
IDR(s) AND IDR(s)Eig IN PARALLEL COMPUTING∗

JENS-PETER M. ZEMKE†

Abstract. In this short summary of a talk held at the University of Tokyo on the 12th February
2010 we consider a certain class of Krylov subspace methods: the IDR methods by Peter Sonneveld,
and their recent generalizations to incorporate more shadow vectors, the IDR(s) methods. We
sketch the main ideas behind IDR, IDR(s), and IDR(s)Eig, and indicate possible approaches for
their parallelization.

Key words. IDR; PIA; IDR(s); IDR(s)Eig; Krylov subspace methods; Eigenvalues; Linear
Systems; Parallelization

AMS subject classifications. 65F10 (primary), 65F15, 65Y05, 65Y20

1. IDR and IDR(s). IDR [16, 17, 24] and IDR(s) [15, 18, 23, 19, 13, 14, 20, 11]
are Krylov subspace methods which have been invented by numerical analyst Peter
Sonneveld at the TU Delft in 1976 and 2006, respectively, the latter with co-author
Martin van Gijzen. Recently there has been an increased interest in these methods,
as they appear to be more stable than other transpose-free Krylov subspace methods
based on short recurrences in certain situations. An important predecessor of the
new family IDR(s) is the less well known method ML(k)BiCGStab by Man-Chung
Yeung and Tony Chan [26].

1.1. Krylov subspace methods. IDR and IDR(s) are Krylov subspace meth-
ods. The mth Krylov subspace Km is defined for a given square matrix A ∈ Cn×n

and a starting vector q ∈ Cn as follows,

Km(A,q) := span {q,Aq, . . . ,Am−1q}. (1.1)

As long as the Krylov subspace Km has full dimension dim(Km) = m, there is a
natural isomorphism

v ∈ Km ⇔ v = ν(A)q

between vectors v in a Krylov subspace and polynomials ν ∈ Pm−1. Obviously there
is a last index m 6 n with dim(Km) = m, this index is known as the grade of the
vector q with respect to the matrix A. The Krylov matrices

Km :=
(
q,Aq,A2q, . . . ,Am−1q

)
(1.2)

satisfy the matrix recurrence (
q,AKm

)
= Km+1. (1.3)

∗Based in part on the forthcoming paper [5]. The author acknowledges the invitation by Prof.
Seiji Fujino of the Research Institute for Information Technology of Kyushu University to Japan in
February 2010 where part of this work was written.

†Institut für Numerische Simulation, Technische Universität Hamburg-Harburg, D-21073 Ham-
burg, Germany (zemke@tu-harburg.de).

1

The mth Krylov matrix spans a basis of the mth Krylov space Km if and only if m is
less or equal to the grade of q. We assume here that this is always the case. Suppose
now that we choose upper triangular basis transformations Km =: QmRm,(

q,AQmRm

)
= Qm+1Rm+1. (1.4)

The Krylov matrix recurrence (1.3) can now be reformulated,

(
q,AQm

)
= Qm+1Rm+1

(
1 oT

o Rm

)−1

. (1.5)

These upper triangular basis transformations are natural in the context of Krylov
subspace methods, as in step k only the first k columns are available. When we strip
off the first column on both sides of Eqn. (1.5), we exhibit the intimate connection of
Krylov subspace methods to so-called Hessenberg decompositions.

Let the matrix Cm ∈ C(m+1)×m be defined by(
?
o Cm

)
:= Rm+1

(
1 oT

o Rm

)−1

. (1.6)

By the group structure of regular upper triangular matrices, this matrix is unreduced
extended Hessenberg.

In every simple Krylov subspace method, i.e., excluding block variants, we end
up with a so-called Hessenberg decomposition1

AQm = Qm+1Cm =: QmCm + qm+1cm+1,meT
m, (1.7)

where Cm is unreduced Hessenberg and measures the “ratio” of the basis transfor-
mations.

