the fractions

D;(0) d;
5 (12)

= 5(0) =~) =

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Classification and normal forms of functions Schur functions

The matrix counterpart

The Schur coefficients are given by the fractions

Do) 4
i = si(0) = NS

Due to the underlying relations, the reflection coefficients satisfy

0i—10i+1 1
bo=1 0_1=—.
512) 0) b%

1=yl =

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

(12)

Classification and normal forms of functions Schur functions

The matrix counterpart

The Schur coefficients are given by the fractions

_ _ D;(0)
vi = 5:(0) = NI (12)
Due to the underlying relations, the reflection coefficients satisfy
0i—10i+1 1
1— |y = , 6 =16 =—. 1

Based on the commutativity of Toeplitz matrices Schur proved that the
determinants ¢; are also the i x i leading principal determinants of the infinite
Hermitean matrix (Hermitean form)

H =99 (14)

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag 10/54

Classification and normal forms of functions Jacobi transformation

Outline

Classification and normal forms of functions

Jacobi transformation

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Classification and normal forms of functions Jacobi transformation

Jacobi transformation

[Schur, 1917/1918] remarks on pages 217—-218:

“Der Ubergang [..] entspricht also dem ersten Schritt bei der
Jacobischen Transformation der Form $(xo, x1,...,x,).”

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag 12/54

Classification and normal forms of functions Jacobi transformation

Jacobi transformation

[Schur, 1917/1918] remarks on pages 217—-218:

“Der Ubergang [..] entspricht also dem ersten Schritt bei der
Jacobischen Transformation der Form $(xo, x1,...,x,).”

Schur’s treatment reminds of [Toeplitz, 1907] who cites Jacobi, but remarks:

“Allgemein flir Bilinearformen wird diese Transformation von Jacobi
aufgestellt; flir quadratische Formen wird sie schon von Lagrange
und GauB3 verwendet.”

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Classification and normal forms of functions Jacobi transformation

Jacobi transformation

[Schur, 1917/1918] remarks on pages 217—-218:

“Der Ubergang [..] entspricht also dem ersten Schritt bei der
Jacobischen Transformation der Form $(xo, x1,...,x,).”

Schur’s treatment reminds of [Toeplitz, 1907] who cites Jacobi, but remarks:

“Allgemein flir Bilinearformen wird diese Transformation von Jacobi
aufgestellt; flir quadratische Formen wird sie schon von Lagrange
und GauB3 verwendet.”

[Lev-Ari & Kailath, 1986] state “incorrectly” (i.e., simplified) that the mentioned
“Jacobi Transformation” [Jacobi, 1857] is the nested computation of the LDLT
decomposition of H (a finite section of §),

H = LDL" (15)

with L unit diagonal lower triangular and D diagonal.

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Classification and normal forms of functions Jacobi transformation

Jacobi transformation; modern style

In [Kailath & Sayed, 1999] the authors “correct” the decomposition and call
“Schur’s” variant of Jacobi’s transformation the Gau3-Schur reduction.

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag 13/54

Classification and normal forms of functions Jacobi transformation

Jacobi transformation; modern style

In [Kailath & Sayed, 1999] the authors “correct” the decomposition and call
“Schur’s” variant of Jacobi’s transformation the Gau3-Schur reduction.

In this variant H is decomposed into
H=LD"'L", [;=d;, (16)

where L is lower triangular and D is diagonal.

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag 13/54

Classification and normal forms of functions Jacobi transformation

Jacobi transformation; modern style

In [Kailath & Sayed, 1999] the authors “correct” the decomposition and call
“Schur’s” variant of Jacobi’s transformation the Gau3-Schur reduction.

In this variant H is decomposed into

H=LD 'L I,=d;, (16)
where L is lower triangular and D is diagonal.
Actually, [Jacobi, 1857] computes an LDMT decomposition using A(®) = A and

the iteration
(i=1) ,i=1)

i a(i_l)

i

a

AW — A1) _ (17)

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag 13/54

Classification and normal forms of functions Jacobi transformation

Jacobi transformation; modern style

In [Kailath & Sayed, 1999] the authors “correct” the decomposition and call
“Schur’s” variant of Jacobi’s transformation the Gau3-Schur reduction.

In this variant H is decomposed into

H=LD 'L I,=d;, (16)
where L is lower triangular and D is diagonal.
Actually, [Jacobi, 1857] computes an LDMT decomposition using A(®) = A and

the iteration
(i=1) ,i=1)

i

a

AW — A1) _ (17)

Additionally, the resulting quantities are expressed (as usually those times) in
terms of determinants.

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Classification and normal forms of functions Cayley transform

Outline

Classification and normal forms of functions

Cayley transform

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Classification and normal forms of functions Cayley transform

Cayley transform

The Cayley transform maps the open resp.
closed half-plane onto the open resp.
closed unit disc.

Jens-Peter M. Zemke On Generalized Schur Algorithms

Oberseminar-Vortrag

Classification and normal forms of functions Cayley transform

Cayley transform

The Cayley transform maps the open resp.
closed half-plane onto the open resp.
closed

Jens-Peter M. Zemke On Generalized Schur Algorithms

Oberseminar-Vortrag

Classification and normal forms of functions Cayley transform

Cayley transform

The Cayley transform maps the open resp.
closed half-plane onto the open resp.
closed

Z:H-w
_ 1=z
W= 1 Z

\+/

This conformal map preserves analyticity.

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Classification and normal forms of functions Carathéodory functions

Outline

Classification and normal forms of functions

Carathéodory functions

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Classification and normal forms of functions Carathéodory functions

Carathéodory functions

Schur’s investigations are closely related to Toeplitz’ and Carathéodory’s work
on functions with positive real part,

cr) =Y ad, R(cz) >0, Jzf<L (18)
k=0

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Classification and normal forms of functions Carathéodory functions

Carathéodory functions

Schur’s investigations are closely related to Toeplitz’ and Carathéodory’s work
on functions with positive real part,

c(z) = chzk, R(c(z)) >0, |7 <1. (18)
k=0

These functions are known as Carathéodory functions.

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Classification and normal forms of functions Carathéodory functions

Carathéodory functions

Schur’s investigations are closely related to Toeplitz’ and Carathéodory’s work
on functions with positive real part,

c(z) = chzk, R(c(z)) >0, |7 <1. (18)
k=0

These functions are known as Carathéodory functions. A function is a
Carathéodory function, if and only if “all” Hermitean Toeplitz matrices

Co + ¢o c Cm
4 Co+co - :
T, = 1 0 0 (19)
- '. " cl
Em E] E()+Co

are positive definite, {T,, > 0} _,, det(T,,) =0, m > n.

