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IDR VERSUS OTHER KRYLOV SUBSPACE SOLVERS∗

JENS-PETER M. ZEMKE†

Abstract. We compare members of the IDR family for the solution of linear systems and eigen-
value problems with traditional Krylov subspace solvers. This comparison is based on a description
of IDR as a means to construct generalized Hessenberg decompositions, whereas traditional Krylov
methods construct Hessenberg decompositions.
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1. Introduction. Krylov subspace methods are named after the Russian naval
engineer Alekse� Nikolaeviq Krylov (Aleksei Nikolaevich Krylov), who in 1931
wrote a paper on a method to compute the coefficients of the characteristic polynomial
of a matrix, cf. [6]. In 1940 the first modern Krylov subspace method was developed
[5]. The best known Krylov subspace methods are based on Lanczos’s [7, 8] and
Arnoldi’s [1] method. The first IDR method is [24]; the IDR(s) methods [17, 23] are
relatively new. The generalization to use larger shadow spaces of dimension s ∈ N
offers advantages: these appear to be more stable than the original IDR variant,
BiCGStab [21, 20], and most of its relatives.

We simply term all methods form the IDR family, e.g., original IDR, BiCGStab,
IDR(s) and IDRStab [18, 16, 19] amongst others, as IDR methods or Sonneveld
methods. Sonneveld methods are linked to Lanczos processes termed Lanczos(s, 1).
This process is based on a left block Krylov subspace and a simple right Krylov
subspace. Even though this link explains some of the details, it does not account for
all the subleties associated with Sonneveld methods.

2. Classical Krylov subspace methods. Essentials of classical Krylov sub-
space methods can be captured by a so-called Hessenberg decomposition [5, 4]

AQk = Qk+1Hk, k ∈ N, k < n, (2.1)

where Qk+1 =
(
Qk,qk+1

)
=

(
q1,q2, . . . ,qk+1

)
∈ Cn×(k+1) accounts for the basis

vectors qj , 1 6 j 6 k + 1, produced to span the (k + 1)st Krylov subspace (q := q1)

Kk+1 := Kk+1(A,q) := span {q,Aq,A2q, . . . ,Akq} = span {q1,q2, . . . ,qk+1}, (2.2)

and an unreduced extended Hessenberg matrix Hk ∈ C(k+1)×k that in some man-
ner collects information about the action of the operator A on the Krylov subspace
Kk(A,q).

3. Sonneveld methods. Sonneveld methods are based on the IDR Theorem.
IDR spaces, a special case of Sonneveld subspaces [16, Definition 2.2, p. 2690], are
defined as follows. Define G0 by

G0 = K(A,q) = Kn(A,q) = span {q,Aq, . . . ,An−1q} ⊂ Cn. (3.1)

In case of non-derogatory A ∈ Cn×n and a generic starting vector q ∈ Cn, G0 = Cn.
IDR Sonneveld spaces Gj are recursively defined by

Gj = gj(A)(Gj−1 ∩S), gj(z) = ηjz + µj , ηj , µj ∈ C, ηj 6= 0, j = 1, 2, . . . . (3.2)

Here, S is a space of codimension s ∈ N. The IDR Theorem is given as follows:

Theorem 3.1 (IDR Theorem [17]). Under mild conditions on the matrices A
and the space S,
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(i) Gj ( Gj−1 for all Gj−1 6= {on}, j > 0.
(ii) Gj = {on} for some j 6 n.

For the proof we refer to [17, 15].

The relation of IDR to Krylov subspaces is given in [3, 14, 4, 15]. The latter
includes an alternate description of Sonneveld spaces [15, Theorem 11, p. 1104] based
on left block Krylov subspaces. Implementations of the recursion (3.2) are given in
[17, 23, 22]:

Initialization: compute s + 1 basis vectors gi, 1 6 i 6 s + 1, in Ks+1 ⊂ G0.
Recursion: for j > 0 until convergence perform the following:

Intersection: compute a linear combination vi of vectors in Gj−1 ∩ S.
Update: if constructing the first vector in a new space Gj , chose a new linear

polynomial gj of exact degree 1.
Map: compute the new vector gj(A)vi in Gj and compute a new basis vector

as linear combination of gj(A)vi with other vectors in Gj .

Sonneveld Krylov subspace methods can be described by a so-called generalized Hes-
senberg decomposition [4]

AVk = AGkUk = Gk+1Hk, k ∈ N, k < n, (3.3)

where Vk = GkUk, with Uk ∈ Ck×k upper triangular, and all other matrices are
defined like in Eqn. (2.1).

The small change from the Hessenberg decomposition (2.1) to the generalized
Hessenberg decomposition (3.3) is the main change in devising new algorithms or
applying well-known techniques from the pool of existing Krylov subspace method
techniques.

4. Some classical techniques and remarks on results. We very briefly
sketch the application of some classical Krylov subspace techniques to Sonneveld
methods. The Ritz approach is based on the Sonneveld pencil (Hk,Uk) [4]

Hksj = θjUksj (4.1)

and gives Ritz pairs (θj ,yj := Vksj = GkUksj) [4, 12, 13]. The harmonic Ritz
approach [9, 10, 2, 11]

Iksj = θjH
†
kUksj (4.2)

gives harmonic Ritz pairs (θj ,yj
:= Vksj = GkUksj). The Orthogonal Residual

(OR) approach: The kth OR solution is given by

Hkzk := e1‖r0‖, e.g., mostly zk := H−1
k e1‖r0‖, (4.3)

the kth OR iterate by

xk := Vkzk = GkUkzk. (4.4)

The Minimal Residual (MR) approach: The kth MR solution is given by

ρk :=
∥∥Hkzk − e1‖r0‖

∥∥ = min, i.e., zk := H†
ke1‖r0‖, (4.5)

the kth MR iterate by

xk := Vkzk = GkUkzk. (4.6)

Other flavors like OrthoRes, OrthoMin, and OrthoDir, and techniques like flex-
ible, multi-shift, and inexact variants can now be developed based on (3.3). Methods
like (flexible or multi-shift) QMRIDR [22] provide a smooth transition between the
methods of Lanczos and Arnoldi and do not rely on the transposed matrix, but are a
little less stable. Some further details and examples are part of the slides.
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