Krylov Subspace Methods: Characteristic Properties Inherited in Finite Precision.
Jens-Peter M. Zemke

Dagstuhl Seminar 03421: Theoretical and Computational Aspects of Matrix Algorithms
12.10.–17.10.2003
Outline.

Krylov Subspace Methods 3

Krylov Eigenproblem Solvers 5

Krylov (Q)OR Methods 7

Method of Proof (sketched) 9

Krylov Method Properties 10–16
 o Eigenproblem Solvers 10
 o (Q)OR Methods 13

Conclusion & Outview 17
Krylov Subspace Methods.

- Lanczos based methods (short–term methods)
- Arnoldi based methods (long–term methods)

- eigensolvers: $A v = v \lambda$
- linear system solvers: $A x = b$
 - (quasi-) orthogonal residual approaches: (Q)OR
 - (quasi-) minimal residual approaches: (Q)MR

Extensions:

- Lanczos based methods:
 - look-ahead
 - product-type (LTPMs)
 - applied to normal equations (CGN)
- Arnoldi based methods:
 - restart (thin/thick, explicit/implicit)
 - truncation (standard/optimal)
Every (basic) Krylov method can be written as

\[AQ_k = Q_{k+1}C_k - F_k, \]

where \(C_k \in \mathbb{C}^{k+1 \times k} \) is (unreduced upper) Hessenberg.

This formulation is of interest in (Q)MR methods like GMRES. \(\Rightarrow \) brings in singular values, pseudo inverses and (total) least squares.

We prefer the slightly re-written version

\[AQ_k - Q_kC_k = M_k - F_k, \]

with the rank-one update \(M_k = q_{k+1}c_{k+1,k}e_k^T. \)

This formulation has the advantage that Hessenberg \(C_k \) is square. \(\Rightarrow \) we can continue with eigendecompositions and inverses.

Disadvantage: applies only to eigensolvers and (Q)OR methods.
Krylov Eigenproblem Solvers.

Assumption: A, C_k diagonalizable (makes life easier).

Eigendecompositions of A and C_k:

$$AV = V\Lambda, \quad C_kS_k = S_k\Theta_k.$$

Left Eigenmatrices for A:

$$\hat{V} \equiv V^{-H} \Rightarrow \hat{V}^H A = \Lambda \hat{V}^H,$$

$$\check{V} \equiv V^{-T} \Rightarrow \check{V}^T A = \Lambda \check{V}^T.$$

Left Eigenmatrices for C_k:

$$\hat{S}_k \equiv S_k^{-H} \Rightarrow \hat{S}_k^H C_k = \Theta_k \hat{S}_k^H,$$

$$\check{S}_k \equiv S_k^{-T} \Rightarrow \check{S}_k^T C_k = \Theta_k \check{S}_k^T.$$
Relations between small system and large system (AEP).

Computable (right) Ritz pair \((\theta_j, y_j) \equiv (\theta_j, Q_k s_j)\):

\[(A - \theta_j I) y_j = q_{k+1} c_{k+1, k} s_{k,j} - F_k s_j.\]

Incomputable (left) pair \((\lambda_i, \tilde{s}_i^H) \equiv (\lambda_i, \hat{v}_i^H Q_k)\):

\[
\tilde{s}_i^H (\lambda_i I - C_k) = \hat{v}_i^H q_{k+1} c_{k+1, k} e_k^T - \hat{v}_i^H F_k.
\]

When \(M_k\) and \(F_k\) small, small (relative) backward errors

\[
\eta(\theta_j, y_j) = \frac{\| q_{k+1} c_{k+1, k} s_{k,j} - F_k s_j \|}{\| A \| \| Q_k s_j \|},
\]

\[
\eta(\lambda_i, \tilde{s}_i^H) = \frac{\| \hat{v}_i^H q_{k+1} c_{k+1, k} e_k^T - \hat{v}_i^H F_k \|}{\| C_k \| \| \hat{v}_i^H Q_k \|}.
\]

No hope for both to be small: usually one small, other large:

\[
\hat{v}_i^H q_{k+1} c_{k+1, k} s_{k,j} = (\lambda_i - \theta_j) \hat{v}_i^H y_j + \hat{v}_i^H F_k s_j.
\]
Krylov (Q)OR Methods.