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag 17/54

Classification and normal forms of functions Carathéodory functions

Schur’s proof

Carathéodory functions can be transformed to Schur functions via a Cayley
transform that maps the positive real complex (right) half-plane onto the
interior of the unit disc,

() = 1<) (20)

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag 18/54

Classification and normal forms of functions Carathéodory functions

Schur’s proof

Carathéodory functions can be transformed to Schur functions via a Cayley
transform that maps the positive real complex (right) half-plane onto the
interior of the unit disc,

1 —¢(z)
= . 20
s(2) 1+ c(z) (20)
If the Carathéodory function is given in rational form,
(z) = 6() _ 2ucoh O“kz o b #0, (1)

b(z) Zk —ob

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag 18/54

Classification and normal forms of functions Carathéodory functions

Schur’s proof

Carathéodory functions can be transformed to Schur functions via a Cayley
transform that maps the positive real complex (right) half-plane onto the
interior of the unit disc,

1 —c(2)
s(z) = T e(2) (20)

If the Carathéodory function is given in rational form,

a(z) Z/?ooakz
c(z) = —= 2 by # 0, (21)
=50~ Sebd ™
then the associated Schur function takes the form
b(z) — a(z)
= 7 e 22
5(2) b(z) + a(z) (22)

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag 18/54

Classification and normal forms of functions Carathéodory functions

Schur’s proof

Since the Cayley transformed Carathéodory function is given by

_ b(z) —a(z)
s(z) = M7 (23)

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Classification and normal forms of functions Carathéodory functions

Schur’s proof

Since the Cayley transformed Carathéodory function is given by

_ b(z) —a(z)
s(z) = M7 (23)

the associated Hermitean form is given by

H=(B+A)B+A) - (B-A)"(B-A)=2B"A+A"B), (24)

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Classification and normal forms of functions Carathéodory functions

Schur’s proof

Since the Cayley transformed Carathéodory function is given by

_ b(z) —a(z)
s(z) = M7 (23)

the associated Hermitean form is given by

H=(B+A)B+A) - (B-A)"(B-A)=2B"A+A"B), (24)

and taking b(z) = 1 gives a multiple of the aforementioned Toeplitz matrix,

= 2(B"A + A"B) = 2(1"A + AM'I) (25)
=2(A+A") =2(Cc+ M. (26)

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag 19/54

Classification and normal forms of functions Matrix decomposition

Outline

Classification and normal forms of functions

Matrix decomposition

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Classification and normal forms of functions Matrix decomposition

Utilizing these relations

The test whether a function is a Schur function is based on the Schur
coefficients (reflection coefficients).

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Classification and normal forms of functions Matrix decomposition

Utilizing these relations

The test whether a function is a Schur function is based on the Schur
coefficients (reflection coefficients).

Since the Schur functions are closely linked to Carathéodory functions, we
might suspect a certain relation between

|l <1 and §; > 0. (27)

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag 21/54

Classification and normal forms of functions Matrix decomposition

Utilizing these relations

The test whether a function is a Schur function is based on the Schur
coefficients (reflection coefficients).

Since the Schur functions are closely linked to Carathéodory functions, we
might suspect a certain relation between

|l <1 and ¢; >0, (27)
and the diagonal elements ¢; of the Cholesky factor of the decomposition of
the associated Toeplitz matrices,

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Classification and normal forms of functions Matrix decomposition

Utilizing these relations

The test whether a function is a Schur function is based on the Schur
coefficients (reflection coefficients).

Since the Schur functions are closely linked to Carathéodory functions, we
might suspect a certain relation between

|l <1 and ¢; >0, (27)
and the diagonal elements ¢; of the Cholesky factor of the decomposition of
the associated Toeplitz matrices,

It turns out that the Schur algorithm (as a byproduct) cheaply computes the
Cholesky decomposition.

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Schur algorithm; modern form Reformulation of Schur’s expansion

Outline

Schur algorithm; modern form
Reformulation of Schur’s expansion

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Schur algorithm; modern form Reformulation of Schur’s expansion

Schur’s expansion

With
s@=50 G@=(n6) ak) (29)

we can state a “linearized” version of Schur’s expansion.

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Schur algorithm; modern form Reformulation of Schur’s expansion

Schur’s expansion

With
5 =25 Gi(a) = (b)) ai2) (29)

we can state a “linearized” version of Schur’s expansion,

Git1(z) = Gi(z) ¢; (_17 _17i> (8 (1)> , ¢ = arbitrary. (30)

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag 23/54

Schur algorithm; modern form Reformulation of Schur’s expansion

Schur’s expansion

With
s@=30 6= (0 W)

we can state a “linearized” version of Schur’s expansion,

Git1(z) = Gi(z) ¢ (_171_ _17i> (8 (1)> , ¢ = arbitrary,

since

=

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

(29)

(30)

(31)

(32)

Schur algorithm; modern form Reformulation of Schur’s expansion

Schur’s expansion

With
s@=30 6= (0 W)

we can state a “linearized” version of Schur’s expansion,

Git1(z) = Gi(z) ¢ (_171_ _17i> (8 (1)> , ¢ = arbitrary,

since

a I(Z) _ 1 S,’(Z) — i
siv1(z) = bl:l(Z) T zl— ¥;si(2)

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

(29)

(30)

(31)

(32)

Schur algorithm; modern form Reformulation of Schur’s expansion

Schur’s expansion

With
s@=30 6= (0 W)

we can state a “linearized” version of Schur’s expansion,

1 —y 0 .
G =Gl o (L Y (5 1) o= aivary,
since

siv1(z) = aiy1(2) _1 si(z) — v bi2)
ol bin(z) z1—7s:z) biz)

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

(29)

(30)

(31)

(32)

Schur algorithm; modern form Reformulation of Schur’s expansion

Schur’s expansion

With

s@=30 6= (0 W) (29)

we can state a “linearized” version of Schur’s expansion,

G =6 o (L (5). e-atiay. (0

since

_ai1(z) 1si(z) =y bi(2)
10 = 5 T T T me) bl 1)

_ Lai(z) — vibi(2)
- zbi(z) — Wai(z) (32)

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag 23/54

Schur algorithm; modern form Reformulation of Schur’s expansion

Schur’s expansion

With
=29 G = (bi2) ai2)) (29)

we can state a “linearized” version of Schur’s expansion,

Gn@ =@ e L) (G 7). a-atiay, @

-7 1
since
_ain(@) _ 1 si@) v bi2)
sipi(z) = bis1 () Tzl —7,;51(z) bi(2) (31)
' AN
_ Lai(z) —yibi(z) Gl (!) : (32)

© z2bi(z) —7aiz) Gi(2) (_%) -z.

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag 23/54

Schur algorithm; modern form Reformulation of Schur’s expansion

Schur’s expansion

With
=29 G = (bi2) ai2)) (29)

we can state a “linearized” version of Schur’s expansion,

Git1(z) = Gi(z) ¢ (! _7i> (8 (1)> , ¢ = arbitrary? (30)

-7 1
since
_ain(@) _ 1 si@) v bi2)
sipi(z) = bis1 () Tzl —7,;51(z) bi(2) (31)
' AN
_ Lai(z) —yibi(z) Gl (!) : (32)

© z2bi(z) —7aiz) Gi(2) (_%) -z.

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag 23/54

Schur algorithm; modern form Reformulation of Schur’s expansion

Schur’s expansion

With
=29 G = (bi2) ai2)) (29)

we can state a “linearized” version of Schur’s expansion,

Gi+1(2) = Gi(z) & (_171_ _1%> (8 (1)> y = ﬁ, (30)

since
_an(@) _ 1 s@) - bilz)
sii(2) = biri(z) z1—=7si(z) bi(2) o
' AN
_ Lai(z) —yibi(z) Gl (!) : (32)

© z2bi(z) —7aiz) Gi(2) (_%) -z.

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag 23/54

Schur algorithm; modern form Reformulation of Schur’s expansion

Reversing the approach

Suppose we are given a positive definite finite section H of a symmetric
infinite matrix
H=B-U (33)

and want to compute the Cholesky decomposition.

