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Outline

Classification and normal forms of functions
Schur functions

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag



Classification and normal forms of functions Schur functions

Schur functions

Schur [Schur, 1917/1918] investigated analytic functions bounded by one in
modulus in the open unit disc D. These functions are nowadays known as
Schur functions.
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Classification and normal forms of functions Schur functions

Schur functions

Schur [Schur, 1917/1918] investigated analytic functions bounded by one in
modulus in the open unit disc D. These functions are nowadays known as
Schur functions.

Schur denoted the set of all such functions by €. In modern notation, when
s € ¢,

s(z) = iskzk, Is(z)| <1, Jzl < 1. (1)
k=0
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Schur functions

Schur [Schur, 1917/1918] investigated analytic functions bounded by one in
modulus in the open unit disc D. These functions are nowadays known as
Schur functions.

Schur denoted the set of all such functions by €. In modern notation, when
s € ¢,

s(z) = iskzk, Is(z)| <1, Jzl < 1. (1)
k=0

In network theory, Schur functions are known as scattering functions.
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Classification and normal forms of functions Schur functions

Schur functions

Schur [Schur, 1917/1918] investigated analytic functions bounded by one in
modulus in the open unit disc D. These functions are nowadays known as
Schur functions.

Schur denoted the set of all such functions by €. In modern notation, when
s € ¢,

s(z) = iskzk, Is(z)| <1, Jzl < 1. (1)
k=0

In network theory, Schur functions are known as scattering functions.

It turns out that the coefficients s, of the power series are not that useful when
investigating Schur functions. Instead, the so-called Schur coefficients better
describe their properties, and thus, play the dominant réle.
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Classification and normal forms of functions Schur functions

Expansion of Schur functions

Schur used that for o € C with |a| < 1 the “linear” transformation (Blaschke
factor, no normalization; Moebius transformation)

I—

B(z) = )

1—az

maps D to itself.
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Classification and normal forms of functions Schur functions

Expansion of Schur functions

Schur used that for o € C with |a| < 1 the “linear” transformation (Blaschke
factor, no normalization; Moebius transformation)

-«
maps D to itself and by Schwarz’'s Lemma (set f(z) = zs(z))
{ls)I <1, ld <1} & Alas@@)I<1, [z <1} 3)

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag



Classification and normal forms of functions Schur functions

Expansion of Schur functions

Schur used that for o € C with |a| < 1 the “linear” transformation (Blaschke
factor, no normalization; Moebius transformation)

I—«

Bl =15, (2)
maps D to itself and by Schwarz’s Lemma (set f(z) = zs(z))
{ls)I <1, ld <1} & Alas@)I<1, [z <1}, 3)

to propose a recursive expansion (kettenbruchartiger Algorithmus) of a Schur
function s € €.
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Classification and normal forms of functions Schur functions

Expansion of Schur functions

Schur used that for o € C with |a| < 1 the “linear” transformation (Blaschke
factor, no normalization; Moebius transformation)

I—

Bl =15, (2)
maps D to itself and by Schwarz’s Lemma (set f(z) = zs(z))
{ls)I <1, ld <1} & Alas@)I<1, [z <1}, 3)

to propose a recursive expansion (kettenbruchartiger Algorithmus) of a Schur
function s € €. Set s = s and perform

_lsi(z) = .
siv1(z) = gﬁl&(z), i = 5i(0). (4)
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Classification and normal forms of functions Schur functions

Expansion of Schur functions

Schur used that for o € C with |a| < 1 the “linear” transformation (Blaschke
factor, no normalization; Moebius transformation)

I—«

Bl =15, (2)
maps D to itself and by Schwarz’s Lemma (set f(z) = zs(z))
{ls)I <1, ld <1} & Alas@)I<1, [z <1}, 3)

to propose a recursive expansion (kettenbruchartiger Algorithmus) of a Schur
function s € €. Set s = s and perform

1 si(z) — i

21— F5:(2) i = 5i(0). (4)

siv1(z) =

Then all {s;}, satisfy |s;(z)| < 1.
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Classification and normal forms of functions Schur functions

Expansion of Schur functions

Schur used that for o € C with |a| < 1 the “linear” transformation (Blaschke
factor, no normalization; Moebius transformation)

-«
maps D to itself and by Schwarz’s Lemma (set f(z) = zs(z))
{ls)I <1, ld <1} & Alas@)I<1, [z <1}, 3)

to propose a recursive expansion (kettenbruchartiger Algorithmus) of a Schur
function s € €. Set s = s and perform

1 si(z) — i

T-ve) T 5i(0). (4)

siv1(z) =

Then all {s;}", satisfy |s;(z)| < 1. The constants ~; are the aforementioned
Schur coefficients or reflection coefficients.
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Classification and normal forms of functions Schur functions

Rational expansion of Schur functions

Schur developed recursions for the expansion by writing the function s in
terms of a rational function,

_alz) Do az

s(z) = bo) - SF b by # 0. (5)
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Classification and normal forms of functions Schur functions

Rational expansion of Schur functions

Schur developed recursions for the expansion by writing the function s in
terms of a rational function,

a(z) _ Yispmd
=% . by #0. 5
=0 = e 7 ©
Using determinal identities Schur proved that the functions {s;}2, can be
expressed according to
Dy(z)
A,‘(Z)‘

si(z) = — (6)
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Classification and normal forms of functions Schur functions

Rational expansion of Schur functions

Schur developed recursions for the expansion by writing the function s in
terms of a rational function,

s(z) = % %Z— Z"Zk, bo # 0. (5)

Using determinal identities Schur proved that the functions {s;}2, can be

expressed according to
Di(z)

i = — 5 6
5i(2) e (6)
where he additionally defined analytic functions

Z a,+kz and h Z bH.ka (7)

k=0
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Classification and normal forms of functions Schur functions

Rational expansion of Schur functions

Schur developed recursions for the expansion by writing the function s in
terms of a rational function,

s(z) = % %Z— Z"Zk, bo # 0. (5)

Using determinal identities Schur proved that the functions {s;}2, can be
expressed according to
Di(z)

i = — 5 6
5i(2) e (6)
where he additionally defined analytic functions

Z a,+kz and h Z bH.ka (7)

k=0

and gave determinal expressions for D;(z) and A;(z) (the next two pages .. .)
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Classification and normal forms of functions Schur functions

Explicit solution of the recursion

(remember that g;(z) = Y0 @izt and hi(z) = 302 bisk)

Di(z) =

Jens-Peter M. Zemke

- Slo o

0 ap dp
0 0 ap
0 0 O
by 0 0
0 by b
0 0 b
0 0 O
a 0 0

On Generalized Schur Algorithms

aj—1
aji—p
ai—3

by

g (2)
gi-1(2)
gi—z(z)

g1(2)
h,- (Z)
hi—1(z)
hi—»(z)

hl-(Z)

Oberseminar-Vortrag
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Classification and normal forms of functions Schur functions

Explicit solution of the recursion

(remember that g;(z) = Y0 @izt and hi(z) = 302 bisk)

by 0 0 a ar --- aiyr gi-1(2)

1_,1 1_,0 0 0 a - ai—3 gi—(2)

b, b 0 0 0 - a4 g3
(o |bic1 bia bp 0 0 - 0 80(2) 9
AR =1%o 0 by bi -+ bia hia(2) ©

a  a 0 0 by -+ bi_3 hia(2)

a a, 0 0 0 - big hs(z)

ai—l ai—Z e 50 0 0 R 0 hO(Z)
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Classification and normal forms of functions Schur functions

A Toeplitz reformulation

Following [Toeplitz, 1911] Schur associated matrices to every power series as
follows. Let ¢« and b be the power series defined as

a(z) = Zakzk, b(z) = Zbkzk. (10)
k=0 k=0
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Classification and normal forms of functions Schur functions

A Toeplitz reformulation

Following [Toeplitz, 1911] Schur associated matrices to every power series as
follows. Let ¢« and b be the power series defined as

a(z) = Zakzk, b(z) = Zbkzk. (10)
k=0 k=0

Then infinite upper triangular Toeplitz matrices A and B associated to a and b
are defined by

apg ap --- by by

A= a .|, B= by . (11)
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Classification and normal forms of functions Schur functions