Krylov subspace methods can be classified into distinct approaches. We first give
the matrix based classification. In the following, we always assume that in the context
of the approximate solution of linear systems, the starting vector q1 has been chosen
by ‖r0‖2q1 = r0. There are three well-known approaches based on such Hessenberg
decompositions, namely,

QOR: approximate x = A−1r0 by xm := QmC−1
m e1‖r0‖2,

QMR: approximate x = A−1r0 by xm := QmC†
me1‖r0‖2,

Ritz-Galërkin: approximate part of J = V−1AV by Jm := S−1
m CmSm

and part of V by Vm := QmSm, where CmSm = SmJm.

To every method from one class corresponds a method of the other. This fact is used
in the forthcoming publication [5] to compute eigenvalues using IDR.

It turns out to be helpful to look at the corresponding polynomial description.
We already mentioned that Krylov subspace methods compute elements from the
Krylov subspace Km which can also be described as polynomials. The classification

1In [5] we name these relations in honor of Karl Hessenberg. He was to our knowledge the
first who considered relations of the type AQn = Qn+1Hn with a special unreduced extended
Hessenberg matrix Hn, see [7]. Usually the names of Lanczos [8, 9] or Arnoldi [1] are associated with
such relations.

2

of Krylov methods given above can be rephrased using the language of polynomials.
The three classes of methods can be described using certain polynomials and poly-
nomial interpolation, cf. [27, 28] for the general perturbed case. The Ritz values are
the eigenvalues of the Hessenberg matrix Cm and the harmonic Ritz values are the
eigenvalues of the matrix (C†

mIm)−1, where Im denotes an extended identity matrix
which has an additional row of zeros attached to the bottom. The three approaches
implicitly compute polynomials with the following characteristics.

QOR: rm = Rm(A)r0, where Rm(z) := det (Im − zC−1
m),

xm = Lm[z−1](A)r0, where Lm[z−1](z) interpolates
the function z−1 at the Ritz values,

QMR: rm = Rm(A)r0, where Rm(z) := det (Im − zC†
mIm),

xm = Lm[z−1](A)r0, where Lm[z−1](z) interpolates
the function z−1 at the harmonic Ritz values,

Ritz-Galërkin: Unscaled Ritz vectors are given by v(m)
j = Am(θj ,A)q1,

where Am(θ, z) := (χm(θ)− χm(z))(θ − z)−1, θ 6= z,
Cmsj = sjθj and χm(z) := det (zIm −Cm).

These polynomial descriptions play a prominent rôle in determining the rate of conver-
gence and understanding the behavior of Krylov subspace methods in finite precision
or subject to more general perturbations, e.g., those, which are introduced by an
inexact matrix vector product.

1.2. 1976–1980: IDR. In 1976 Sonneveld experimentally observed that for
B ∈ Cn×n and a given starting vector f0 ∈ Cn and f1 := Bf0 the following three-term
recurrence

fk+1 := B(fk − γk(fk − fk−1)), γk :=
pH fk

pH(fk − fk−1)

almost always terminates after 2n steps with the zero vector f2n = on [16, 17].

Analyzing this startling behavior, he discovered that the two consecutive vectors
f2j , f2j+1 constructed in this manner live in spaces Gj of shrinking dimensions. These
spaces are nowadays known as “Sonneveld spaces”. He called this property “Induced
Dimension Reduction” (IDR), and algorithms like the given three-term recurrence
“IDR Algorithms”. The theorem he proved was the first “IDR Theorem”.

Sonneveld first made numerical experiments and then gave a rigorous proof for
his first IDR Theorem. It is easy to see that apart from the first two arbitrarily chosen
residuals the constructed residuals are in the B image of the space S := p⊥. The
same argument proves that in general (observe that the first two residuals f0, f1 are
usually not in S) for k > 1

f2k, f2k+1 ∈ Gk :=
k⋂

j=1

B j(S) =
(k

+
j=1

B−j H {p}
)⊥

=
(
Kk(B−H,B−H p)

)⊥
.

Sonneveld proved that the dimensions of the spaces constructed are shrinking. This is
the essence of the first IDR Theorem. He did not use the description as an orthogonal
complement of a Krylov subspace as it is done here and elsewhere [13, 11]. We remark
that generically dim(Kn(B−H,B−H p)) = n. Using the Krylov subspace point of view
and the explicit orthogonalization against p before multiplication with B, we see that
indeed f2n = Bon = on.