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Schur algorithm; modern form Reformulation of Schur’s expansion

Reversing the approach

Suppose we are given a positive definite finite section H of a symmetric
infinite matrix
H=B-U (33)

and want to compute the Cholesky decomposition.

H has a special property, namely that a displacement of the entries along the
diagonal preserves major part of the structure.

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag 24 /54

Schur algorithm; m Reformulation of Schur’s expansion

Reversing the approach

Suppose we are given a positive definite finite section H of a symmetric
infinite matrix
H=B-U (33)

and want to compute the Cholesky decomposition.

H has a special property, namely that a displacement of the entries along the
diagonal preserves major part of the structure.

Notation is changed slightly: Let L(a) denote a lower triangular Toeplitz matrix
with entries a € C" in the first column. Then

H = L(b)L(b)" — L(a)L(a)" (34)

is Toeplitz. This change corresponds to complex conjugation.

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Schur algorithm; modern form Reformulation of Schur’s expansion

Reversing the approach

Suppose we are given a positive definite finite section H of a symmetric
infinite matrix
H=B-U (33)

and want to compute the Cholesky decomposition.

H has a special property, namely that a displacement of the entries along the
diagonal preserves major part of the structure.

Notation is changed slightly: Let L(a) denote a lower triangular Toeplitz matrix
with entries a € C" in the first column. Then

H = L(b)L(b)" — L(a)L(a)" (34)
is Toeplitz. This change corresponds to complex conjugation.

The displacement can be described by shifting the entries of a and b, i.e., the
elements of the power series a and b.

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Schur algorithm; modern form Displacement structure

Outline

Schur algorithm; modern form

Displacement structure

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Schur algorithm; modern form Displacement structure

Displacement structure

Let Z = diag(ones(n — 1, 1), —1) denote the displacement by one position.
Then
H — ZHZ" (35)

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Schur algorithm; modern form Displacement structure

Displacement structure

Let Z = diag(ones(n — 1, 1), —1) denote the displacement by one position.
Then
VH = H — ZHZ" (35)

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Schur algorithm; modern form Displacement structure

Displacement structure

Let Z = diag(ones(n — 1, 1), —1) denote the displacement by one position.
Then
VH = H — ZHZ" = bb" — ad" (35)

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Schur algorithm; modern form Displacement structure

Displacement structure

Let Z = diag(ones(n — 1, 1), —1) denote the displacement by one position.
Then

VH =H — ZHZ" = bb" — ad” = GIG" (35)
with

G= (b a), J:<(1) _?). (36)

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Schur algorithm; modern form Displacement structure

Displacement structure

Let Z = diag(ones(n — 1, 1), —1) denote the displacement by one position.
Then

VH =H — ZHZ" = bb" — ad” = GIG" (35)
with
G=(b a), J= Lo (36)
’ 0 -1/
Using the fact that Z is nilpotent and utilizing a Neumann series,
n—1
vec(H) = (I = Z® Z) " 'vec(GIG) = Y (Z® Z)vec(GIG") (37)
Jj=0

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag 26 /54

Schur algorithm; modern form Displacement structure

Displacement structure

Let Z = diag(ones(n — 1, 1), —1) denote the displacement by one position.
Then

VH =H — ZHZ" = bb" — ad” = GIG" (35)
with
G=(b a), J= Lo (36)
’ 0 -1/
Using the fact that Z is nilpotent and utilizing a Neumann series,
n—1
vec(H) = (I = Z® Z) " 'vec(GIG) = Y (Z® Z)vec(GIG") (37)
Jj=0

and therefore we can recover H using the generator G,
n—1
H=> 7GIG"(Z"y. (38)
j=0

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag 26 /54

Schur algorithm; modern form Displacement structure

Displacement structure

Generators are unique up to post-multiplication by J-unitary matrices © € C,
defined by ©J©% = J, including hyperbolic rotations ©(~),

_ ! L -y

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag 27/54

Schur algorithm; modern form Displacement structure

Displacement structure

Generators are unique up to post-multiplication by J-unitary matrices © € C,
defined by ©J©% = J, including hyperbolic rotations ©(~),

_ ! L -y

This is obvious, since with G = GO for a J-unitary matrix ©

GJG" = geJerct = GIG". (40)

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag 27/54

Schur algorithm; modern form Displacement structure

Displacement structure

Generators are unique up to post-multiplication by J-unitary matrices © € C,
defined by ©J©% = J, including hyperbolic rotations ©(~),

__ 1 I =

This is obvious, since with G = GO for a J-unitary matrix ©

GJG" = geJerct = GIG". (40)
Since H is assumed positive definite (0 < iy, = |b7e;|> — |a”e;|?), we can
always chose a generator G in “proper form”

* 0

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Schur algorithm; modern form Cholesky decomposition

Outline

Schur algorithm; modern form

Cholesky decomposition

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Schur algorithm; modern form Cholesky decomposition

Cholesky decomposition

The generator can be used to compactly (2n entries) represent a HPD Toeplitz
matrix (n> entries). It is slightly more expensive than parameterization by first
row or column (n entries) but enables a cheap triangular decomposition.

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag 29/54

Schur algorithm; modern form Cholesky decomposition

Cholesky decomposition

The generator can be used to compactly (2n entries) represent a HPD Toeplitz
matrix (n> entries). It is slightly more expensive than parameterization by first
row or column (n entries) but enables a cheap triangular decomposition.

The Cholesky decomposition of HPD H can be computed as follows. Set
H, =Handrepeatfori=1,...,n

H,'+1 = H,' — CiCH

i

(42)

where Cii = 4/ hl(ll) and Ci = Hie,-/cii.

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Schur algorithm; modern form Cholesky decomposition

Cholesky decomposition

The generator can be used to compactly (2n entries) represent a HPD Toeplitz
matrix (n> entries). It is slightly more expensive than parameterization by first
row or column (n entries) but enables a cheap triangular decomposition.

The Cholesky decomposition of HPD H can be computed as follows. Set
H, =Handrepeatfori=1,...,n

Hipy = H; — cicl, (42)

where Cii = 4/ hl(ll) and Ci = Hie,-/cii.

This is the Jacobi-style Cholesky decomposition working with rank-one
updates that introduce a new zero row and vector in H;;; compared to H;.

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Schur algorithm; modern form Cholesky decomposition

Cholesky decomposition

The generator can be used to compactly (2n entries) represent a HPD Toeplitz
matrix (n> entries). It is slightly more expensive than parameterization by first
row or column (n entries) but enables a cheap triangular decomposition.

The Cholesky decomposition of HPD H can be computed as follows. Set
H, =Handrepeatfori=1,...,n

Hipy = H; — cicl, (42)

where Cii = 4/ hl(ll) and Ci = H,'el'/Ci,'.

This is the Jacobi-style Cholesky decomposition working with rank-one
updates that introduce a new zero row and vector in H;,; compared to H;.

This style is not very economic and used for demonstration only.

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Schur algorithm; modern form Cholesky decomposition

Cholesky decomposition

We have seen that a HPD Toeplitz matrix (scaled; now denoted by T),

1 7 Ty

r— | 1 (43)
. 21
1, 5] 1

may be represented by its generator G.