A Toeplitz reformulation

Following [Toeplitz, 1911] Schur associated matrices to every power series as
follows. Let ¢« and b be the power series defined as

a(z) = Zakzk, b(z) = Zbkzk. (10)
k=0 k=0

Then infinite upper triangular Toeplitz matrices A and B associated to a and b
are defined by

apg dadp - b() b]

A= a |, B= by |, (11)

and infinite Hermitean matrices 2l and 8 associated to a and b are defined by
A = A"A and B = BB.
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Classification and normal forms of functions Schur functions

The matrix counterpart

The Schur coefficients are given by

Yi = S,'(O) (1 2)
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Classification and normal forms of functions Schur functions

The matrix counterpart

The Schur coefficients are given by the fractions

i = 5i(0) = -~ (12)
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Classification and normal forms of functions Schur functions

The matrix counterpart

The Schur coefficients are given by the fractions

D;(0) d;
5 (12)

= 5(0) =~ ) =
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Classification and normal forms of functions Schur functions

The matrix counterpart

The Schur coefficients are given by the fractions

Do) 4
i = si(0) = NS

Due to the underlying relations, the reflection coefficients satisfy

0i—10i+1 1
bo=1 0_1=—.
512 ) 0 ) b%

1=yl =
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Classification and normal forms of functions Schur functions

The matrix counterpart

The Schur coefficients are given by the fractions

_ _ D;(0)
vi = 5:(0) = NI (12)
Due to the underlying relations, the reflection coefficients satisfy
0i—10i+1 1
1— |y = , 6 =16 =—. 1

Based on the commutativity of Toeplitz matrices Schur proved that the
determinants ¢; are also the i x i leading principal determinants of the infinite
Hermitean matrix (Hermitean form)

H =99 (14)
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Classification and normal forms of functions Jacobi transformation
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Classification and normal forms of functions Jacobi transformation

Jacobi transformation

[Schur, 1917/1918] remarks on pages 217—-218:

“Der Ubergang [..] entspricht also dem ersten Schritt bei der
Jacobischen Transformation der Form $(xo, x1,...,x,).”
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Classification and normal forms of functions Jacobi transformation

Jacobi transformation

[Schur, 1917/1918] remarks on pages 217—-218:

“Der Ubergang [..] entspricht also dem ersten Schritt bei der
Jacobischen Transformation der Form $(xo, x1,...,x,).”

Schur’s treatment reminds of [Toeplitz, 1907] who cites Jacobi, but remarks:

“Allgemein flir Bilinearformen wird diese Transformation von Jacobi
aufgestellt; flir quadratische Formen wird sie schon von Lagrange
und GauB3 verwendet.”
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Classification and normal forms of functions Jacobi transformation

Jacobi transformation

[Schur, 1917/1918] remarks on pages 217—-218:

“Der Ubergang [..] entspricht also dem ersten Schritt bei der
Jacobischen Transformation der Form $(xo, x1,...,x,).”

Schur’s treatment reminds of [Toeplitz, 1907] who cites Jacobi, but remarks:

“Allgemein flir Bilinearformen wird diese Transformation von Jacobi
aufgestellt; flir quadratische Formen wird sie schon von Lagrange
und GauB3 verwendet.”

[Lev-Ari & Kailath, 1986] state “incorrectly” (i.e., simplified) that the mentioned
“Jacobi Transformation” [Jacobi, 1857] is the nested computation of the LDLT
decomposition of H (a finite section of §),

H = LDL" (15)

with L unit diagonal lower triangular and D diagonal.
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Classification and normal forms of functions Jacobi transformation

Jacobi transformation; modern style

In [Kailath & Sayed, 1999] the authors “correct” the decomposition and call
“Schur’s” variant of Jacobi’s transformation the Gau3-Schur reduction.
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Classification and normal forms of functions Jacobi transformation

Jacobi transformation; modern style

In [Kailath & Sayed, 1999] the authors “correct” the decomposition and call
“Schur’s” variant of Jacobi’s transformation the Gau3-Schur reduction.

In this variant H is decomposed into
H=LD"'L", [;=d;, (16)

where L is lower triangular and D is diagonal.
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Classification and normal forms of functions Jacobi transformation

Jacobi transformation; modern style

In [Kailath & Sayed, 1999] the authors “correct” the decomposition and call
“Schur’s” variant of Jacobi’s transformation the Gau3-Schur reduction.

In this variant H is decomposed into

H=LD 'L I,=d;, (16)
where L is lower triangular and D is diagonal.
Actually, [Jacobi, 1857] computes an LDMT decomposition using A(®) = A and

the iteration
(i=1) ,i=1)

i a(i_l)

i

a

AW — A1) _ (17)
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Classification and normal forms of functions Jacobi transformation

Jacobi transformation; modern style

In [Kailath & Sayed, 1999] the authors “correct” the decomposition and call
“Schur’s” variant of Jacobi’s transformation the Gau3-Schur reduction.

In this variant H is decomposed into

H=LD 'L I,=d;, (16)
where L is lower triangular and D is diagonal.
Actually, [Jacobi, 1857] computes an LDMT decomposition using A(®) = A and

the iteration
(i=1) ,i=1)

i

a

AW — A1) _ (17)

Additionally, the resulting quantities are expressed (as usually those times) in
terms of determinants.
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Classification and normal forms of functions Cayley transform
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Classification and normal forms of functions Cayley transform

Cayley transform

The Cayley transform maps the open resp.
closed half-plane onto the open resp.
closed unit disc.
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Classification and normal forms of functions Cayley transform

Cayley transform

The Cayley transform maps the open resp.
closed half-plane onto the open resp.
closed
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Classification and normal forms of functions Cayley transform

Cayley transform

The Cayley transform maps the open resp.
closed half-plane onto the open resp.
closed

Z:H-w
_ 1=z
W= 1 Z

\+/

This conformal map preserves analyticity.
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Classification and normal forms of functions Carathéodory functions

Carathéodory functions

Schur’s investigations are closely related to Toeplitz’ and Carathéodory’s work
on functions with positive real part,

cr) =Y ad,  R(cz) >0, Jzf<L (18)
k=0
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Classification and normal forms of functions Carathéodory functions

Carathéodory functions

Schur’s investigations are closely related to Toeplitz’ and Carathéodory’s work
on functions with positive real part,

c(z) = chzk, R(c(z)) >0, |7 <1. (18)
k=0

These functions are known as Carathéodory functions.
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Classification and normal forms of functions Carathéodory functions

Carathéodory functions

Schur’s investigations are closely related to Toeplitz’ and Carathéodory’s work
on functions with positive real part,

c(z) = chzk, R(c(z)) >0, |7 <1. (18)
k=0

These functions are known as Carathéodory functions. A function is a
Carathéodory function, if and only if “all” Hermitean Toeplitz matrices

Co + ¢o c Cm
4 Co+co - :
T, = 1 0 0 (19)
- '. " cl
Em E] E()+Co

are positive definite, {T,, > 0} _,, det(T,,) =0, m > n.
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Classification and normal forms of functions Carathéodory functions

Schur’s proof

Carathéodory functions can be transformed to Schur functions via a Cayley
transform that maps the positive real complex (right) half-plane onto the
interior of the unit disc,

() = 1<) (20)
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Classification and normal forms of functions Carathéodory functions

Schur’s proof

Carathéodory functions can be transformed to Schur functions via a Cayley
transform that maps the positive real complex (right) half-plane onto the
interior of the unit disc,

1 —¢(z)
= . 20
s(2) 1+ c(z) (20)
If the Carathéodory function is given in rational form,
(z) = 6() _ 2ucoh O“kz o b #0, (1)

b(z) Zk —ob
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Classification and normal forms of functions Carathéodory functions

Schur’s proof

Carathéodory functions can be transformed to Schur functions via a Cayley
transform that maps the positive real complex (right) half-plane onto the
interior of the unit disc,

1 —c(2)
s(z) = T e(2) (20)

