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TUNING IDR TO FIT YOUR APPLICATIONS∗

OLAF RENDEL† AND JENS-PETER M. ZEMKE‡

Abstract. We focus on IDR methods for the computation of approximate solutions to linear
systems and the partial eigenvalue problem. IDR methods offer a variety of parameters that can
be tuned to the application. Most important among these seem to be the choices of the shadow
residuals and the roots of the stabilizing/damping polynomials. We report on some findings for a
few members of the large IDR family of methods, namely, some QMRIDR variants and methods
based on IDRStab.
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1. Introduction & History. Krylov subspace methods are named after the
Russian naval engineer Alekse� Nikolaeviq Krylov (Aleksei Nikolaevich Krylov),
who in 1931 wrote a paper on a method to compute the coefficients of the characteristic
polynomial of a matrix, cf. [25]. This was based on certain subspaces nowadays
known as Krylov subspaces. In 1940 the German engineer and mathematician Karl
Hessenberg developed the first modern Krylov subspace method [20]. Yet, the best
known Krylov subspace methods are those based on the methods of Lanczos [26, 27]
and Arnoldi [1]. The first IDR method [54], in contrast, was developed at the end of
the 70s of the last century; the more recent IDR(s) methods, starting with [45], soon
superseded by [51] have been delevoped a few years ago. The original IDR variant
was a predecessor to both CGS [43] and BiCGStab [49, 48], which are both also
members of the vast IDR family. These methods were soon generalized to other so-
called transpose free, hybrid BiCG, or Lanczos-type product methods, which are also
related to the IDR family. We list as most important generalizations BiCGStab2 [17],
BiCGStab(`) [40], GCGS [10] (in particular CGS2 and shifted CGS), GPBiCG [59],
BiCGSafe [16], TFQMR [13], QMRCGStab [3], TFIQMR and TFILanczos [2],
and last but not least, ML(k)BiCGStab [55]. All these methods rely on the Lanczos
method and can break down for several reasons. The composite step methods [4, 5]
avoid one type of breakdown. Modifications like multi-shift TFQMR [12], multi-shift
BiCGStab(`) [15], and flexible BiCGStab [52] (the latter no longer spans Krylov
subspaces) have also been developed. The development of IDR by Peter Sonneveld
in 1976–1980 had a major impact on the subsequent development of Krylov subspace
methods.

The recent development of IDR family members of IDR based on larger shadow
spaces, i.e., with dimension s ∈ N, e.g., IDR(s) [45, 51], offers advantages: these ap-
pear to be more stable than the original IDR variant and BiCGStab and most of its
relatives. IDR(s) is closely related to ML(k)BiCGStab; BiCGStab-like implemen-
tations of IDR(s) are possible, cf. [41]. To every Krylov-based linear system solver
a Krylov-based eigenvalue solver corresponds, this correspondence was worked out in
[19] for the prototype IDR(s) [45]; the eigenvalue counterpart of the enhanced version
[51] has been considered in the bachelor’s thesis [32]. Incorporation of the basic prin-
ciples in IDR(s) and BiCGStab(`) has been considered independently in GIDR(s, L)
[46] and GBiCGStab(s, L) [47], and IDR(s)Stab(`) [42], we group these methods
under the descriptive name IDRStab. The eigenvalue counterpart of IDRStab is
considered in [33]. Some of the techniques that have been applied to the original IDR
and derived methods have already been applied in the IDR(s) context, we mention
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QMRIDR [8] and flexible and multi-shift QMRIDR [50]. The impact of IDR(s) on
the subsequent development of new methods seems to be almost as large as was the
case for the original IDR, even though the development of new variants takes place
more rapidly, which we intend to explain in this note.

We simply term all methods form the IDR family, e.g., original IDR, BiCGStab,
IDR(s) and IDRStab amongst others, as IDR methods, and, for reasons explained
below, Sonneveld methods. Most Sonneveld methods developed thus far are Krylov
subspace methods. These are all linked to Lanczos processes, those based on larger
shadow spaces to a process we term Lanczos(s, 1), which is based on a left block
Krylov subspace and a simple right Krylov subspace. Even though this link explains
some of the details, it does not account for all the subtleties associated with Sonneveld
methods.