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag 30/54

Schur algorithm; modern form Cholesky decomposition

Cholesky decomposition

We have seen that a HPD Toeplitz matrix (scaled; now denoted by T7),

1 7 Ty

r— | 1 (43)
. 21
1, 5] 1

may be represented by its generator G using the identity

T =Y ZGIG"Z"Y = GIG + ZGI(ZG)" + --- + Z'GI(Z'G)". (44)
j=0

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag 30/54

Schur algorithm; modern form Cholesky decomposition

Cholesky decomposition

We have seen that a HPD Toeplitz matrix (scaled; now denoted by T7),

1 7 Ty

r— | 1 (43)
. 21
1, 5] 1

may be represented by its generator G using the identity

T =Y ZGIG"Z"Y = GIG + ZGI(ZG)" + --- + Z'GI(Z'G)". (44)

j=0
1 0
. tl tl .
ltisnothardtoseethatG= | . . | is agenerator in proper form.
th Iy

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag 30/54

Schur algorithm; modern form Cholesky decomposition

Cholesky decomposition

The only portion of
Ty =T=>Y ZGIG"Z"Y = GIG + ZGI(ZG)" + --- + Z'GI(2'G)" (45)
j=0
contributing to the first row and column is given by

cictl = bbf. (46)

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Schur algorithm; modern form Cholesky decomposition

Cholesky decomposition

The only portion of
Ty =T=Y ZGIG"Z"Y = GIG + ZGJ(2G)" +
j=0
contributing to the first row and column is given by
cictl = bbf.

We inductively use this property.

Jens-Peter M. Zemke On Generalized Schur Algorithms

-+ Z"GI(Z"G)"

Oberseminar-Vortrag

(45)

Schur algorithm; modern form Cholesky decomposition

Cholesky decomposition

The only portion of

Ty =T=>Y ZGIG"Z"Y = GIG + ZGI(ZG)" + --- + Z'GI(2'G)" (45)
Jj=0
contributing to the first row and column is given by

cictl = bbf. (46)

We inductively use this property. It is easy to rewrite the representation by
introducing an intermediate generator G of T,

T2 = T1 — C1C{I (47)

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag 31/54

Schur algorithm; modern form Cholesky decomposition

Cholesky decomposition

The only portion of
Ty =T=>Y ZGIG"Z"Y = GIG + ZGI(ZG)" + --- + Z'GI(2'G)" (45)
Jj=0
contributing to the first row and column is given by
cictl = bbf. (46)

We inductively use this property. It is easy to rewrite the representation by
introducing an intermediate generator G of T,

n
Ty=T —ccf = ZGIG"(Z"Y — bb" (47)
Jj=0

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag 31/54

Schur algorithm; modern form Cholesky decomposition

Cholesky decomposition

The only portion of
Ty =T=>Y ZGIG"Z"Y = GIG + ZGI(ZG)" + --- + Z'GI(2'G)" (45)
Jj=0
contributing to the first row and column is given by
cictl = bbf. (46)

We inductively use this property. It is easy to rewrite the representation by
introducing an intermediate generator G of T,

n n
Ty=T —ccf = ZGIG"(Z"Y —bb" =Y 7GIG" (2", (47)
Jj=0 Jj=0

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag 31/54

Schur algorithm; modern form Cholesky decomposition

Cholesky decomposition

The only portion of
Ty =T=>Y ZGIG"Z"Y = GIG + ZGI(ZG)" + --- + Z'GI(2'G)" (45)
j=0
contributing to the first row and column is given by
cictl = bbf. (46)
We inductively use this property. It is easy to rewrite the representation by
introducing an intermediate generator G of 75,
Ty=T —ccf = ZGIG"(Z"Y —bb" =Y 7GIG" (2", (47)
Jj=0 Jj=0
where G is defined by
G= (Zb a). (48)

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag 31/54

Schur algorithm; modern form Cholesky decomposition

Cholesky decomposition

This generator is usually not in “proper” form, so we compute another
generator G, by applying a hyperbolic rotation to G,

G| = GO(). (49)

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Schur algorithm; modern form Cholesky decomposition

Cholesky decomposition

This generator is usually not in “proper” form, so we compute another
generator G, by applying a hyperbolic rotation to G,

G = ée(’}/)v (49)

where v = a(2)/b(1) is chosen to annihilate the element in position 2 in a.

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag 32/54

Schur algorithm; modern form Cholesky decomposition

Cholesky decomposition

This generator is usually not in “proper” form, so we compute another
generator G, by applying a hyperbolic rotation to G,

where v = a(2)/b(1) is chosen to annihilate the element in position 2 in a.

Thus far, we have succesfully removed the first row and column and
computed the first column of the Cholesky factor. The new generator has
already “proper” form.

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Schur algorithm; mi Cholesky decomposition

Cholesky decomposition

This generator is usually not in “proper” form, so we compute another
generator G, by applying a hyperbolic rotation to G,

where v = a(2)/b(1) is chosen to annihilate the element in position 2 in a.

Thus far, we have succesfully removed the first row and column and
computed the first column of the Cholesky factor. The new generator has
already “proper” form.

This process can be repeated until all rows and columns have been deflated
and all columns of the Cholesky factor have been computed.

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Schur algorithm; modern form Cholesky decomposition

Cholesky decomposition

This generator is usually not in “proper” form, so we compute another
generator G, by applying a hyperbolic rotation to G,

where v = a(2)/b(1) is chosen to annihilate the element in position 2 in a.

Thus far, we have succesfully removed the first row and column and
computed the first column of the Cholesky factor. The new generator has
already “proper” form.

This process can be repeated until all rows and columns have been deflated
and all columns of the Cholesky factor have been computed.

Stripping of leading zero blocks in the matrix and the generator we can go
through the steps and compute only the nonzero elements of the columns of
the Cholesky factor.

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Schur algorithm; modern form Cholesky decomposition

Cholesky decomposition

It turns out that we have recovered the Schur algorithm, since this is just
another way of describing Schur’s classical algorithm

1 si(z) =

E 1 _ ﬁis,-(z)’ Yi = Si(O). (50)

sivi(z) =

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Schur algorithm; modern form Cholesky decomposition

Cholesky decomposition

It turns out that we have recovered the Schur algorithm, since this is just
another way of describing Schur’s classical algorithm

1 si(z) =
i = e i = i O 5 50
S+1(Z) z 1— ﬁisi(z) Vi S() ()
for the case of rational functions
si(z) = ai(Z)- (51)

bi(Z)

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag 33/54

Schur algorithm; modern form Cholesky decomposition

Cholesky decomposition

It turns out that we have recovered the Schur algorithm, since this is just
another way of describing Schur’s classical algorithm

1 si(2) — v
; =—-——, 7 =s5(0), 30
S+1(Z) z 1— ﬁisi(z) Vi S() ()
for the case of rational functions
S;(Z) - ai(Z) (51)

linearized in form of a coupled iteration

Git1(2) = Gi(2) ¢ (_171_ _1%) (8 ?) , Qi = \/%W, (52)

with generators G;(z) = (b,»(z) ai(z)).