If the Carathéodory function is given in rational form,

a(z) Z/?ooakz
c(z) = —= 2 by # 0, (21)
=50~ Sebd ™
then the associated Schur function takes the form
b(z) — a(z)
= 7 e 22
5(2) b(z) + a(z) (22)
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Classification and normal forms of functions Carathéodory functions

Schur’s proof

Since the Cayley transformed Carathéodory function is given by

_ b(z) —a(z)
s(z) = M7 (23)
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Classification and normal forms of functions Carathéodory functions

Schur’s proof

Since the Cayley transformed Carathéodory function is given by

_ b(z) —a(z)
s(z) = M7 (23)

the associated Hermitean form is given by

H=(B+A)B+A) - (B-A)"(B-A)=2B"A+A"B), (24)
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Classification and normal forms of functions Carathéodory functions

Schur’s proof

Since the Cayley transformed Carathéodory function is given by

_ b(z) —a(z)
s(z) = M7 (23)

the associated Hermitean form is given by

H=(B+A)B+A) - (B-A)"(B-A)=2B"A+A"B), (24)

and taking b(z) = 1 gives a multiple of the aforementioned Toeplitz matrix,

= 2(B"A + A"B) = 2(1"A + AM'I) (25)
=2(A+A") =2(Cc+ M. (26)
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Classification and normal forms of functions Matrix decomposition
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Classification and normal forms of functions

Matrix decomposition
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Classification and normal forms of functions Matrix decomposition

Utilizing these relations

The test whether a function is a Schur function is based on the Schur
coefficients (reflection coefficients).
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Classification and normal forms of functions Matrix decomposition

Utilizing these relations

The test whether a function is a Schur function is based on the Schur
coefficients (reflection coefficients).

Since the Schur functions are closely linked to Carathéodory functions, we
might suspect a certain relation between

|l <1 and §; > 0. (27)
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Classification and normal forms of functions Matrix decomposition

Utilizing these relations

The test whether a function is a Schur function is based on the Schur
coefficients (reflection coefficients).

Since the Schur functions are closely linked to Carathéodory functions, we
might suspect a certain relation between

|l <1 and ¢; >0, (27)
and the diagonal elements ¢; of the Cholesky factor of the decomposition of
the associated Toeplitz matrices,
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Classification and normal forms of functions Matrix decomposition

Utilizing these relations

The test whether a function is a Schur function is based on the Schur
coefficients (reflection coefficients).

Since the Schur functions are closely linked to Carathéodory functions, we
might suspect a certain relation between

|l <1 and ¢; >0, (27)
and the diagonal elements ¢; of the Cholesky factor of the decomposition of
the associated Toeplitz matrices,

It turns out that the Schur algorithm (as a byproduct) cheaply computes the
Cholesky decomposition.
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Schur algorithm; modern form Reformulation of Schur’s expansion

Outline

Schur algorithm; modern form
Reformulation of Schur’s expansion
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Schur algorithm; modern form Reformulation of Schur’s expansion

Schur’s expansion

With
s@=50  G@=(n6) ak) (29)

we can state a “linearized” version of Schur’s expansion.
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Schur algorithm; modern form Reformulation of Schur’s expansion

Schur’s expansion

With
5 =25 Gi(a) = (b)) ai2) (29)

we can state a “linearized” version of Schur’s expansion,

Git1(z) = Gi(z) ¢; (_17 _17i> (8 (1)> , ¢ = arbitrary. (30)
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Schur algorithm; modern form Reformulation of Schur’s expansion

Schur’s expansion

With
s@=30 6= (0 W)

we can state a “linearized” version of Schur’s expansion,

Git1(z) = Gi(z) ¢ (_171_ _17i> (8 (1)> , ¢ = arbitrary,

since

=
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Schur algorithm; modern form Reformulation of Schur’s expansion

Schur’s expansion

With
s@=30 6= (0 W)

we can state a “linearized” version of Schur’s expansion,

Git1(z) = Gi(z) ¢ (_171_ _17i> (8 (1)> , ¢ = arbitrary,

since

a I(Z) _ 1 S,’(Z) — i
siv1(z) = bl:l(Z) T zl— ¥;si(2)
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Schur algorithm; modern form Reformulation of Schur’s expansion

Schur’s expansion

With
s@=30 6= (0 W)

we can state a “linearized” version of Schur’s expansion,

1 —y 0 .
G =Gl o ( L Y (5 1) o= aivary,
since

siv1(z) = aiy1(2) _1 si(z) — v bi2)
ol bin(z)  z1—7s:z) biz)
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Schur algorithm; modern form Reformulation of Schur’s expansion

Schur’s expansion

With

s@=30 6= (0 W) (29)

we can state a “linearized” version of Schur’s expansion,

G =6 o (L (5 ). e-atiay. (0

since

_ai1(z)  1si(z) =y bi(2)
10 = 5 T T T me) bl 1)

_ Lai(z) — vibi(2)
- zbi(z) — Wai(z) (32)
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Schur algorithm; modern form Reformulation of Schur’s expansion

Schur’s expansion

With
=29 G = (bi2) ai2)) (29)

we can state a “linearized” version of Schur’s expansion,

Gn@ =@ e L ) (G 7). a-atiay, @

-7 1
since
_ain(@) _ 1 si@) v bi2)
sipi(z) = bis1 () Tzl —7,;51(z)  bi(2) (31)
' AN
_ Lai(z) —yibi(z) Gl ( ! ) : (32)

© z2bi(z) —7aiz) Gi(2) (_%) -z.
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Schur algorithm; modern form Reformulation of Schur’s expansion

Schur’s expansion

With
=29 G = (bi2) ai2)) (29)

we can state a “linearized” version of Schur’s expansion,

Git1(z) = Gi(z) ¢ ( ! _7i> (8 (1)> , ¢ = arbitrary? (30)

-7 1
since
_ain(@) _ 1 si@) v bi2)
sipi(z) = bis1 () Tzl —7,;51(z)  bi(2) (31)
' AN
_ Lai(z) —yibi(z) Gl ( ! ) : (32)

© z2bi(z) —7aiz) Gi(2) (_%) -z.
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Schur algorithm; modern form Reformulation of Schur’s expansion

Schur’s expansion

With
=29 G = (bi2) ai2)) (29)

we can state a “linearized” version of Schur’s expansion,

Gi+1(2) = Gi(z) & (_171_ _1%> (8 (1)> y = ﬁ, (30)

since
_an(@) _ 1 s@) - bilz)
sii(2) = biri(z)  z1—=7si(z) bi(2) o
' AN
_ Lai(z) —yibi(z) Gl ( ! ) : (32)

© z2bi(z) —7aiz) Gi(2) (_%) -z.
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Schur algorithm; modern form Reformulation of Schur’s expansion

Reversing the approach

Suppose we are given a positive definite finite section H of a symmetric
infinite matrix
H=B-U (33)

and want to compute the Cholesky decomposition.
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Schur algorithm; modern form Reformulation of Schur’s expansion

Reversing the approach

Suppose we are given a positive definite finite section H of a symmetric
infinite matrix
H=B-U (33)

and want to compute the Cholesky decomposition.

H has a special property, namely that a displacement of the entries along the
diagonal preserves major part of the structure.
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Schur algorithm; m Reformulation of Schur’s expansion

Reversing the approach

Suppose we are given a positive definite finite section H of a symmetric
infinite matrix
H=B-U (33)

and want to compute the Cholesky decomposition.

H has a special property, namely that a displacement of the entries along the
diagonal preserves major part of the structure.

Notation is changed slightly: Let L(a) denote a lower triangular Toeplitz matrix
with entries a € C" in the first column. Then

H = L(b)L(b)" — L(a)L(a)" (34)

is Toeplitz. This change corresponds to complex conjugation.
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Schur algorithm; modern form Reformulation of Schur’s expansion

Reversing the approach

Suppose we are given a positive definite finite section H of a symmetric
infinite matrix
H=B-U (33)

and want to compute the Cholesky decomposition.

H has a special property, namely that a displacement of the entries along the
diagonal preserves major part of the structure.

Notation is changed slightly: Let L(a) denote a lower triangular Toeplitz matrix
with entries a € C" in the first column. Then

H = L(b)L(b)" — L(a)L(a)" (34)
is Toeplitz. This change corresponds to complex conjugation.