In this note we sketch some aspects of how to chose the free parameters in Sonn-
eveld methods. We focus mainly on the shadow vectors and the roots of the stabilizing
polynomials.

1.1. Motivation. The IDR family of methods, e.g., when the focus is on those
methods based on a larger shadow space, appears to be a quite recent development.
In this note we recall that there are intimate connections to the other well-known
Krylov subspace methods and showcase a general principle to transfer Krylov subspace
method techniques to the IDR setting. Almost all IDR methods have been derived
by, or based on, work by Peter Sonneveld, for this reason from now on we will term
them Sonneveld methods.

1.2. Outline. We present a short introduction to Sonneveld methods and high-
light the similarities with and differences to the methods of Lanczos [26, 27] and
Arnoldi [1] (which has some similarities with the method by Hessenberg [20]). The
similarities form the basis to present the application of different techniques to Son-
neveld methods and to extend some results, which are well-known for the classical
methods, but have only partially been presented for Sonneveld methods. We state an
observation by Sonneveld on the convergence of Sonneveld methods for linear systems
[44] and extend this observation to the eigenvalue case. This gives a hint how to
choose the shadow vectors. The connection to Lanczos methods is used to present
some ideas to choose the stabilizing polynomials.

1.3. Notation. We use standard notation. The identity matrix of size n× n is
denoted by I = In, its column vectors by ej and its elements by the Kronecker delta
δij . The vector of the sums of all columns, i.e., the vector of all ones, is denoted by
e. The matrix O = On denotes the zero matrix of size n× n, the zero column vector
of length n is denoted by o = on. The sizes are omitted if easily deducible from the
context. We are interested in the properties of a square matrix A ∈ Cn×n, e.g., its
inverse and/or some of its eigenvalues. Unreduced Hessenberg matrices are denoted
by letter Hk ∈ Ck×k, upper triangular matrices by letter Uk ∈ Ck×k. Extended
counterparts of Ik, Hk, and Uk exist, which are denoted by Ik, Hk, and Uk, respec-
tively. The rectangular matrices Ik ∈ C(k+1)×k and Uk ∈ C(k+1)×k are obtained by
appending a row of zeros at the bottom, Hk is an unreduced extended Hessenberg
matrix that has Hk as leading square part. The columns of Ik are denoted by ej .

The vector of all ones of length k + 1 is denoted by e ∈ Ck+1. The inverse, trans-
pose, complex conjugate transpose, and pseudo-inverse (or Moore-Penrose inverse) is
denoted by appending −1, T, H, and †, respectively.

We remark that like in [19] we use a simplified way to denote Krylov subspace
methods, e.g., we write GMRes in place of GMRES as is done in the original publi-
cation, since the acronym stands for the phrase Generalized Minimal RESidual.

2. Classical Krylov subspace methods. Starting with Hessenberg’s original
method [20], most essentials of the classical Krylov subspace methods for A ∈ Cn×n
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can be captured by a so-called Hessenberg decomposition [19]

AQk = Qk+1Hk, k ∈ N, k < n, (2.1)

where Qk+1 =
(
Qk,qk+1

)
=
(
q1,q2, . . . ,qk+1

)
∈ Cn×(k+1) accounts for the basis

vectors qj , 1 6 j 6 k + 1, produced to span the (k + 1)st Krylov subspace (q := q1)

Kk+1 := Kk+1(A,q) := span {q,Aq,A2q, . . . ,Akq} = span {q1,q2, . . . ,qk+1}, (2.2)

and an unreduced extended Hessenberg matrix Hk ∈ C(k+1)×k that in some man-
ner collects information about the action of the operator A on the Krylov subspace
Kk(A,q). More precisely, as we do assume that rank (Qk+1) = k + 1, Hk can be
thought of as a rectangular projection of A,