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag 33/54

Schur algorithm; modern form The Schur algorithm

Outline

Schur algorithm; modern form

The Schur algorithm

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Schur algorithm; modern form The Schur algorithm

The Schur algorithm

Stated in terms of vectors a;, b; € C" representing the coefficients of the
respective power series and using the shift operator Z in place of multiplication
by z we have shown that the Schur algorithm takes the following form:

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag 35/54

Schur algorithm; modern form The Schur algorithm

The Schur algorithm

Stated in terms of vectors a;, b; € C" representing the coefficients of the
respective power series and using the shift operator Z in place of multiplication
by z we have shown that the Schur algorithm takes the following form:

Start with a generator G = (bl a1> of HPD Toeplitz T in proper form.
lterate: fori=1,...,n—1:
ci<— b;
eﬂlai
el'b;

1 —~
)))) 1 i
(bl-‘rl al+1) — (Zb; az) 1—|7il? <_»_Yl 1)
endfor

Setc, «— b,

Vi <

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag 35/54

Schur algorithm; modern form The Schur algorithm

The Schur algorithm

Stated in terms of vectors a;, b; € C" representing the coefficients of the
respective power series and using the shift operator Z in place of multiplication
by z we have shown that the Schur algorithm takes the following form:

Start with a generator G = (bl a1> of HPD Toeplitz T in proper form.
lterate: fori=1,...,n—1:
ci<— b;
eﬂlai
el'b;

1 A~
)))) 1 i
(bl-‘rl al+1) — (Zb; az) 1—|7il? <_»_Yl 1 >
endfor

Set ¢, < b,

Yi <

By previous considerations C iteratively defined by Ce; = c; is the Cholesky
factor of T.

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Schur algorithm; modern form The Schur algorithm

The Schur algorithm; variants

One can easily use other triangular decompositions:

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Schur algorithm; modern form The Schur algorithm

The Schur algorithm; variants

One can easily use other triangular decompositions:

Cholesky decomposition: this is the “standard” Schur algorithm

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Schur algorithm; modern form The Schur algorithm

The Schur algorithm; variants

One can easily use other triangular decompositions:

Cholesky decomposition: this is the “standard” Schur algorithm

LDLH decomposition: a natural extension of the Schur algorithm to treat
indefinite Toeplitz matrices which admit such a decomposition

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag 36/54

Schur algorithm; modern form The Schur algorithm

The Schur algorithm; variants

One can easily use other triangular decompositions:

Cholesky decomposition: this is the “standard” Schur algorithm

LDLH decomposition: a natural extension of the Schur algorithm to treat
indefinite Toeplitz matrices which admit such a decomposition

LU decomposition: another possible variant

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag 36/54

Schur algorithm; modern form The Schur algorithm

The Schur algorithm; variants

One can easily use other triangular decompositions:

Cholesky decomposition: this is the “standard” Schur algorithm

LDLH decomposition: a natural extension of the Schur algorithm to treat
indefinite Toeplitz matrices which admit such a decomposition

LU decomposition: another possible variant

The use of augmented & composed systems is used to develop variants to
compute:

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

36/54

Schur algorithm; modern form The Schur algorithm

The Schur algorithm; variants

One can easily use other triangular decompositions:

Cholesky decomposition: this is the “standard” Schur algorithm

LDLH decomposition: a natural extension of the Schur algorithm to treat
indefinite Toeplitz matrices which admit such a decomposition

LU decomposition: another possible variant

The use of augmented & composed systems is used to develop variants to
compute:

» the R factor of the QR decomposition

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag 36/54

Schur algorithm; modern form The Schur algorithm

The Schur algorithm; variants

One can easily use other triangular decompositions:

Cholesky decomposition: this is the “standard” Schur algorithm

LDLH decomposition: a natural extension of the Schur algorithm to treat
indefinite Toeplitz matrices which admit such a decomposition

LU decomposition: another possible variant

The use of augmented & composed systems is used to develop variants to
compute:

» the R factor of the QR decomposition
> the inverse of T

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag 36/54

Schur algorithm; modern form The Schur algorithm

The Schur algorithm; variants

One can easily use other triangular decompositions:

Cholesky decomposition: this is the “standard” Schur algorithm

LDLH decomposition: a natural extension of the Schur algorithm to treat
indefinite Toeplitz matrices which admit such a decomposition

LU decomposition: another possible variant

The use of augmented & composed systems is used to develop variants to
compute:

» the R factor of the QR decomposition
> the inverse of T
> ...

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag 36/54

Generalized Schur algorithms Displacement structure

Outline

Generalized Schur algorithms
Displacement structure

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Generalized Schur algorithms Displacement structure

Displacement structure

Let R € C"*" be Hermitean, R = R”. The displacement of R with respect to
F € C is defined by
VrR =R — FRF". (53)

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Generalized Schur algorithms Displacement structure

Displacement structure

Let R € C"*" be Hermitean, R = R”. The displacement of R with respect to
F € C is defined by
VrR =R — FRF". (53)

The matrix R is said to have low displacement rank if

rank(Vr) < n. (54)

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag 38/54

Generalized Schur algorithms Displacement structure

Displacement structure

Let R € C"*" be Hermitean, R = R”. The displacement of R with respect to
F € C is defined by
ViR =R — FRF". (53)

The matrix R is said to have low displacement rank if
rank(Vr) < n. (54)

In this case R is said to have displacement structure with respect to F.

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag 38/54

Generalized Schur algorithms Displacement structure

Displacement structure

Let R € C"*" be Hermitean, R = R”. The displacement of R with respect to

F € C is defined by
VrR =R — FRF". (53)

The matrix R is said to have low displacement rank if
rank(Vr) < n. (54)
In this case R is said to have displacement structure with respect to F.

An example are symmetric real Toeplitz matrices T having displacement
structure with respect to the shift matrix

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag 38/54

Generalized Schur algorithms Displacement structure

Displacement structure

Other types of displacement include the Stein type displacement

Vira}R = R — FRA". (56)

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Generalized Schur algorithms Displacement structure

Displacement structure

Other types of displacement include the Stein type displacement

V{ra}R =R — FRA". (56)

Stein’s theorem: X is convergent, if and only if there exists a positive definite A
such that A — X"AX is positive definite.

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Generalized Schur algorithms Displacement structure

Displacement structure

Other types of displacement include the Stein type displacement
Vira}R =R — FRA", (56)
and the Sylvester type displacement

Vira}R = FR — RA". (57)

Stein’s theorem: X is convergent, if and only if there exists a positive definite A
such that A — X"AX is positive definite.

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag 39/54

Generalized Schur algorithms Displacement structure

Displacement structure

Other types of displacement include the Stein type displacement
Vira}R =R — FRA", (56)
and the Sylvester type displacement

Vira}R = FR — RA". (57)

Both are covered by the general displacement

ViaaraR= QRA™ — FRAM. (58)

Stein’s theorem: X is convergent, if and only if there exists a positive definite A
such that A — X"AX is positive definite.

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Generalized Schur algorithms Displacement structure

Displacement structure

Other types of displacement include the Stein type displacement
Vira}R =R — FRA", (56)
and the Sylvester type displacement

Vira}R = FR — RA". (57)

Both are covered by the general displacement

Via.araR = QRA" — FRAY. (58)
Matrices with Stein type low displacement rank are termed Toeplitz-like, those
with Sylvester type low displacement rank Hankel-like.

Stein’s theorem: X is convergent, if and only if there exists a positive definite A
such that A — X#AX is positive definite.

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Generalized Schur algorithms Displacement structure

Displacement structure

The so-called Pick matrix A is defined by

xixH_yin !
A= (W) ’ 59

ij=1

where x; € C'*7 and y; € C'*? are complex row vectors and f; are complex
points inside the open unit disc.