Assumption: \(A, C_k \) invertible (makes life easier).

Solution of linear system \((A, b)\) given starting approximation \(x_0\):

\[
Ax = r_0, \quad r_0 = b - Ax_0.
\]

Special Krylov subspace: starting vector

\[
q_1 = \frac{r_0}{\|r_0\|}.
\]

Define (Q)OR approximation by

\[
x_k \equiv Q_k z_k, \quad \frac{z_k}{\|r_0\|} \equiv C_k^{-1} e_1.
\]
Residual of (Q)OR approximation given by
\[r_k = r_0 - Ax_k = -q_{k+1}c_{k+1,k}z_{kk} + F_kz_k. \]

(Relative) backward error of (Q)OR approximation given by
\[\eta(x_k) = \frac{\|q_{k+1}c_{k+1,k}z_{kk} - F_kz_k\|}{\|A\|\|Q_kz_k\| + \|r_0\|}. \]

Therefore: aim at \(M_k \) small (and \(F_k \) too).

Understanding inexact Krylov methods: \(Q_k \) no problem. Observe
\[\frac{z_k}{\|r_0\|} = C_k^{-1}e_1 \quad \Rightarrow \quad \frac{z_{lk}}{\|r_0\|} = e_l^T C_k^{-1}e_1. \]

Everything fine as long as
\[\|f_l\| \approx O \left(\frac{\epsilon}{z_{lk}} \right) \approx O \left(\frac{\|r_0\|\epsilon}{e_l^T C_k^{-1}e_1} \right). \]
Method of Proof (sketched).

Starting point is diagonalized form of Hessenberg decomposition:

$$\tilde{v}_i^H q_{k+1} = \left(\lambda_i - \theta_j\right) \tilde{v}_i^H y_j + \tilde{v}_i^H F_{k,s_j} \quad \forall \ i, j, (k).$$

Toolkit (in order of appearance):

- tricky summation along j
- Hessenberg eigenvalue-eigenvector relations (HEER)
- Lagrange polynomial interpolation
- glueing it all together

Results: Explicit expressions reflecting influences of

- starting vector
- error vectors
Krylov Method Properties (Eigenproblem Solvers).

Starting point re-written:

\[
\begin{bmatrix}
\frac{c_{k+1,ksj}}{\lambda_i - \theta_j}
\end{bmatrix} \hat{v}_i^H q_{k+1} = \hat{v}_i^H Q_k s_j + \begin{bmatrix}
\frac{1}{\lambda_i - \theta_j}
\end{bmatrix} \hat{v}_i^H F_k s_j.
\]

Observe:

\[
e_1 = I_k e_1 = S_k S_k^{-1} e_1 = S_k \tilde{S}_k^T e_1 = \sum_{j=1}^{k} \tilde{s}_{1j} s_j.
\]

Dependence of \(k+1\)st “basis” vector on starting vector and error vectors:

\[
\begin{bmatrix}
\sum_{j=1}^{k} \frac{c_{k+1,ksj}}{\lambda_i - \theta_j}
\end{bmatrix} \hat{v}_i^H q_{k+1} = \hat{v}_i^H q_1 + \hat{v}_i^H F_k \begin{bmatrix}
\sum_{j=1}^{k} \left(\frac{\tilde{s}_{1j}}{\lambda_i - \theta_j} \right) s_j
\end{bmatrix}.
\]

We obtain a relation in terms of Ritz values and Ritz vector components.
Plug-in HEER:

\[
\sum_{j=1}^{k} \frac{\prod_{\ell=1}^{k} c_{\ell+1,\ell}}{\chi'_{C_{k}}(\theta_j)(\lambda_i - \theta_j)} \tilde{v}_i^H q_{k+1} = \\
\tilde{v}_i^H q_1 + \sum_{l=1}^{k} \left[\sum_{j=1}^{k} \frac{\prod_{\ell=1}^{l-1} c_{\ell+1,\ell}}{\chi'_{C_{k}}(\theta_j)(\lambda_i - \theta_j)} \right] \tilde{v}_i^H f_l.
\]

We obtain a relation solely in terms of Ritz values.