Q†k+1AQk = Hk. (2.3)

2.1. Lanczos’s method. Like Hessenberg’s method [20], Lanczos’s method [26,
27] is based on bi-orthogonality. In contrast to Hessenberg, who uses the standard
unit vectors ej as left vectors, Lanczos does not use a fixed set of vectors, but instead
for this purpose computes a basis of a left Krylov subspace

K̂k+1 := Kk+1(Â, q̂) = span {q̂, Âq̂, Â2q̂, . . . , Âkq̂} = span {q̂1, q̂2, . . . , q̂k+1}, (2.4)

where Â is the adjoint in some bilinear or sesquilinear form. For ease of presentation,
we think of Â being the Hermitean adjoint, i.e., Â = AH, and the form being the
usual inner product in Cn. The method of Lanczos computes (formally) bi-orthogonal

bases of K̂k and Kk via some two-sided Gram-Schmidt process. As all vectors in the
Krylov subspace Kk correspond to polynomials in A,

qk ∈ Kk ⇒ qk =

k∑
j=1

Aj−1qαj = pk−1(A)q, (2.5)

the products of left vectors
∑k

j=1 Â
j−1q̂α̂j and right vectors

∑k
j=1 A

j−1qαj can be
expressed using solely the so-called moments of A, compare with [26, § V., Eqn. (34)
p. 258]:

〈Âiq̂,Ajq〉 = 〈q̂,Ai+jq〉 = ci+j , 0 6 i, j 6 n. (2.6)

Lanczos derives a three-term recurrence for the solutions ηk =
(
η0,k, . . . , ηk−1,k

)T
to

the Hankel systems 
c0 c1 · · · ck
c1 c2 · · · ck+1

...
...

. . .
...

ck ck+1 · · · c2k




η0,k
...

ηk−1,k
1

 =


0
...
0
hk

 (2.7)

with a certain hk ∈ C that eventually becomes zero, see [26, § VI., Eqn. (50), p. 262].
This “progressive” form of his algorithm is the basis for his method of “minimized
iterations” [26, § VII., pp. 265–268], which is the well-known reduction to tridiagonal
form by means of a two-sided Gram-Schmidt process. The quantities constructed in
this algorithm can be captured with two Hessenberg decompositions

AQk = Qk+1Tk, ÂQ̂k = Q̂k+1T̂k, where T̂k = TH
k . (2.8)

Here, Tk ∈ Ck×k and T̂k ∈ Ck×k denote the leading square parts of the unreduced
extended tridiagonal (i.e., Hessenberg) matrices Tk and T̂k, respectively. More in-
teresting to us is the anticipatory remark to be found as footnote 11 on page 263 of
[26]:
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“Instead of iterating with A and Â n times, we can also iterate with
A alone 2n times. Any of the columns of the iteration matrix can now
be chosen as ci numbers since these columns correspond to a dotting
of the iteration matrix with q̂1 = 1, 0, 0, . . ., respectively 0, 1, 0, 0, . . .;
0, 0, 1, 0, 0, . . .; and so on. The transposed matrix is not used here at
all. E. C. Bower of the Douglas Aircraft Co. points out to the author
that from the machine viewpoint a uniform iteration scheme of 2n
iterations is preferable to a divided scheme of n + n iterations. The
divided scheme has the advantage of less accumulation of rounding
errors and more powerful checks on the successive iterations. The
uniform scheme has the advantage that more than one column is
at our disposal. Accidental deficiencies of the q̂1 vector can thus
be eliminated, by repeating the algorithm with a different column.
(For this purpose it is of advantage to start with the trial vector
q1 = 1, 1, 1, . . . , 1.) In the case of a symmetric matrix it is evident
that after n iterations the basic scalars should be formed, instead of
continuing with n more iterations.”

The mentioned “uniform scheme” is possible because of the property of the inner
products defining the moments as sketched in Eqn. (2.6).