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Generalized Schur algorithms Displacement structure

Displacement structure

The so-called Pick matrix A is defined by

xixH_yin !
A= (W) ’ 59

ij=1

where x; € C'*7 and y; € C'*? are complex row vectors and f; are complex
points inside the open unit disc.

Such A has displacement rank r = p 4+ ¢ with respect to

F = diag(fi, ... ,fu)- (60)

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag 40/54

Generalized Schur algorithms Displacement structure

Displacement structure

The so-called Pick matrix A is defined by

xixf! — yiyf! ’
A= (W) ’ 59

ij=1

where x; € C'*7 and y; € C'*? are complex row vectors and f; are complex
points inside the open unit disc.

Such A has displacement rank r = p 4+ ¢ with respect to

F =diag(fi,..../a): (60)
since
H
X1)1 I 0 X1)
A— FAF? = | : : (P ”"’) : : . (61)
o Ogp 1y o
Xn Yn Xn Yn

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag 40/54

Generalized Schur algorithms Displacement structure

Displacement structure

A nonsymmetric example is given by a Vandermonde matrix

1 o of of
Il v o - of

v=|. . . . (62)
1 a, o o

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Generalized Schur algorithms Displacement structure

Displacement structure

A nonsymmetric example is given by a Vandermonde matrix

1 o of of
Il v o - of

v=|. . . . | (62)
1 a, o o

Such matrix V has displacement rank one with respect to
F = diag(ay, ..., ap) (63)

and the shift matrix Z introduced before.

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag 41/54

Generalized Schur algorithms Displacement structure

Displacement structure

A nonsymmetric example is given by a Vandermonde matrix

1 o of of
Il v o - of

v=|. . . . (62)
1 a, o o

Such matrix V has displacement rank one with respect to
F = diag(ay, ..., ap) (63)
and the shift matrix Z introduced before, since
V — FVZ" = ee], (64)

where e denotes the vector of all ones and ¢, is the first standard unit vector.

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag 41/54

Generalized Schur algorithms Displacement structure

Displacement structure

Another example, this time with respect to a Sylvester type displacement is a
Cauchy matrix C defined by

X1—=y1 X1—=Yn

Xn—=Y1 Xn—=Yn

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Generalized Schur algorithms Displacement structure

Displacement structure

Another example, this time with respect to a Sylvester type displacement is a
Cauchy matrix C defined by

Cauchy matrices have Sylvester type displacement rank one,

V{diag(x),diag(y)}c = diag(x) - C — C - diag(y) = ee’ . (66)

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag 42/54

Generalized Schur algorithms Displacement structure

Displacement structure

Another example, this time with respect to a Sylvester type displacement is a
Cauchy matrix C defined by

Cauchy matrices have Sylvester type displacement rank one,

V{diag(x),diag(y)}c = diag(x) - C — C - diag(y) = ee’ . (66)

A well-known example of a Cauchy matrix is the famous Hilbert matrix H with

entries |

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag 42/54

Generalized Schur algorithms Fundamental properties

Outline

Generalized Schur algorithms

Fundamental properties

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Generalized Schur algorithms Fundamental properties

Recovering R

For simplicity we assume the Hermitean Stein displacement case
VR =R — FRF = GJG", J=J0 =1 (68)

where G € C"™*" has full rank.

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Generalized Schur algorithms Fundamental properties

Recovering R

For simplicity we assume the Hermitean Stein displacement case
VR =R — FRF = GJG", J=J0 =1 (68)

where G € C"™*" has full rank.

We assume further that F is lower triangular and that f = diag(F) satisfies
fifi#1 forall ij. (69)

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag 44 /54

Generalized Schur algorithms Fundamental properties

Recovering R

For simplicity we assume the Hermitean Stein displacement case
VR =R — FRF = GJG", J=J0 =1 (68)

where G € C"™*" has full rank.

We assume further that F is lower triangular and that f = diag(F) satisfies
fifi#1 forall ij. (69)

Then we can theoretically recover R from its generator pair (G, J) as follows:

vec(R) = (I—F @ F) "' vec(GIG™). (70)

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag 44 /54

Generalized Schur algorithms Fundamental properties

Recovering R

For simplicity we assume the Hermitean Stein displacement case
VR =R — FRF = GJG", J=J0 =1 (68)
where G € C**" has full rank.
We assume further that F is lower triangular and that f = diag(F) satisfies
fifi#1 forall ij. (69)

Then we can theoretically recover R from its generator pair (G, J) as follows:

vec(R) = (I—=F @ F) ™' vec(GIG™). (70)

The assumption that F is lower triangular leads to a lower triangular
I-FQF. (71)

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Generalized Schur algorithms Fundamental properties

Recovering R

We have observed that the huge matrix in the Kronecker-type representation
(and thus its inverse) is lower triangular.

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Generalized Schur algorithms Fundamental properties

Recovering R

We have observed that the huge matrix in the Kronecker-type representation
(and thus its inverse) is lower triangular.

We could use forward substitution to compute elements of R. We remark that
the inverse of a lower triangular matrix is “nested”, in the sense that principal
submatrices of the inverse are the inverses of the corresponding principal
submatrices of the original matrix.

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Generalized Schur algorithms Fundamental properties

Recovering R

We have observed that the huge matrix in the Kronecker-type representation
(and thus its inverse) is lower triangular.

We could use forward substitution to compute elements of R. We remark that
the inverse of a lower triangular matrix is “nested”, in the sense that principal
submatrices of the inverse are the inverses of the corresponding principal
submatrices of the original matrix.

We can not that simply reconstruct the generators of the successive
submatrices constructed by the Jacobi-style Cholesky or LDLH
decomposition.

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Generalized Schur algorithms Fundamental properties

Recovering R

We have observed that the huge matrix in the Kronecker-type representation
(and thus its inverse) is lower triangular.

We could use forward substitution to compute elements of R. We remark that
the inverse of a lower triangular matrix is “nested”, in the sense that principal
submatrices of the inverse are the inverses of the corresponding principal
submatrices of the original matrix.

We can not that simply reconstruct the generators of the successive
submatrices constructed by the Jacobi-style Cholesky or LDLH
decomposition.

The generalization can be based on some observations using a few related
block matrix decompositions.

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Generalized Schur algorithms Fundamental properties

Fundamental properties

Displacement structure is preserved under inversion: there exists a full rank
matrix H € C™" such that

R —FHR™'F = HYJH. (72)

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Generalized Schur algorithms Fundamental properties

Fundamental properties

Displacement structure is preserved under inversion: there exists a full rank
matrix H € C™" such that

R —FHR™'F = HYJH. (72)

Proof: The block matrix triangular decompositions

R F I 0\ /R 0 1 o\”
Fi R) = \FiR-' 1)\0 R '—FHR'F)\FHR' | (73)

S [[

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag 46 /54

Generalized Schur algorithms Fundamental properties

Fundamental properties

Displacement structure is preserved under inversion: there exists a full rank
matrix H € C™" such that

R —FHR™'F = HYJH. (72)

Proof: The block matrix triangular decompositions

R F I 0\ /R 0 1 o\”
Fi R) = \FiR-' 1)\0 R '—FHR'F)\FHR' | (73)
I FR\ (R—FRF! 0\ (I FR\"
= (0 1> < 0 R‘1> (0 1) (74)

show that by Sylvester’s law of inertia

inertia(R~' — FR™'F) = inertia(R — FRF"). (75)

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag 46 /54

Generalized Schur algorithms Fundamental properties

Fundamental properties

Ri1 Ry F, O
R = and F = . 76
(RZI Rzz) <F21 F22> ()

We partition

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Generalized Schur algorithms Fundamental properties

Fundamental properties

We partition
Rii R Fi, O
R= and F = . 76
(RZI Rzz) <F21 F22> (76)
Schur complementation preserves displacement structure: Let the Schur
complement be denoted by S» := Ry — RyiR};'Ria.