The displacement can be described by shifting the entries of a and b, i.e., the
elements of the power series a and b.
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Schur algorithm; modern form Displacement structure

Outline

Schur algorithm; modern form

Displacement structure
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Schur algorithm; modern form Displacement structure

Displacement structure

Let Z = diag(ones(n — 1, 1), —1) denote the displacement by one position.
Then
H — ZHZ" (35)
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Schur algorithm; modern form Displacement structure

Displacement structure

Let Z = diag(ones(n — 1, 1), —1) denote the displacement by one position.
Then
VH = H — ZHZ" (35)
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Schur algorithm; modern form Displacement structure

Displacement structure

Let Z = diag(ones(n — 1, 1), —1) denote the displacement by one position.
Then
VH = H — ZHZ" = bb" — ad" (35)
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Schur algorithm; modern form Displacement structure

Displacement structure

Let Z = diag(ones(n — 1, 1), —1) denote the displacement by one position.
Then

VH =H — ZHZ" = bb" — ad” = GIG" (35)
with

G= (b a), J:<(1) _?). (36)
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Schur algorithm; modern form Displacement structure

Displacement structure

Let Z = diag(ones(n — 1, 1), —1) denote the displacement by one position.
Then

VH =H — ZHZ" = bb" — ad” = GIG" (35)
with
G=(b a), J= Lo (36)
’ 0 -1/
Using the fact that Z is nilpotent and utilizing a Neumann series,
n—1
vec(H) = (I = Z® Z) " 'vec(GIG) = Y (Z® Z)vec(GIG") (37)
Jj=0
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Schur algorithm; modern form Displacement structure

Displacement structure

Let Z = diag(ones(n — 1, 1), —1) denote the displacement by one position.
Then

VH =H — ZHZ" = bb" — ad” = GIG" (35)
with
G=(b a), J= Lo (36)
’ 0 -1/
Using the fact that Z is nilpotent and utilizing a Neumann series,
n—1
vec(H) = (I = Z® Z) " 'vec(GIG) = Y (Z® Z)vec(GIG") (37)
Jj=0

and therefore we can recover H using the generator G,
n—1
H=> 7GIG"(Z"y. (38)
j=0
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Schur algorithm; modern form Displacement structure

Displacement structure

Generators are unique up to post-multiplication by J-unitary matrices © € C,
defined by ©J©% = J, including hyperbolic rotations ©(~),

_ ! L -y
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Schur algorithm; modern form Displacement structure

Displacement structure

Generators are unique up to post-multiplication by J-unitary matrices © € C,
defined by ©J©% = J, including hyperbolic rotations ©(~),

_ ! L -y

This is obvious, since with G = GO for a J-unitary matrix ©

GJG" = geJerct = GIG". (40)
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Schur algorithm; modern form Displacement structure

Displacement structure

Generators are unique up to post-multiplication by J-unitary matrices © € C,
defined by ©J©% = J, including hyperbolic rotations ©(~),

__ 1 I =

This is obvious, since with G = GO for a J-unitary matrix ©

GJG" = geJerct = GIG". (40)
Since H is assumed positive definite (0 < iy, = |b7e;|> — |a”e;|?), we can
always chose a generator G in “proper form”

* 0
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Schur algorithm; modern form Cholesky decomposition

Outline

Schur algorithm; modern form

Cholesky decomposition
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Schur algorithm; modern form Cholesky decomposition

Cholesky decomposition

The generator can be used to compactly (2n entries) represent a HPD Toeplitz
matrix (n> entries). It is slightly more expensive than parameterization by first
row or column (n entries) but enables a cheap triangular decomposition.
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Schur algorithm; modern form Cholesky decomposition

Cholesky decomposition

The generator can be used to compactly (2n entries) represent a HPD Toeplitz
matrix (n> entries). It is slightly more expensive than parameterization by first
row or column (n entries) but enables a cheap triangular decomposition.

The Cholesky decomposition of HPD H can be computed as follows. Set
H, =Handrepeatfori=1,...,n

H,'+1 = H,' — CiCH

i

(42)

where Cii = 4/ hl(ll) and Ci = Hie,-/cii.
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Schur algorithm; modern form Cholesky decomposition

Cholesky decomposition

The generator can be used to compactly (2n entries) represent a HPD Toeplitz
matrix (n> entries). It is slightly more expensive than parameterization by first
row or column (n entries) but enables a cheap triangular decomposition.

The Cholesky decomposition of HPD H can be computed as follows. Set
H, =Handrepeatfori=1,...,n

Hipy = H; — cicl, (42)

where Cii = 4/ hl(ll) and Ci = Hie,-/cii.

This is the Jacobi-style Cholesky decomposition working with rank-one
updates that introduce a new zero row and vector in H;;; compared to H;.
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Schur algorithm; modern form Cholesky decomposition

Cholesky decomposition

The generator can be used to compactly (2n entries) represent a HPD Toeplitz
matrix (n> entries). It is slightly more expensive than parameterization by first
row or column (n entries) but enables a cheap triangular decomposition.

The Cholesky decomposition of HPD H can be computed as follows. Set
H, =Handrepeatfori=1,...,n

Hipy = H; — cicl, (42)

where Cii = 4/ hl(ll) and Ci = H,'el'/Ci,'.

This is the Jacobi-style Cholesky decomposition working with rank-one
updates that introduce a new zero row and vector in H;,; compared to H;.

This style is not very economic and used for demonstration only.
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Schur algorithm; modern form Cholesky decomposition

Cholesky decomposition

We have seen that a HPD Toeplitz matrix (scaled; now denoted by T),

1 7 Ty

r— | 1 (43)
. 21
1, 5] 1

may be represented by its generator G.
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Schur algorithm; modern form Cholesky decomposition

Cholesky decomposition

We have seen that a HPD Toeplitz matrix (scaled; now denoted by T7),

1 7 Ty

r— | 1 (43)
. 21
1, 5] 1

may be represented by its generator G using the identity

T =Y ZGIG"Z"Y = GIG + ZGI(ZG)" + --- + Z'GI(Z'G)".  (44)
j=0
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Schur algorithm; modern form Cholesky decomposition

Cholesky decomposition

We have seen that a HPD Toeplitz matrix (scaled; now denoted by T7),

1 7 Ty

r— | 1 (43)
. 21
1, 5] 1

may be represented by its generator G using the identity

T =Y ZGIG"Z"Y = GIG + ZGI(ZG)" + --- + Z'GI(Z'G)".  (44)

j=0
1 0
. tl tl .
ltisnothardtoseethatG= | . . | is agenerator in proper form.
th Iy
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Schur algorithm; modern form Cholesky decomposition

Cholesky decomposition

The only portion of
Ty =T=>Y ZGIG"Z"Y = GIG + ZGI(ZG)" + --- + Z'GI(2'G)"  (45)
j=0
contributing to the first row and column is given by

cictl = bbf. (46)
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Schur algorithm; modern form Cholesky decomposition

Cholesky decomposition

The only portion of
Ty =T=Y ZGIG"Z"Y = GIG + ZGJ(2G)" +
j=0
contributing to the first row and column is given by
cictl = bbf.

We inductively use this property.