This quote is more or less a precise description of what is to be expected from
Sonneveld methods, which are introduced in the next section. One point of view on
these methods is that they are based on the trick to rewrite all inner products such
that the polynomials are strictly confined to the right-hand side, as already utilized
in Eqn. (2.6). Interestingly, Sonneveld methods have not been derived like that, even
though this technique was cleverly used to derive CGS [43] from BiCG [27, 9] and
forms the basis of most known hybrid BiCG methods, most prominent amongst them
BiCGStab [49, 48].

We remark for later use that there also exist variants of Lanczos’s method for more
than one left and more than one right starting vector, e.g., so-called block Lanczos’s
methods, when the number of left and right starting vectors is equal. In the analysis
of IDR we are especially interested in Lanczos’s methods where the number of left-
hand starting vectors is given by any s ∈ N and there is only one right-hand starting
vector. This latter family of Lanczos’s method will be referred to as Lanczos(s, 1).

3. Sonneveld methods. Sonneveld, or IDR, methods are based on the so-called
IDR Theorem. This theorem is about a nested sequence of spaces, where in contrast to
the case in ordinary Krylov subspaces, where the dimensions only can increase with
increasing indices, the dimensions of consecutive spaces are shrinking. These IDR
spaces, a special case of Sonneveld subspaces [42, Definition 2.2, p. 2690], are defined
as follows. Let the subspace G0 be the full Krylov subspace K(A,q) = Kn(A,q):

G0 = K(A,q) = Kn(A,q) = span {q,Aq, . . . ,An−1q} ⊂ Cn. (3.1)

In case of non-derogatory A ∈ Cn×n and a generic starting vector q ∈ Cn, G0 = Cn.
Cases exist where G0 ( Cn. Starting from G0, the Sonneveld spaces Gj are recursively
defined by

Gj = gj(A)(Gj−1 ∩S), gj(z) = ηjz+µj , ηj , µj ∈ C, ηj 6= 0, j = 1, 2, . . . . (3.2)

Here, S is a space of codimension s ∈ N. The IDR Theorem is given as follows:

Theorem 3.1 (IDR Theorem [45]). Under mild conditions on the matrices A
and the space S,

(i) Gj ( Gj−1 for all Gj−1 6= {on}, j > 0.
(ii) Gj = {on} for some j 6 n.

For the proof we refer to [45, 38].

At first glance IDR seems to be detached from Lanczos’s methods, let alone from
Lanczos(s, 1). The analysis contained in [18, 37, 19] and especially in [38] clarifies



5

the connections to Krylov subspace methods. We state the alternate description of
Sonneveld spaces from [38], similarly to [50]. Let the columns of R̃0 form a basis
of S⊥. We can characterize the IDR Sonneveld spaces in terms of the orthogonal
complement of left block Krylov subspaces

Kj(A
H, R̃0) =

{j−1∑
i=0

(AH)iR̃0ci | ci ∈ Cs
}

(3.3)

as

Gj = {Gj(A)v | v ⊥ Kj(A
H, R̃0)}, where Gj(z) =

j∏
i=1

gi(z), (3.4)

see [38, Theorem 11, p. 1104]. We already noted in [50] that numerical experiments
indicate that the “local closeness” of this Lanczos process to an unperturbed one is
the driving force behind IDR based methods. This is anticipated in [39, p. 204]:

“[..], we expect to recover the convergence behavior of the incorpo-
rated Bi-CG process (in the BiCGstab methods) if we compute the
iteration coefficients as accurately as possible. Therefore, we want
to avoid all additional perturbations that might be introduced by an
unfortunate choice of the polynomial process that is carried out on
top of the Bi-CG process.”