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag 47 /54

Generalized Schur algorithms Fundamental properties

Fundamental properties

We partition
Rii R Fi, O
= and F = . 76
(RZI Rzz) <F21 F22> (76)
Schur complementation preserves displacement structure: Let the Schur
complement be denoted by S» := R» — Ry 1R;;'Ri2. Then
rank(R11 — F11R11F11

< rank(R — FRF'), (77)
rank(Sy — F»S»nFy,) <

rank(R — FRF™). (78)

)
)

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Generalized Schur algorithms Fundamental properties

Fundamental properties

We partition
Rii R Fi, O
= and F = . 76
(RZI Rzz) <F21 Fzz) (76)
Schur complementation preserves displacement structure: Let the Schur
complement be denoted by S» := R» — Ry 1R;;'Ri2. Then

rank(Ry; — Fy Ry F)) < rank(R — FRF'), (77)
rank(522 — FzzSzzF 2) < rank(R FRFH) (78)

Proof: this follows upon the observation that the inverse of the Schur
complement is the lower block in the accordingly partitioned inverse of R.

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Generalized Schur algorithms Fundamental properties

Fundamental properties

We partition
Rii R Fi, O
= and F = . 76
(RZI Rzz) <F21 Fzz) (76)
Schur complementation preserves displacement structure: Let the Schur
complement be denoted by S» := R» — Ry 1R;;'Ri2. Then

rank(Ry; — FiiRiFih)
rank(Sx, — F2uSnFh)

rank(R — FRF"), (77)
rank(R — FRF"). (78)

NN

Proof: this follows upon the observation that the inverse of the Schur
complement is the lower block in the accordingly partitioned inverse of R.

By the first result

I'ank(Szz — FzzSznglz) = rank(S2_21 — FgIZSZ_lezz). (79)

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Generalized Schur algorithms Fundamental properties

Fundamental properties

We now use the Jacobi-style decompositions

R=LD'I" vU=L"D, R '=UD'U". (80)

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Generalized Schur algorithms Fundamental properties

Fundamental properties

We now use the Jacobi-style decompositions
R=LD'I" vU=L"D, R '=UD'U". (80)

Key Array Equation: there exists Q € C***?" such that

(ZL g) = (F’I;U p%) . QD 'ena=0"'aJs. (81

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag 48 /54

Generalized Schur algorithms Fundamental properties

Fundamental properties

We now use the Jacobi-style decompositions

R=LD'I" vU=L"D, R '=UD'U". (80)
Key Array Equation: there exists Q € C***?" such that

(FL G>Q:<L 0>, QD 'eNQ =D "as). (©81)

U o Fily HY
Proof:
R F\ _(FL G\ (D' o0\ /(FL G\" ©2)
Fi R=')~\v o)\ o J)J\U o
L o\(' o\/L o0\
:(FHU HH> < 0 J) (FHU HH> ' (83)

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag 48 /54

Generalized Schur algorithms Fundamental properties

Fundamental properties

We now use the Jacobi-style decompositions
R=LD'I" vU=L"D, R '=UD'U". (80)

Key Array Equation: there exists Q € C***?" such that

(P;JL g) 0= <F’[;U HOH> . QD 'ena=0"'aJs. (81

Proof:
R F FL G\ (D~' 0\ (FL G\”
<FH R—1> - <U 0) (10) J) (U 0> (82)
—1 H
- (Fer 11(‘!)H> <D0 ?) (FF%U 12’) ' (83)

We restrict interest to the leading block row.

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag 48 /54

Generalized Schur algorithms A generalized Schur algorithm

Outline

Generalized Schur algorithms

A generalized Schur algorithm

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Generalized Schur algorithms A generalized Schur algorithm

Sketch of an algorithm

The key array equation looks as

(FL G)Q=(L 0), QD 'eanQ=(D"aJ). (84)

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Generalized Schur algorithms A generalized Schur algorithm

Sketch of an algorithm

The key array equation looks as
(FL G)Q=(L 0), QD 'anQ=(D"'aJ). (84)

The algorithm works recursively. We use a D~! @ J-unitary matrix Q, to obtain
a partial triangularization like

OT OT
(FL G) QO:<IO FL G) (85)

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag 50/54

Generalized Schur algorithms A generalized Schur algorithm

Sketch of an algorithm

The key array equation looks as
(FL G)Q=(L 0), QD 'anQ=(D"'aJ). (84)

The algorithm works recursively. We use a D~! @ J-unitary matrix Q, to obtain
a partial triangularization like

OT OT
(FL G)QO=<10 FiL G) (85)

Then we have to show that with R, = LDy 'L}, D, = diag(d,, ... ,d,),

R, — F\R\F = GJG!. (86)

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag 50/54

Generalized Schur algorithms A generalized Schur algorithm

Sketch of an algorithm

The key array equation looks as
(FL G)Q=(L 0), QD 'anQ=(D"'aJ). (84)

The algorithm works recursively. We use a D~! @ J-unitary matrix Q, to obtain
a partial triangularization like

Q oo 85
(FL G)Q = (lo FiL G) (85)
Then we have to show that with R, = LDy 'L}, D, = diag(d,, ... ,d,),

R, — F\R\F = GJG!. (86)

We suppose this is to be correct and proceed to compute

(FL G)QOQI--.QH:(L" 0 0).

L FL G;

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Generalized Schur algorithms A generalized Schur algorithm

Sketch of an algorithm

It remains to prove that in the ith step with R; = L,D; 'L},
R; — F,RF¥ = GJG! (88)

holds true.

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Generalized Schur algorithms A generalized Schur algorithm

Sketch of an algorithm

It remains to prove that in the ith step with R; = L,D; 'L},

R; — F,RF¥ = GJG! (88)
holds true.
It follows immediately from equating second block rows,

(L FL G)(Di'ep ' e)) (L FL G)' =
(L L o)(bi'epi'eJ) (L L 0), (89

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Generalized Schur algorithms A generalized Schur algorithm

Sketch of an algorithm

It remains to prove that in the ith step with R; = L,D; 'L},
R; — F,RF¥ = GJG! (88)
holds true.
It follows immediately from equating second block rows,
(i, FL G)(D'ep'eJ) (i FL G)'=
(L L o) (b ep el (L L 0)", 89

that
F/(LD7'LF! + GJGH = (LD 'LH). (90)

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Generalized Schur algorithms A generalized Schur algorithm

Sketch of an algorithm

It remains to prove that in the ith step with R; = L,D; 'L},
R; — F,RF¥ = GJG! (88)
holds true.
It follows immediately from equating second block rows,
(i, FL G)(D'ep'eJ) (i FL G)'=
(L L o) (b ep el (L L 0)", 89

that
F/(LD7'LF! + GJGH = (LD 'LH). (90)

Thus, the displacement structure of the Schur complements has been verified.

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Generalized Schur algorithms A generalized Schur algorithm

Sketch of an algorithm

Now we have everything in place to sketch an algorithm.