Jens-Peter M. Zemke On Generalized Schur Algorithms

-+ Z"GI(Z"G)"

Oberseminar-Vortrag

(45)




Schur algorithm; modern form Cholesky decomposition

Cholesky decomposition

The only portion of

Ty =T=>Y ZGIG"Z"Y = GIG + ZGI(ZG)" + --- + Z'GI(2'G)"  (45)
Jj=0
contributing to the first row and column is given by

cictl = bbf. (46)

We inductively use this property. It is easy to rewrite the representation by
introducing an intermediate generator G of T,

T2 = T1 — C1C{I (47)
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Schur algorithm; modern form Cholesky decomposition

Cholesky decomposition

The only portion of
Ty =T=>Y ZGIG"Z"Y = GIG + ZGI(ZG)" + --- + Z'GI(2'G)"  (45)
Jj=0
contributing to the first row and column is given by
cictl = bbf. (46)

We inductively use this property. It is easy to rewrite the representation by
introducing an intermediate generator G of T,

n
Ty=T —ccf = ZGIG"(Z"Y — bb" (47)
Jj=0
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Schur algorithm; modern form Cholesky decomposition

Cholesky decomposition

The only portion of
Ty =T=>Y ZGIG"Z"Y = GIG + ZGI(ZG)" + --- + Z'GI(2'G)"  (45)
Jj=0
contributing to the first row and column is given by
cictl = bbf. (46)

We inductively use this property. It is easy to rewrite the representation by
introducing an intermediate generator G of T,

n n
Ty=T —ccf = ZGIG"(Z"Y —bb" =Y 7GIG" (2", (47)
Jj=0 Jj=0
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Schur algorithm; modern form Cholesky decomposition

Cholesky decomposition

The only portion of
Ty =T=>Y ZGIG"Z"Y = GIG + ZGI(ZG)" + --- + Z'GI(2'G)"  (45)
j=0
contributing to the first row and column is given by
cictl = bbf. (46)
We inductively use this property. It is easy to rewrite the representation by
introducing an intermediate generator G of 75,
Ty=T —ccf = ZGIG"(Z"Y —bb" =Y 7GIG" (2", (47)
Jj=0 Jj=0
where G is defined by
G= (Zb a). (48)
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Schur algorithm; modern form Cholesky decomposition

Cholesky decomposition

This generator is usually not in “proper” form, so we compute another
generator G, by applying a hyperbolic rotation to G,

G| = GO(). (49)
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Schur algorithm; modern form Cholesky decomposition

Cholesky decomposition

This generator is usually not in “proper” form, so we compute another
generator G, by applying a hyperbolic rotation to G,

G = ée(’}/)v (49)

where v = a(2)/b(1) is chosen to annihilate the element in position 2 in a.
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Schur algorithm; modern form Cholesky decomposition

Cholesky decomposition

This generator is usually not in “proper” form, so we compute another
generator G, by applying a hyperbolic rotation to G,

where v = a(2)/b(1) is chosen to annihilate the element in position 2 in a.

Thus far, we have succesfully removed the first row and column and
computed the first column of the Cholesky factor. The new generator has
already “proper” form.
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Schur algorithm; mi Cholesky decomposition

Cholesky decomposition

This generator is usually not in “proper” form, so we compute another
generator G, by applying a hyperbolic rotation to G,

where v = a(2)/b(1) is chosen to annihilate the element in position 2 in a.

Thus far, we have succesfully removed the first row and column and
computed the first column of the Cholesky factor. The new generator has
already “proper” form.

This process can be repeated until all rows and columns have been deflated
and all columns of the Cholesky factor have been computed.
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Schur algorithm; modern form Cholesky decomposition

Cholesky decomposition

This generator is usually not in “proper” form, so we compute another
generator G, by applying a hyperbolic rotation to G,

where v = a(2)/b(1) is chosen to annihilate the element in position 2 in a.

Thus far, we have succesfully removed the first row and column and
computed the first column of the Cholesky factor. The new generator has
already “proper” form.

This process can be repeated until all rows and columns have been deflated
and all columns of the Cholesky factor have been computed.

Stripping of leading zero blocks in the matrix and the generator we can go
through the steps and compute only the nonzero elements of the columns of
the Cholesky factor.
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Schur algorithm; modern form Cholesky decomposition

Cholesky decomposition

It turns out that we have recovered the Schur algorithm, since this is just
another way of describing Schur’s classical algorithm

1 si(z) =

E 1 _ ﬁis,-(z)’ Yi = Si(O). (50)

sivi(z) =
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Schur algorithm; modern form Cholesky decomposition

Cholesky decomposition

It turns out that we have recovered the Schur algorithm, since this is just
another way of describing Schur’s classical algorithm

1 si(z) =
i = e i = i O 5 50
S+1(Z) z 1— ﬁisi(z) Vi S( ) ( )
for the case of rational functions
si(z) = ai(Z)- (51)

bi(Z)
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Schur algorithm; modern form Cholesky decomposition

Cholesky decomposition

It turns out that we have recovered the Schur algorithm, since this is just
another way of describing Schur’s classical algorithm

1 si(2) — v
; =—-——, 7 =s5(0), 30
S+1(Z) z 1— ﬁisi(z) Vi S( ) ( )
for the case of rational functions
S;(Z) - ai(Z) (51)

linearized in form of a coupled iteration

Git1(2) = Gi(2) ¢ (_171_ _1%) (8 ?) , Qi = \/%W, (52)

with generators G;(z) = (b,»(z) ai(z)).
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Schur algorithm; modern form The Schur algorithm
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Schur algorithm; modern form

The Schur algorithm
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Schur algorithm; modern form The Schur algorithm

The Schur algorithm

Stated in terms of vectors a;, b; € C" representing the coefficients of the
respective power series and using the shift operator Z in place of multiplication
by z we have shown that the Schur algorithm takes the following form:
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Schur algorithm; modern form The Schur algorithm

The Schur algorithm

Stated in terms of vectors a;, b; € C" representing the coefficients of the
respective power series and using the shift operator Z in place of multiplication
by z we have shown that the Schur algorithm takes the following form:

Start with a generator G = (bl a1> of HPD Toeplitz T in proper form.
lterate: fori=1,...,n—1:
ci<— b;
eﬂlai
el'b;

1 —~
) ) ) ) 1 i
(bl-‘rl al+1) — (Zb; az) 1—|7il? <_»_Yl 1 )
endfor

Setc, «— b,

Vi <
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Schur algorithm; modern form The Schur algorithm

The Schur algorithm

Stated in terms of vectors a;, b; € C" representing the coefficients of the
respective power series and using the shift operator Z in place of multiplication
by z we have shown that the Schur algorithm takes the following form:

Start with a generator G = (bl a1> of HPD Toeplitz T in proper form.
lterate: fori=1,...,n—1:
ci<— b;
eﬂlai
el'b;

1 A~
) ) ) ) 1 i
(bl-‘rl al+1) — (Zb; az) 1—|7il? <_»_Yl 1 >
endfor

Set ¢, < b,

Yi <

By previous considerations C iteratively defined by Ce; = c; is the Cholesky
factor of T.
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Schur algorithm; modern form The Schur algorithm

The Schur algorithm; variants

One can easily use other triangular decompositions:
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Schur algorithm; modern form The Schur algorithm

The Schur algorithm; variants

One can easily use other triangular decompositions:

Cholesky decomposition: this is the “standard” Schur algorithm
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Schur algorithm; modern form The Schur algorithm

The Schur algorithm; variants

One can easily use other triangular decompositions:

Cholesky decomposition: this is the “standard” Schur algorithm

LDLH decomposition: a natural extension of the Schur algorithm to treat
indefinite Toeplitz matrices which admit such a decomposition
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Schur algorithm; modern form The Schur algorithm

The Schur algorithm; variants

One can easily use other triangular decompositions:

Cholesky decomposition: this is the “standard” Schur algorithm

LDLH decomposition: a natural extension of the Schur algorithm to treat
indefinite Toeplitz matrices which admit such a decomposition

LU decomposition: another possible variant
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Schur algorithm; modern form The Schur algorithm

The Schur algorithm; variants

One can easily use other triangular decompositions:

Cholesky decomposition: this is the “standard” Schur algorithm

LDLH decomposition: a natural extension of the Schur algorithm to treat
indefinite Toeplitz matrices which admit such a decomposition

LU decomposition: another possible variant

The use of augmented & composed systems is used to develop variants to
compute:
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Schur algorithm; modern form The Schur algorithm

The Schur algorithm; variants

One can easily use other triangular decompositions:

Cholesky decomposition: this is the “standard” Schur algorithm

LDLH decomposition: a natural extension of the Schur algorithm to treat
indefinite Toeplitz matrices which admit such a decomposition

LU decomposition: another possible variant

The use of augmented & composed systems is used to develop variants to
compute:

» the R factor of the QR decomposition
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Schur algorithm; modern form The Schur algorithm

The Schur algorithm; variants

One can easily use other triangular decompositions:

Cholesky decomposition: this is the “standard” Schur algorithm

LDLH decomposition: a natural extension of the Schur algorithm to treat
indefinite Toeplitz matrices which admit such a decomposition

LU decomposition: another possible variant

The use of augmented & composed systems is used to develop variants to
compute:

» the R factor of the QR decomposition
> the inverse of T
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Schur algorithm; modern form The Schur algorithm

The Schur algorithm; variants

One can easily use other triangular decompositions:

Cholesky decomposition: this is the “standard” Schur algorithm

LDLH decomposition: a natural extension of the Schur algorithm to treat
indefinite Toeplitz matrices which admit such a decomposition

LU decomposition: another possible variant

The use of augmented & composed systems is used to develop variants to
compute:

» the R factor of the QR decomposition
> the inverse of T
> ...
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Generalized Schur algorithms Displacement structure
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Generalized Schur algorithms
Displacement structure

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag



Generalized Schur algorithms Displacement structure

Displacement structure

Let R € C"*" be Hermitean, R = R”. The displacement of R with respect to
F € C is defined by
VrR =R — FRF". (53)
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Generalized Schur algorithms Displacement structure

Displacement structure

Let R € C"*" be Hermitean, R = R”. The displacement of R with respect to
F € C is defined by
VrR =R — FRF". (53)

The matrix R is said to have low displacement rank if

rank(Vr) < n. (54)
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Generalized Schur algorithms Displacement structure

Displacement structure

Let R € C"*" be Hermitean, R = R”. The displacement of R with respect to
F € C is defined by
ViR =R — FRF". (53)

The matrix R is said to have low displacement rank if
rank(Vr) < n. (54)

In this case R is said to have displacement structure with respect to F.
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Generalized Schur algorithms Displacement structure

Displacement structure

Let R € C"*" be Hermitean, R = R”. The displacement of R with respect to

F € C is defined by
VrR =R — FRF". (53)

The matrix R is said to have low displacement rank if
rank(Vr) < n. (54)
In this case R is said to have displacement structure with respect to F.

An example are symmetric real Toeplitz matrices T having displacement
structure with respect to the shift matrix
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Generalized Schur algorithms Displacement structure

Displacement structure

Other types of displacement include the Stein type displacement

Vira}R = R — FRA". (56)
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Generalized Schur algorithms Displacement structure

Displacement structure

Other types of displacement include the Stein type displacement

V{ra}R =R — FRA". (56)

Stein’s theorem: X is convergent, if and only if there exists a positive definite A
such that A — X"AX is positive definite.
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Generalized Schur algorithms Displacement structure

Displacement structure

Other types of displacement include the Stein type displacement
Vira}R =R — FRA", (56)
and the Sylvester type displacement

Vira}R = FR — RA". (57)

Stein’s theorem: X is convergent, if and only if there exists a positive definite A
such that A — X"AX is positive definite.
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Generalized Schur algorithms Displacement structure

Displacement structure

Other types of displacement include the Stein type displacement
Vira}R =R — FRA", (56)
and the Sylvester type displacement

Vira}R = FR — RA". (57)

Both are covered by the general displacement

ViaaraR= QRA™ — FRAM. (58)

Stein’s theorem: X is convergent, if and only if there exists a positive definite A
such that A — X"AX is positive definite.
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Generalized Schur algorithms Displacement structure

Displacement structure

Other types of displacement include the Stein type displacement
Vira}R =R — FRA", (56)
and the Sylvester type displacement

Vira}R = FR — RA". (57)

Both are covered by the general displacement

Via.araR = QRA" — FRAY. (58)
Matrices with Stein type low displacement rank are termed Toeplitz-like, those
with Sylvester type low displacement rank Hankel-like.

Stein’s theorem: X is convergent, if and only if there exists a positive definite A
such that A — X#AX is positive definite.
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Generalized Schur algorithms Displacement structure

Displacement structure

The so-called Pick matrix A is defined by

xixH_yin !
A= (W) ’ 59

ij=1

where x; € C'*7 and y; € C'*? are complex row vectors and f; are complex
points inside the open unit disc.

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag



Generalized Schur algorithms Displacement structure

Displacement structure

The so-called Pick matrix A is defined by

xixH_yin !
A= (W) ’ 59

ij=1

where x; € C'*7 and y; € C'*? are complex row vectors and f; are complex
points inside the open unit disc.

Such A has displacement rank r = p 4+ ¢ with respect to

F = diag(fi, ... ,fu)- (60)
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Generalized Schur algorithms Displacement structure

Displacement structure

The so-called Pick matrix A is defined by

xixf! — yiyf! ’
A= (W) ’ 59

ij=1

where x; € C'*7 and y; € C'*? are complex row vectors and f; are complex
points inside the open unit disc.

Such A has displacement rank r = p 4+ ¢ with respect to

F =diag(fi,..../a): (60)
since
H
X1 )1 I 0 X1 )
A— FAF? = | : : ( P ”"’) : : . (61)
o Ogp 1y o
Xn  Yn Xn Yn
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Generalized Schur algorithms Displacement structure

Displacement structure

A nonsymmetric example is given by a Vandermonde matrix

1 o of of
Il v o - of

v=|. . . . (62)
1 a, o o
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Generalized Schur algorithms Displacement structure

Displacement structure

A nonsymmetric example is given by a Vandermonde matrix

1 o of of
Il v o - of

v=|. . . . | (62)
1 a, o o

Such matrix V has displacement rank one with respect to
F = diag(ay, ..., ap) (63)

and the shift matrix Z introduced before.
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Generalized Schur algorithms Displacement structure

Displacement structure

A nonsymmetric example is given by a Vandermonde matrix

1 o of of
Il v o - of

v=|. . . . (62)
1 a, o o

Such matrix V has displacement rank one with respect to
F = diag(ay, ..., ap) (63)
and the shift matrix Z introduced before, since
V — FVZ" = ee], (64)

where e denotes the vector of all ones and ¢, is the first standard unit vector.
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Generalized Schur algorithms Displacement structure

Displacement structure

Another example, this time with respect to a Sylvester type displacement is a
Cauchy matrix C defined by

X1—=y1 X1—=Yn

Xn—=Y1 Xn—=Yn
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Generalized Schur algorithms Displacement structure

Displacement structure

Another example, this time with respect to a Sylvester type displacement is a
Cauchy matrix C defined by

Cauchy matrices have Sylvester type displacement rank one,

V{diag(x),diag(y)}c = diag(x) - C — C - diag(y) = ee’ . (66)
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Generalized Schur algorithms Displacement structure

Displacement structure

Another example, this time with respect to a Sylvester type displacement is a
Cauchy matrix C defined by

Cauchy matrices have Sylvester type displacement rank one,

V{diag(x),diag(y)}c = diag(x) - C — C - diag(y) = ee’ . (66)

A well-known example of a Cauchy matrix is the famous Hilbert matrix H with

entries |
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Generalized Schur algorithms Fundamental properties

Outline

Generalized Schur algorithms

Fundamental properties

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag



Generalized Schur algorithms Fundamental properties

Recovering R

For simplicity we assume the Hermitean Stein displacement case
VR =R — FRF = GJG", J=J0 =1 (68)

where G € C"™*" has full rank.
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Generalized Schur algorithms Fundamental properties

Recovering R

For simplicity we assume the Hermitean Stein displacement case
VR =R — FRF = GJG", J=J0 =1 (68)

where G € C"™*" has full rank.

We assume further that F is lower triangular and that f = diag(F) satisfies
fifi#1 forall ij. (69)
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Generalized Schur algorithms Fundamental properties

Recovering R

For simplicity we assume the Hermitean Stein displacement case
VR =R — FRF = GJG", J=J0 =1 (68)

where G € C"™*" has full rank.