Implementations of Sonneveld methods are usually based on as little vectors as
possible, e.g., we only pick sufficiently many vectors in each space Gj to ensure the
next ones to be in the smaller subspace Gj+1. Several implementations, each adding
new ideas, have been used thus far, see, e.g., [45, 51, 50]. The latter is one of the
most advanced schemes, but still not all freedom is exploited. The “best” scheme to
compute a stable basis using the recursion (3.2) has yet to be discovered; this is an
active area of research. The recursion (3.2) translates in the generic case into a vector
recurrence as follows:

Initialization: compute s+1 basis vectors gi, 1 6 i 6 s+1, in Ks+1 ⊂ G0 using your
favorite Krylov subspace method. We advocate the use of Arnoldi/GMRes.

Recursion: for j > 0 until convergence perform the following:
Intersection: compute a linear combination vi of vectors in Gj−1 ∩S. Typ-

ically, s + 1 vectors are used in this stage, mostly the newest vectors,
as is done in [45, 51, 47, 50], or a fixed set of s vectors for several steps
and one that changes, as is done in [42]. Numerically, using all vectors
available is more robust (but more costly); this was observed in several
experiments.

Update: if constructing the first vector in a new space Gj , chose a new lin-
ear polynomial gj of exact degree 1. Here, the remarks on the accuracy
of the Lanczos coefficients apply, the techniques from [39] find here ap-
plications. Alternatives to minimization include the use of eigenvalue
information, either using another Krylov subspace method [37] or the
purified Sonneveld pencil of the Sonneveld method [19].

Map: compute the new vector gj(A)vi in Gj and compute a new basis vector
as linear combination of gj(A)vi with other vectors in Gj . The first vec-
tor is essentially unique up to scaling; experiments show that computing
linear combinations increases the numerical stability significantly.

Sonneveld Krylov subspace methods can be described by a so-called generalized
Hessenberg decomposition [19]

AVk = AGkUk = Gk+1Hk, k ∈ N, k < n, (3.5)

where Vk = GkUk, with Uk ∈ Ck×k upper triangular, and all other matrices are
defined like in Eqn. (2.1). We only changed the letter for the matrix capturing the
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basis vectors from Q to G to reflect that these columns are selected vectors gi from
the spaces Gj , j > 0.

The matrix Vk captures all the linear combinations of gi vectors in the pre-
image of gj(A) times ηj , the coefficients of these linear combinations can be found
in the columns of the upper triangular and banded Uk and the unreduced extended
Hessenberg and banded Hk, possibly scaled differently (ηj + µj 6= 0) and mingled in
the latter with the coefficients of the linear combinations in the Gj spaces. We remark
that changes in the polynomial structurally shift (parts of) block columns in Uk and
Hk. This feature is of interest in MR Sonneveld methods, which are considered in
the next section, as the understanding of this behavior helps to prevent incurable
stagnation.

Again we can interpret the matrices Uk and Hk of coefficients as a kind of pro-
jection if rank (Gk+1) = k+1, this time of the pencil (A, In) to the rectangular pencil
(Hk,Uk), where Uk ∈ C(k+1)×k denotes Uk with one additional zero row appended
at the bottom:

G†k+1(A, In)Vk = G†k+1(A, In)Gk+1Uk

= G†k+1(AGkUk,Gk+1Uk) = G†k+1(Gk+1Hk,Gk+1Uk) = (Hk,Uk). (3.6)

The derivation of Sonneveld methods gives them an unfamiliar appeal to people
from the Krylov subspace community. The theoretical investigations show that Sonn-
eveld methods are just another branch of Krylov subspace methods. We show in this
note that the small change from the Hessenberg decomposition (2.1) to the generalized
Hessenberg decomposition (3.5), i.e., the introduction of an upper triangular Uk in
place of the simple Ik in classical Krylov subspace methods, is the main change in
devising new algorithms or applying well-known techniques from the pool of existing
Krylov subspace method techniques.

We start with very simple descriptions of some basic Krylov subspace flavors;
we obtain the “classical” technique upon setting Uk to the identity matrix Ik. This
amounts to almost trivial changes when a “classical” Krylov subspace technique is
applied to Sonneveld methods.