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Generalized Schur algorithms A generalized Schur algorithm

Sketch of an algorithm

Now we have everything in place to sketch an algorithm.
The Schur complements R; have displacement structure with respect to F;,

R; — FR,F! = GJGY. (91)

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Generalized Schur algorithms A generalized Schur algorithm

Sketch of an algorithm

Now we have everything in place to sketch an algorithm.
The Schur complements R; have displacement structure with respect to F;,
R; — FR,F! = GJGY. (91)

The next column of L is (Jacobi-style scaling) given by [; = R,e; and thus we
have to “solve” the linear system

(In_,' —ﬁ- F,~)R,~e1 = (In—i —JT;FZ')I,' = G,JGerl. (92)

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag 52/54

Generalized Schur algorithms A generalized Schur algorithm

Sketch of an algorithm

Now we have everything in place to sketch an algorithm.
The Schur complements R; have displacement structure with respect to F;,
R, — FiRF! = GJG!. (91)

The next column of L is (Jacobi-style scaling) given by [; = R,e; and thus we
have to “solve” the linear system

(In_,' —ﬁ- F,~)R,~e1 = (In—i —JT;FZ')I,' = G,JGerl. (92)

The next diagonal element is given by d; = ell;.

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag 52/54

Generalized Schur algorithms A generalized Schur algorithm

Sketch of an algorithm

Now we have everything in place to sketch an algorithm.
The Schur complements R; have displacement structure with respect to F;,
R, — FiRF! = GJG!. (91)

The next column of L is (Jacobi-style scaling) given by [; = R,e; and thus we
have to “solve” the linear system

(In_,' —]7[- F,~)R,~e1 = (In_,' _]?,'Fi)li = G,JGerl. (92)
The next diagonal element is given by d; = ell;.

Afterwards we compute the new generator with a ;"' @ J-unitary
transformation Q; (the leading columns remain the same),

p o Fil; G)Q 93
(1 g)= tE G)a. (99)

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Generalized Schur algorithms A generalized Schur algorithm

Sketch of an algorithm

Not surprisingly it turns out the d;"' part of the d;”' @ J-unitary transformation
Q,

Lo Fil, G)Q 94
(v ¢,)= eya (94

can be computed explicitely.

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag 53 /54

Generalized Schur algorithms A generalized Schur algorithm

Sketch of an algorithm

Not surprisingly it turns out the d;"' part of the d;”' @ J-unitary transformation
Q;,
1 OT
li = F,'li G,‘ Qi, 94
(Git1) () (94)

can be computed explicitely.

The transformation takes the form

of Jgl'gi
=1 G; &, —1,_)G—=1= | ©,, 95
(Gi+1> (*) gilgl (99)

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag 53/54

Generalized Schur algorithms A generalized Schur algorithm

Sketch of an algorithm

Not surprisingly it turns out the d;"' part of the d;”' @ J-unitary transformation

Q,
(1 o') — (Fl; G)Q
1 Gl+1 - 1) 1 1y
can be computed explicitely.

The transformation takes the form
oT Jglg,
(Gi+1> = <Gi + (P —In—i)Gi@ O,

&; = (Fi — fily—i)(ln—i — fiF1) ™"
is the so-called Blaschke-Potapov matrix

where

(94)

(95)

(96)

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Generalized Schur algorithms A generalized Schur algorithm

Sketch of an algorithm

Not surprisingly it turns out the d;"' part of the d;”' @ J-unitary transformation

Q;,
| p o Fili G)Q 94
(1 g)=t G)a. (94

can be computed explicitely.

The transformation takes the form

of Jgl'gi
= |G+ (% — L-))Gi—— | ©i,
(Gi+1> < * G gilgl) © (99)
where
&; = (Fi — fily—i)(ln—i — fiF1) ™" (96)

is the so-called Blaschke-Potapov matrix, g; = ¢! G; is the leading row of G;

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Generalized Schur algorithms A generalized Schur algorithm

Sketch of an algorithm

Not surprisingly it turns out the d;"' part of the d;”' @ J-unitary transformation
Q,

o Q
l; = (Fili Gi) <Y, 94
(Giyi) () (®4)
can be computed explicitely.

The transformation takes the form

of Jgl'gi
= |G+ (% — L-i))Gi—— | O,
(Gi+1> < * G gilgl) © (99)
where
&; = (Fi — fily—i)(ln—i — fiF1) ™" (96)

is the so-called Blaschke-Potapov matrix, g; = ¢! G; is the leading row of G;
and ©; is a J-unitary matrix chosen to introduce leading zeros.

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Generalized Schur algorithms A generalized Schur algorithm

An algorithm

Set Gy = G, i = 0 and iterate the following: Set g; = ¢! G;.

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Generalized Schur algorithms A generalized Schur algorithm

An algorithm

Set Gy = G, i = 0 and iterate the following: Set g; = ¢! G;.

Solve B
(Li_i — f,F))l; = GiJg!. (97)

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Generalized Schur algorithms A generalized Schur algorithm

An algorithm

Set Gy = G, i = 0 and iterate the following: Set g; = ¢! G;.

Solve B
(Li_i — f,F))l; = GiJg!. (97)

Compute

Jgl
_ S8 o, (98)
1 —fifi

i

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

Generalized Schur algorithms A generalized Schur algorithm

An algorithm

Set Gy = G, i = 0 and iterate the following: Set g; = ¢! G;.

Solve B
(Li_i — f,F))l; = GiJg!. (97)
Compute
JoH
d,‘ = gl]gl_ = elTl,-. (98)
1 —fif;

Compute a new G;, using a J-unitary matrix ©;,

OT JgHgl
=1 G; ¢i — I, Gil_ is
(¢)= (o @nies)e 9
where &; = (F; — fil,—i)(I—i — f;F;) ™.

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag 54 /54

Appendix Bibliography

® C. G. J. Jacobi
Uber eine elementare Transformation eines in Bezug auf jedes von zwei
Variablen-Systemen linearen und homogenen Ausdrucks.

¥ Otto Toeplitz
Die Jacobische Transformation der quadratischen Formen von
unendlichvielen Veranderlichen.

¥ Otto Toeplitz
Zur Theorie der quadratischen und bilinearen Formen von
unendlichvielen Veranderlichen. 1. Teil: Theorie der L-Formen.

> J Schur
Uber Potenzreihen, die im Innern des Einheitskreises beschrénkt sind.

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag 54 /54

Appendix Bibliography

¥ Thomas Kailath
A theorem of I. Schur and its impact on modern signal processing.

¥, Hanoch Lev-Ari and Thomas Kailath
Triangular factorization of structured Hermitian matrices.

¥ |. Gohberg (ed.)
I. Schur Methods in Operator Theory and Signal Processing.

¥ S. Chandrasekaran and Ali H. Sayed
Stabilizing the generalized Schur algorithm.

¥ T Kailath and A. H. Sayed (eds.)
Fast Reliable Algorithms for Matrices with Structure.

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag

	Classification and normal forms of functions
	Schur functions
	Jacobi transformation
	Cayley transform
	Carathéodory functions
	Matrix decomposition

	Schur algorithm; modern form
	Reformulation of Schur's expansion
	Displacement structure
	Cholesky decomposition
	The Schur algorithm

	Generalized Schur algorithms
	Displacement structure
	Fundamental properties
	A generalized Schur algorithm

	Appendix
	Bibliography