We assume further that F is lower triangular and that f = diag(F) satisfies
fifi#1 forall ij. (69)

Then we can theoretically recover R from its generator pair (G, J) as follows:

vec(R) = (I—F @ F) "' vec(GIG™). (70)
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Generalized Schur algorithms Fundamental properties

Recovering R

For simplicity we assume the Hermitean Stein displacement case
VR =R — FRF = GJG", J=J0 =1 (68)
where G € C**" has full rank.
We assume further that F is lower triangular and that f = diag(F) satisfies
fifi#1 forall ij. (69)

Then we can theoretically recover R from its generator pair (G, J) as follows:

vec(R) = (I—=F @ F) ™' vec(GIG™). (70)

The assumption that F is lower triangular leads to a lower triangular
I-FQF. (71)
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Generalized Schur algorithms Fundamental properties

Recovering R

We have observed that the huge matrix in the Kronecker-type representation
(and thus its inverse) is lower triangular.

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag



Generalized Schur algorithms Fundamental properties

Recovering R

We have observed that the huge matrix in the Kronecker-type representation
(and thus its inverse) is lower triangular.

We could use forward substitution to compute elements of R. We remark that
the inverse of a lower triangular matrix is “nested”, in the sense that principal
submatrices of the inverse are the inverses of the corresponding principal
submatrices of the original matrix.
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Generalized Schur algorithms Fundamental properties

Recovering R

We have observed that the huge matrix in the Kronecker-type representation
(and thus its inverse) is lower triangular.

We could use forward substitution to compute elements of R. We remark that
the inverse of a lower triangular matrix is “nested”, in the sense that principal
submatrices of the inverse are the inverses of the corresponding principal
submatrices of the original matrix.

We can not that simply reconstruct the generators of the successive
submatrices constructed by the Jacobi-style Cholesky or LDLH
decomposition.
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Generalized Schur algorithms Fundamental properties

Recovering R

We have observed that the huge matrix in the Kronecker-type representation
(and thus its inverse) is lower triangular.

We could use forward substitution to compute elements of R. We remark that
the inverse of a lower triangular matrix is “nested”, in the sense that principal
submatrices of the inverse are the inverses of the corresponding principal
submatrices of the original matrix.

We can not that simply reconstruct the generators of the successive
submatrices constructed by the Jacobi-style Cholesky or LDLH
decomposition.

The generalization can be based on some observations using a few related
block matrix decompositions.
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Generalized Schur algorithms Fundamental properties

Fundamental properties

Displacement structure is preserved under inversion: there exists a full rank
matrix H € C™" such that

R —FHR™'F = HYJH. (72)
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Generalized Schur algorithms Fundamental properties

Fundamental properties

Displacement structure is preserved under inversion: there exists a full rank
matrix H € C™" such that

R —FHR™'F = HYJH. (72)

Proof: The block matrix triangular decompositions

R F I 0\ /R 0 1 o\”
Fi R) = \FiR-' 1)\0 R '—FHR'F)\FHR' | (73)

S [ [
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Generalized Schur algorithms Fundamental properties

Fundamental properties

Displacement structure is preserved under inversion: there exists a full rank
matrix H € C™" such that

R —FHR™'F = HYJH. (72)

Proof: The block matrix triangular decompositions

R F I 0\ /R 0 1 o\”
Fi R) = \FiR-' 1)\0 R '—FHR'F)\FHR' | (73)
I FR\ (R—FRF! 0\ (I FR\"
= (0 1> < 0 R‘1> (0 1) (74)

show that by Sylvester’s law of inertia

inertia(R~' — FR™'F) = inertia(R — FRF"). (75)
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Generalized Schur algorithms Fundamental properties

Fundamental properties

Ri1 Ry F, O
R = and F = . 76
(RZI Rzz) <F21 F22> ( )

We partition
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Generalized Schur algorithms Fundamental properties

Fundamental properties

We partition
Rii R Fi, O
R= and F = . 76
(RZI Rzz) <F21 F22> (76)
Schur complementation preserves displacement structure: Let the Schur
complement be denoted by S» := Ry — RyiR};'Ria.
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Generalized Schur algorithms Fundamental properties

Fundamental properties

We partition
Rii R Fi, O
= and F = . 76
(RZI Rzz) <F21 F22> (76)
Schur complementation preserves displacement structure: Let the Schur
complement be denoted by S» := R» — Ry 1R;;'Ri2. Then
rank(R11 — F11R11F11

< rank(R — FRF'), (77)
rank(Sy — F»S»nFy,) <

rank(R — FRF™). (78)

)
)
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Generalized Schur algorithms Fundamental properties

Fundamental properties

We partition
Rii R Fi, O
= and F = . 76
(RZI Rzz) <F21 Fzz) (76)
Schur complementation preserves displacement structure: Let the Schur
complement be denoted by S» := R» — Ry 1R;;'Ri2. Then

rank(Ry; — Fy Ry F)) < rank(R — FRF'), (77)
rank(522 — FzzSzzF 2) < rank(R FRFH) (78)

Proof: this follows upon the observation that the inverse of the Schur
complement is the lower block in the accordingly partitioned inverse of R.
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Generalized Schur algorithms Fundamental properties

Fundamental properties

We partition
Rii R Fi, O
= and F = . 76
(RZI Rzz) <F21 Fzz) (76)
Schur complementation preserves displacement structure: Let the Schur
complement be denoted by S» := R» — Ry 1R;;'Ri2. Then

rank(Ry; — FiiRiFih)
rank(Sx, — F2uSnFh)

rank(R — FRF"), (77)
rank(R — FRF"). (78)

NN

Proof: this follows upon the observation that the inverse of the Schur
complement is the lower block in the accordingly partitioned inverse of R.

By the first result

I'ank(Szz — FzzSznglz) = rank(S2_21 — FgIZSZ_lezz). (79)
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Generalized Schur algorithms Fundamental properties

Fundamental properties

We now use the Jacobi-style decompositions

R=LD'I" vU=L"D, R '=UD'U". (80)
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Generalized Schur algorithms Fundamental properties

Fundamental properties

We now use the Jacobi-style decompositions
R=LD'I" vU=L"D, R '=UD'U". (80)

Key Array Equation: there exists Q € C***?" such that

(ZL g) = (F’I;U p%) . QD 'ena=0"'aJs. (81
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Generalized Schur algorithms Fundamental properties

Fundamental properties

We now use the Jacobi-style decompositions

R=LD'I" vU=L"D, R '=UD'U". (80)
Key Array Equation: there exists Q € C***?" such that

(FL G>Q:<L 0>, QD 'eNQ =D "as). (©81)

U o Fily HY
Proof:
R F\ _(FL G\ (D' o0\ /(FL G\" ©2)
Fi R=')~\v o)\ o J)J\U o
L o\(' o\/L o0\
:(FHU HH> < 0 J) (FHU HH> ' (83)
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Generalized Schur algorithms Fundamental properties

Fundamental properties

We now use the Jacobi-style decompositions
R=LD'I" vU=L"D, R '=UD'U". (80)

Key Array Equation: there exists Q € C***?" such that

(P;JL g) 0= <F’[;U HOH> . QD 'ena=0"'aJs. (81

Proof:
R F FL G\ (D~' 0\ (FL G\”
<FH R—1> - <U 0) ( 10) J) (U 0> (82)
—1 H
- (Fer 11(‘!)H> <D0 ?) (FF%U 12’) ' (83)

We restrict interest to the leading block row.
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Generalized Schur algorithms A generalized Schur algorithm

Outline

Generalized Schur algorithms

A generalized Schur algorithm

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag



Generalized Schur algorithms A generalized Schur algorithm

Sketch of an algorithm

The key array equation looks as

(FL G)Q=(L 0), QD 'eanQ=(D"aJ). (84)
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Generalized Schur algorithms A generalized Schur algorithm

Sketch of an algorithm

The key array equation looks as
(FL G)Q=(L 0), QD 'anQ=(D"'aJ). (84)

The algorithm works recursively. We use a D~! @ J-unitary matrix Q, to obtain
a partial triangularization like

OT OT
(FL G) QO:<IO FL G ) (85)
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Generalized Schur algorithms A generalized Schur algorithm

Sketch of an algorithm

The key array equation looks as
(FL G)Q=(L 0), QD 'anQ=(D"'aJ). (84)

The algorithm works recursively. We use a D~! @ J-unitary matrix Q, to obtain
a partial triangularization like

OT OT
(FL G)QO=<10 FiL G ) (85)

Then we have to show that with R, = LDy 'L}, D, = diag(d,, ... ,d,),

R, — F\R\F = GJG!. (86)
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Generalized Schur algorithms A generalized Schur algorithm

Sketch of an algorithm

The key array equation looks as
(FL G)Q=(L 0), QD 'anQ=(D"'aJ). (84)

The algorithm works recursively. We use a D~! @ J-unitary matrix Q, to obtain
a partial triangularization like

Q oo 85
(FL G)Q = (lo FiL G ) (85)
Then we have to show that with R, = LDy 'L}, D, = diag(d,, ... ,d,),

R, — F\R\F = GJG!. (86)

We suppose this is to be correct and proceed to compute

(FL G)QOQI--.QH:(L" 0 0).