4. Ritz, harmonic Ritz, and the like. There are many different techniques
available to extract approximations to some eigenpairs using Krylov subspace tech-
niques, we sketch very briefly some of them. Best known is the Ritz approach. Here,
the leading square part (Hk,Uk) of the rectangular Sonneveld pencil [19] (Hk,Uk) is
used to compute approximate eigenvalues θj , the eigenvectors sj ,

Hksj = θjUksj , (4.1)

are prolonged to give the Ritz vectors yj := Vksj = GkUksj . This is discussed for the
prototype IDR(s) [45] in [19], for the enhanced version [51] in [32], and for IDRStab
[42] in [33]. As some of these eigenvalues correspond to roots of the polynomials Gi

from Eqn. (3.4), in all cases a purified and/or deflated pencil is used, for details we
refer to [19, 32, 33].

On the same grounds we can compute harmonic Ritz values associated with the
MR approach [29, 11]. The motivation for the name harmonic Ritz and the connection
to Lehmann’s optimal eigenvalue inclusions [28] can be found in [30]. In the context
of Sonneveld methods we compute the eigenvalues θj and the eigenvectors sj of one

of the equivalent pairs (HH
kHk,H

H
kUk) or (Ik,H

†
kUk), e.g.,

Iksj = θjH
†
kUksj , (4.2)

to obtain the harmonic Ritz pairs (θj ,yj
), y

j
:= Vksj = GkUksj . Again, it is

preferable to apply this scheme to a purified and/or deflated pencil, as in this case we
otherwise include information about the roots of some Gi in the process and smear
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out this information, such that we can no longer separate information about the
eigenvalues of A and these (unwanted) roots.

Similarly, more general eigenpair extraction schemes are possible, e.g., refinement
[22, 23, 24] and quasi-optimal extraction [58]. The details will be given in a separate
report.

5. Polynomials and perturbations. Perturbed methods will satisfy an ap-
proximate generalized Hessenberg decomposition

AVk + Fk = AGkUk + Fk = Gk+1Hk, k ∈ N, (5.1)

where Fk ∈ Cn×k accounts for perturbations, e.g., due to finite precision and/or
inexact matrix-vector multiplies. The impact of the perturbations is very different
in Sonneveld and Lanczos methods, Lanczos methods tend to compute multiple Ritz
copies, Sonneveld methods tend to compute what we call ghost polynomial roots. As
an example, some of the main differences between BiCG perturbed by finite precision
and as underlying method of BiCGStab are depicted in Figure 5.1. This figure and
the corresponding caption is an excerpt of an experiment from a forthcoming report.
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Fig. 5.1. Approximation of the eigenvalue of maximal magnitude of a well-conditioned matrix
A ∈ C200×200 by Ritz values using BiCG and BiCGStab in the näıve implementation in AN-
SI/IEEE 754 arithmetic. The differences of the constructed αj and βj are marked with circles and
squares, respectively. Any forward error analysis could predict the behaviour up to the total loss of
common digits, depicted as prediction threshold. The convergence of the BiCG-Ritz values (green
lines w. diamonds; multiple copies) and the BiCGStab-Ritz values (magenta dash-dotted lines) to-
wards the eigenvalue of largest magnitude deviates after this point. BiCG returns multiple copies
of Ritz values; BiCGStab computes spurious Ritz values close to the values 1/ωj . To illustrate the
latter the convergence of BiCGStab-Ritz values towards the first 102 values 1/ωj , 2 6 j 6 103 is
depicted by colored straight lines (obtained using Matlab’s color scheme “cold”).

A first step to analyze this startling behaviour is the observation given in the
report [6] that in Sonneveld methods we implicitly work with a modified matrix that
has these roots as eigenvalues. Another tool of trade may be the obvious generalization
stated for the unperturbed case in [19, §2] of the polynomial expressions obtained in
[57] with the aid of [56]. This is currently an active area of research.