Use Lagrange interpolation:

\[
\left[\frac{\prod_{\ell=1}^{k} c_{\ell+1,\ell}}{\chi_{C_{k}}(\lambda_i)} \right] \tilde{v}_i^H q_{k+1} = \\
\tilde{v}_i^H q_1 + \sum_{l=1}^{k} \left[\frac{\prod_{\ell=1}^{l-1} c_{\ell+1,\ell}}{\chi_{C_{k}}(\lambda_i)} \right] \tilde{v}_i^H f_l.
\]

We obtain a relation in terms of characteristic (Ritz) polynomials.
Division by first factor results in explicit expression for “basis” vectors:

\[
\hat{v}_i^H q_{k+1} = \left(\frac{\chi C_k (\lambda_i)}{\prod_{\ell=1}^{k} c_{\ell+1, \ell}} \right) \hat{v}_i^H q_1 + \sum_{l=1}^{k} \left(\frac{\chi C_{l+1:k} (\lambda_i)}{\prod_{\ell=l+1}^{k} c_{\ell+1, \ell}} \left(\frac{\hat{v}_i^H f_l}{c_{l+1, l}} \right) \right).
\]

(1)

Multiplication by \(v_i \) and summation yields:

\[
q_{k+1} = \left(\frac{\chi C_k (A)}{\prod_{\ell=1}^{k} c_{\ell+1, \ell}} \right) q_1 + \sum_{l=1}^{k} \left(\frac{\chi C_{l+1:k} (A)}{\prod_{\ell=l+1}^{k} c_{\ell+1, \ell}} \left(\frac{f_l}{c_{l+1, l}} \right) \right).
\]

(2)

Theorem: (blue: infinite precision, blue & red: finite precision)

The “basis” vectors constructed by a (finite precision) Krylov method fulfill eqns. (1) and (2).
Krylov Method Properties ((Q)OR Methods).

Starting point re-written:
\[
\left[\frac{c_{k+1,k^s k j}}{\lambda_i - \theta_j} \right] \hat{v}_i^H q_{k+1} = \hat{v}_i^H Q_k s_j + \left[\frac{1}{\lambda_i - \theta_j} \right] \hat{v}_i^H F_k s_j.
\]

Observe:
\[
\frac{z_k}{\|r_0\|} = C_k^{-1} e_1 = S_k \Theta_k^{-1} \check{S}_T = \sum_{j=1}^{k} \check{s}_1 j s_j.
\]

Dependence of \(k \)th “best” approximation on “basis” and error vectors:
\[
\frac{\hat{v}_i^H x_k}{\|r_0\|} = \left[\sum_{j=1}^{k} \frac{c_{k+1,k^s k j}}{(\lambda_i - \theta_j) \theta_j} \right] \hat{v}_i^H q_{k+1} - \hat{v}_i^H F_k \left[\sum_{j=1}^{k} \left(\frac{\check{s}_1 j}{(\lambda_i - \theta_j) \theta_j} \right) s_j \right].
\]

We obtain a relation in terms of Ritz values and Ritz vector components.
Plug-in HEER:

\[
\frac{\hat{v}^H_i x_k}{\|r_0\|} = \left[\sum_{j=1}^{k} \frac{(\prod_{\ell=1}^{k} c_{\ell+1,\ell})}{\chi'_{C_k}(\theta_j)(\lambda_i - \theta_j)\theta_j} \right] \hat{v}^H_i q_{k+1} \\
- \left[\sum_{l=1}^{k} \sum_{j=1}^{k} \left(\frac{(\prod_{\ell=1}^{l-1} c_{\ell+1,\ell})}{\chi'_{C_k}(\theta_j)(\lambda_i - \theta_j)\theta_j} \right) \right] \hat{v}^H_i f_l.
\]

We obtain a relation solely in terms of Ritz values.