L FL G;
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Generalized Schur algorithms A generalized Schur algorithm

Sketch of an algorithm

It remains to prove that in the ith step with R; = L,D; 'L},
R; — F,RF¥ = GJG! (88)

holds true.

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag



Generalized Schur algorithms A generalized Schur algorithm

Sketch of an algorithm

It remains to prove that in the ith step with R; = L,D; 'L},

R; — F,RF¥ = GJG! (88)
holds true.
It follows immediately from equating second block rows,

(L FL G)(Di'ep ' e)) (L FL G)' =
(L L o)(bi'epi'eJ) (L L 0), (89
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Generalized Schur algorithms A generalized Schur algorithm

Sketch of an algorithm

It remains to prove that in the ith step with R; = L,D; 'L},
R; — F,RF¥ = GJG! (88)
holds true.
It follows immediately from equating second block rows,
(i, FL G)(D'ep'eJ) (i FL G)'=
(L L o) (b ep el (L L 0)", 89

that
F/(LD7'LF! + GJGH = (LD 'LH). (90)
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Generalized Schur algorithms A generalized Schur algorithm

Sketch of an algorithm

It remains to prove that in the ith step with R; = L,D; 'L},
R; — F,RF¥ = GJG! (88)
holds true.
It follows immediately from equating second block rows,
(i, FL G)(D'ep'eJ) (i FL G)'=
(L L o) (b ep el (L L 0)", 89

that
F/(LD7'LF! + GJGH = (LD 'LH). (90)

Thus, the displacement structure of the Schur complements has been verified.
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Generalized Schur algorithms A generalized Schur algorithm

Sketch of an algorithm

Now we have everything in place to sketch an algorithm.
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Generalized Schur algorithms A generalized Schur algorithm

Sketch of an algorithm

Now we have everything in place to sketch an algorithm.
The Schur complements R; have displacement structure with respect to F;,

R; — FR,F! = GJGY. (91)
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Generalized Schur algorithms A generalized Schur algorithm

Sketch of an algorithm

Now we have everything in place to sketch an algorithm.
The Schur complements R; have displacement structure with respect to F;,
R; — FR,F! = GJGY. (91)

The next column of L is (Jacobi-style scaling) given by [; = R,e; and thus we
have to “solve” the linear system

(In_,' —ﬁ- F,~)R,~e1 = (In—i —JT;FZ')I,' = G,JGerl. (92)
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Generalized Schur algorithms A generalized Schur algorithm

Sketch of an algorithm

Now we have everything in place to sketch an algorithm.
The Schur complements R; have displacement structure with respect to F;,
R, — FiRF! = GJG!. (91)

The next column of L is (Jacobi-style scaling) given by [; = R,e; and thus we
have to “solve” the linear system

(In_,' —ﬁ- F,~)R,~e1 = (In—i —JT;FZ')I,' = G,JGerl. (92)

The next diagonal element is given by d; = ell;.
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Generalized Schur algorithms A generalized Schur algorithm

Sketch of an algorithm

Now we have everything in place to sketch an algorithm.
The Schur complements R; have displacement structure with respect to F;,
R, — FiRF! = GJG!. (91)

The next column of L is (Jacobi-style scaling) given by [; = R,e; and thus we
have to “solve” the linear system

(In_,' —]7[- F,~)R,~e1 = (In_,' _]?,'Fi)li = G,JGerl. (92)
The next diagonal element is given by d; = ell;.

Afterwards we compute the new generator with a ;"' @ J-unitary
transformation Q; (the leading columns remain the same),

p o Fil; G)Q 93
(1 g )= tE G)a. (99)
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Generalized Schur algorithms A generalized Schur algorithm

Sketch of an algorithm

Not surprisingly it turns out the d;"' part of the d;”' @ J-unitary transformation
Q,

Lo Fil, G)Q 94
(v ¢, )= eya (94

can be computed explicitely.
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Generalized Schur algorithms A generalized Schur algorithm

Sketch of an algorithm

Not surprisingly it turns out the d;"' part of the d;”' @ J-unitary transformation
Q;,
1 OT
li = F,'li G,‘ Qi, 94
( Git1 ) ( ) (94)

can be computed explicitely.

The transformation takes the form

of Jgl'gi
=1 G; &, —1,_)G—=1= | ©,, 95
(Gi+1> ( * ) gilgl (99)
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Generalized Schur algorithms A generalized Schur algorithm

Sketch of an algorithm

Not surprisingly it turns out the d;"' part of the d;”' @ J-unitary transformation

Q,
(1 o' ) — (Fl; G)Q
1 Gl+1 - 1) 1 1y
can be computed explicitely.

The transformation takes the form
oT Jglg,
(Gi+1> = <Gi + (P —In—i)Gi@ O,

&; = (Fi — fily—i)(ln—i — fiF1) ™"
is the so-called Blaschke-Potapov matrix

where

(94)

(95)

(96)

Jens-Peter M. Zemke On Generalized Schur Algorithms Oberseminar-Vortrag



Generalized Schur algorithms A generalized Schur algorithm

Sketch of an algorithm

Not surprisingly it turns out the d;"' part of the d;”' @ J-unitary transformation

Q;,
| p o Fili G)Q 94
(1 g )=t G)a. (94

can be computed explicitely.

The transformation takes the form

of Jgl'gi
= |G+ (% — L-))Gi—— | ©i,
(Gi+1> < * G gilgl ) © (99)
where
&; = (Fi — fily—i)(ln—i — fiF1) ™" (96)

is the so-called Blaschke-Potapov matrix, g; = ¢! G; is the leading row of G;
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Generalized Schur algorithms A generalized Schur algorithm

Sketch of an algorithm

Not surprisingly it turns out the d;"' part of the d;”' @ J-unitary transformation
Q,

o Q
l; = (Fili  Gi) <Y, 94
( Giyi ) ( ) (®4)
can be computed explicitely.

The transformation takes the form

of Jgl'gi
= |G+ (% — L-i))Gi—— | O,
(Gi+1> < * G gilgl ) © (99)
where
&; = (Fi — fily—i)(ln—i — fiF1) ™" (96)

is the so-called Blaschke-Potapov matrix, g; = ¢! G; is the leading row of G;
and ©; is a J-unitary matrix chosen to introduce leading zeros.
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Generalized Schur algorithms A generalized Schur algorithm

An algorithm

Set Gy = G, i = 0 and iterate the following: Set g; = ¢! G;.
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Generalized Schur algorithms A generalized Schur algorithm

An algorithm

Set Gy = G, i = 0 and iterate the following: Set g; = ¢! G;.

Solve B
(Li_i — f,F))l; = GiJg!. (97)
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Generalized Schur algorithms A generalized Schur algorithm

An algorithm

Set Gy = G, i = 0 and iterate the following: Set g; = ¢! G;.

Solve B
(Li_i — f,F))l; = GiJg!. (97)

Compute

Jgl
_ S8 o, (98)
1 —fifi

i
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Generalized Schur algorithms A generalized Schur algorithm

An algorithm

Set Gy = G, i = 0 and iterate the following: Set g; = ¢! G;.

Solve B
(Li_i — f,F))l; = GiJg!. (97)
Compute
JoH
d,‘ = gl]gl_ = elTl,-. (98)
1 —fif;

Compute a new G;, using a J-unitary matrix ©;,

OT JgHgl
=1 G; ¢i — I, Gil_ is
(¢)= (o @nies)e 9
where &; = (F; — fil,—i)(I—i — f;F;) ™.
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