6. OR and MR. Krylov subspace methods for the solution of linear systems

Ax = r0, A ∈ Cn×n, r0 ∈ Cn (6.1)

can be mainly distinguished into two classes: those of type OR and those of type
MR. We use the classification given in [57]. OR is an abbreviation for Orthogonal
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Residuals, MR is an abbreviation for Minimal Residuals. This classification easily
extends to Sonneveld methods. In all cases we assume that g1 = r0/‖r0‖.

Orthogonal Residual (OR) approaches, the well-known ones are CG [21] and
FOM [34, 35], are based on the solution of Hessenberg linear systems with the leading
square part Hk ∈ Ck×k of Hk ∈ C(k+1)×k. In the case of Sonneveld methods we define
the kth OR solution zk to be any solution of

Hkzk := e1‖r0‖, e.g., mostly zk := H−1k e1‖r0‖, (6.2)

and set the kth OR iterate xk to

xk := Vkzk = GkUkzk. (6.3)

The norm of the kth residual rk := r0 −Axk can be estimated by

‖rk‖ = ‖r0 −Axk‖ = ‖r0 −AGkUkzk‖
= ‖Gk(e1‖r0‖ −Hkzk)− gk+1hk+1,ke

T
kzk‖ = ‖gk+1‖ · |hk+1,ke

T
kzk|, (6.4)

i.e., using solely quantities available in the algorithm. OR methods are mostly simple
to implement, yet they can break down whenever Hk becomes singular. In some of
these methods, the numerical stability suffers in case of near-breakdown. Most IDR
methods developed thus far are of type OR, e.g., the methods given in [45, 51, 42] are
all of type OR.

Minimal Residual (MR) approaches, the well-known ones are MinRes [31], GM-
Res [35], and QMR [14], compute an approximation based on the solution of Hes-
senberg least-squares problems. In the case of Sonneveld methods we define the kth
MR solution zk to be the unique solution of

ρk :=
∥∥Hkzk − e1‖r0‖

∥∥ = min, i.e., zk := H†ke1‖r0‖, (6.5)

and set the kth MR iterate xk to

xk := Vkzk = GkUkzk. (6.6)

The norm of the kth residual rk := r0 −Axk can be estimated by

‖rk‖ = ‖r0 −Axk‖ = ‖r0 −AGkUkzk‖
= ‖Gk+1(e1‖r0‖ −Hkzk)‖ 6 ‖Gk+1‖ · ‖(e1‖r0‖ −Hkzk)‖ = ‖Gk+1‖ · ρk, (6.7)

i.e., apart from the norm of Gk+1 using solely a quantity available in the algorithm.
The norm of Gk+1 can be bounded by

√
k + 1 in case all columns, e.g., all basis

vectors, are normalized to unit length. Using a basis that is block-wise orthonormal
ensures a lower bound on ‖Gk+1‖, this is used in the MR implementation of IDR
sketched in [50]. Other MR implementations of IDR are given in [3, 8].

It is possible to obtain the MR quantities from the OR quantities by a technique
known as residual smoothing, developed by Hestenes and Stiefel [21, §7, p. 418–419],
see also Schönauer and Weiß [36, 53]. This is incorporated in the code of [51].

The relations between OR and MR methods, c.f. [7], are still valid in case of OR
and MR Sonneveld methods. Whenever the MR version stagnates, the OR version has
a peak or breaks down. This is the so-called peak-plateau phenomenon. In Sonneveld
methods OR approaches break down whenever some polynomial gj has zero as a
root, the corresponding MR method in this case stagnates forever, which we call an
incurable stagnation in [50]. As the numerical properties of OR and MR approaches
depend on the constructed Hessenberg matrices, we might try to use the freedom in the
construction of the additional polynomials gj , especially in the IDRStab approach,
to ensure a better conditioned Hessenberg matrix. This is an active area of research.



9

7. General comments. From the previous comments it is obvious that Sonn-
eveld methods should best be started with a variant of Arnoldi’s method, as these
can be used to obtain optimal results. Apart from the additional polynomials gj in-
troduced, Sonneveld methods perform Lanczos(s, 1) in the background. As already
mentioned in the previous sections, the quantities of the underlying Lanczos’s process
should be locally as close as possible to an exact process. MR processes are a little
bit more costly, but these are simpler to depict. For this reason we use QMRIDR in
our experiments for linear systems. In the eigenvalue part we use methods developed
in [33] based on Sleijpen’s Matlab implementation of IDRStab [42].