Use Lagrange interpolation:

\[
\frac{\hat{v}^H_i x_k}{\|r_0\|} = \mathcal{L}_k[x^{-1}](\lambda_i) \left(\frac{(\prod_{\ell=1}^{k} c_{\ell+1,\ell})}{\chi'_{C_k}(\lambda_i)} \right) \hat{v}^H_i q_{k+1} \\
- \left[\sum_{l=1}^{k} \left[\mathcal{L}_k[x^{-1} \chi_{C_{l+1:k}}(x)](\lambda_i) \right] \left(\frac{(\prod_{\ell=1}^{l-1} c_{\ell+1,\ell})}{\chi'_{C_k}(\lambda_i)} \right) \right] \hat{v}^H_i f_l.
\]

We obtain a relation in terms of interpolation polynomials.
We insert the explicit expression for the “basis” vectors and re-formulate:

\[
\hat{v}_i^H x_k \frac{1}{\|r_0\|} = \mathcal{L}_k[x^{-1}](\lambda_i) \hat{v}_i^H q_1 + \left[\sum_{l=1}^{k} \left(\frac{\prod_{\ell=1}^{l-1} c_{\ell+1,\ell} \omega_l(\lambda_i)}{\chi C_k(0)} \right) \hat{v}_i^H f_l \right],
\]

where polynomials \(\omega_l \) are defined by

\[
\omega_l(x) \equiv \sum_{s=1}^{k-l} \frac{\chi^{(s)}_{C_{\ell+1:k}}(x)}{s!} x^{s-1}.
\]

(Explicit proof omitted.)

Theorem. In matrix form (with careful & appropriate interpretation):

\[
x_k = \mathcal{L}_k[x^{-1}](A)r_0 + \|r_0\| \left[\sum_{l=1}^{k} \left(\frac{\prod_{\ell=1}^{l-1} c_{\ell+1,\ell} \omega_l(A)}{\chi C_k(0)} \right) f_l \right].
\]
Proceeding this manner, we obtain an explicit expression for residuals:

\[r_k = \frac{\chi C_k(A)}{\chi C_k(0)} r_0 + \|r_0\| \sum_{l=1}^{k} \left[\frac{\left(\prod_{\ell=1}^{l-1} c_{\ell+1,\ell} \right)}{\chi C_{l+1:}\kappa(0)} \chi C_{l+1:}\kappa(A) - \chi C_{l+1:}\kappa(0) \right] f_l \].

This implies the following explicit expression for error vectors:

\[(x - x_k) = \frac{\chi C_k(A)}{\chi C_k(0)} (x - x_0) + \|r_0\| \sum_{l=1}^{k} \left[\frac{\left(\prod_{\ell=1}^{l-1} c_{\ell+1,\ell} \right)}{\chi C_k(0)} \varepsilon_l(A) \right] f_l \],

where polynomials \(\varepsilon_l \) are defined by

\[\varepsilon_l(x) = \frac{\chi C_{l+1:}\kappa(x) - \chi C_{l+1:}\kappa(0)}{x} \].

(Explicit proof omitted.)
Conclusion & Outview.

Pros:

- We have constructed a variety of formulae for finite precision Krylov methods that have the same “look & feel” as the “corresponding” (more or less well known) formulae for infinite precision Krylov methods.

Cons:

- The formulae need genuine interpretation to be useful, and (seem to) neglect second order error effects (or replace them by another point of view, i.e., Krylov methods as Lagrange interpolation).

- The (by far) more interesting case of \((Q)MR\) Krylov subspace methods is not included by now. Room for improvements. Any suggestions?