8. Choosing the shadow space. In [44] Sonneveld presented examples that
support the rule of thumb the convergence curves of IDR(s) [51] are getting close to the
optimal convergence curve of GMRes, when we omit the additional multiplications,
s tends to infinity (i.e., is large enough) and we use a set of orthonormalized random
vectors as shadow space. Numerical experiments indicate that the same holds true
for the eigenvalue solvers based on IDR, see Figure 8.1.
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Fig. 8.1. Comparison of Lanczos’s, Arnoldi’s, and four different Sonneveld methods to approx-
imate the eigenvalue closest to 4 + 45i of the matrix e05r0500 from matrix market. Increasing s,
here the values s = 1 and s = 5 have been used as examples, gives curves that are closer to the
convergence curve of Arnoldi’s method, the shadow vectors have been chosen as orthonormalized
random vectors. For IDR(1) we used the same shadow vector than in Lanczos’s method, the result-
ing approximations should be identical but the bad numerical stability of IDR(s)ORes results in a
large deviation from the convergence curve of Lanczos’s method. The eigenvalue approximations ob-
tained by IDRStab, using the method sketched in [33], tend to fail to reach a low level of attainable
accuracy when the degree of the stabilizing polynomial is too large.

We tried different various other choices for the shadow vectors. It turns out that
using (approximate) information about (left) eigenvectors results in unpredictable
behaviour. This is an active area of research. Currently we advocate the use of
orthonormalized random vectors.

9. Choosing the stabilizing polynomials. The roots of the stabilizing poly-
nomials sometimes lie far outside the field of values, which results in a severe loss
of convergence properties of the eigenvalues solvers based on IDR. This is partly ex-
plained by the connection to Lanczos’s methods and the rule of thumb to “stay as
close as possible” to the underlying Lanczos’s process. In Figure 8.1 we can observe
that a larger degree of the stabilizing polynomial, which helps to increase the conver-
gence properties of IDRStab as a linear system solver, has a negative effect on the
eigenvalue convergence. As in real arithmetic complex conjugate roots of the stabiliz-
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ing polynomials are needed to increase stability, we advocate to use only stabilizing
polynomials of degree at most 2. In our experiments, the occurrence of “ghost poly-
nomial roots” had negative effects once these roots lie far from the field of values of A.
A classical remedy is given in [39], this technique is part of Sleijpen’s implementation
of IDRStab and was used in the experiments. As the residual polynomials should
give “small” residuals when we dampen the spectrum of (mildly non-normal) A, and
typically the convergence of the Sonneveld Ritz values starts at the outer eigenvalues,
we used three theoretical experiments to investigate the stability of other choices:

• Setting the roots of the stabilizing polynomials to inner eigenvalues,
• Setting the roots of the stabilizing polynomials to the leading part of a Hes-

senberg matrix similar to A.
• Setting the roots of the stabilizing polynomials to the trailing part of a Hes-

senberg matrix similar to A.

The latter choice captures the first approximations of a “flipped” process, i.e., one
with starting vectors given by the last vectors of the forward process. These last
vectors are in some sense “richer” in the direction of eigenvectors corresponding to
inner eigenvalues. Of course, the first and last method lead to impractical methods.
These choices perform similar to the choices to minimize the residual or to apply the
technique from [39], referred to as “vanilla”. As example we refer to Figure 9.1. In
general, application of the technique from [39] increases the stability compared to the
former. We currently investigate mixed procedures based on the ideas in [39] and
eigenvalue information based on the approaches mentioned in Section 4.
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Fig. 9.1. Comparison of two impractical different choices of stabilizing polynomials for
QMRIDR(4) with the choices used in [45], [51, 39], and [37].
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