3

This IDR Theorem can be turned into many IDR Algorithms. The three-term
recurrence

fk+1 = B(fk − γk(fk−1 − fk)), where γk =
pH fk

pH(fk−1 − fk)
,

is an “implementation” of the Induced Dimension Reduction (IDR) Theorem. The
vectors constructed live in spaces of shrinking dimensions. Methods like this are called
“IDR Algorithms”.

Another implementation by Sonneveld can be used to solve “genuine” linear sys-
tems. The idea is to rewrite the linear system to Richardson’s iteration form,

Ax = b ⇒ x = (I−A)x + b =: Bx + b.

The classical Richardson’s iteration with a starting guess x0 is then given by

xk+1 = (I−A)xk + b.

With r0 := b−Ax0, the Richardson’s iteration is carried out as follows:

xk+1 = xk + rk, rk+1 = (I−A)rk.

In a Richardson-type IDR Algorithm, the second equation is replaced by the update

rk+1 = (I−A)(rk + γk(rk − rk−1)), γk =
pH rk

pH(rk−1 − rk)
.

The update of the iterates has to be modified accordingly,

−A(xk+1 − xk) = rk+1 − rk = (I−A)(rk + γk(rk − rk−1)− rk

= (I−A)(rk − γkA(xk − xk−1)− rk

= −A(rk + γk(I−A)(xk − xk−1))
⇔ xk+1 − xk = rk + γk(I−A)(xk − xk−1)

= rk + γk(xk − xk−1 + rk − rk−1).

Sonneveld termed the outcome the “Primitive IDR Algorithm” [16]. For simplicity we
will refer to it as PIA. A very simple implementation of PIA is given in Algorithm 1.

The algorithm can be restated with less memory requirements when we allow to
overwrite the vectors and scalars. This variant can be found in Algorithm 2. In
Figure 1.1 we compare Richardson’s iteration and PIA. These pictures gives some
impressions of the “finite termination” property at step 2n and a feeling for the
acceleration of Richardson’s iteration by PIA in finite precision.

Sonneveld never did use PIA, as he considered it to be too unstable, instead he
went on with a corresponding acceleration of the Gauß-Seidel method. In [17] he
terms this method “Accelerated Gauß-Seidel” (AGS) and refers to it as “[t]he very
first IDR-algorithm [..]”, see page 6, Ibid. This part of the story took place “in the
background” in the year 1976. In September 1979 Sonneveld did attend the IUTAM
Symposium on Approximation Methods for Navier-Stokes Problems in Paderborn,
Germany. At this symposium he presented a new variant of IDR based on a variable
splitting I − ωjA, where ωj is fixed for two steps and otherwise could be chosen

4

http://www.iutam.info/iutam/Publications/index.php/3
http://www.iutam.info/iutam/Publications/index.php/3

input : A, b, x0, p
output: rk, xk, γk

r0 = b−Ax01

x1 = x0 + r02

r1 = r0 −Ar03

for k = 1, 2 . . . do4

γk = pTrk/pT(rk−1 − rk)5

sk = rk + γk(rk − rk−1)6

xk+1 = xk + γk(xk − xk−1) + sk7

rk+1 = sk −Ask8

end9

Algorithm 1: The most simple variant of PIA

input : A, b, x0, p
output: r, x, γ
xold ← x01

rold ← b−Axold2

xnew ← xold + rold3

rnew ← rold −Arold4

while not converged do5

γ ← pTrnew/pT(rold − rnew)6

s← rnew + γ(rnew − rold)7

xtmp ← xnew + γ(xnew − xold) + s8

rtmp ← s−As9

xold ← xnew, xnew ← xtmp10

rold ← rnew, rnew ← rtmp11

end12

Algorithm 2: A better implementation of PIA

freely, but non-zero. This algorithm with a minimization of every second residual to
determine the new ωj is included in the proceedings from 1980 [24]. The connection
to Krylov methods, e.g., to BiCG and Lanczos, is also given there. We refer to it
as “Classical IDR” or simply “IDR”. The pseudo-code for the algorithm of IDR is
given in Algorithm 3.

Algorithm 3 is the original IDR Algorithm from page 551 of [24]. It uses Ortho-
Res(1) in the first step and a residual minimization every second step. The residuals
are the vectors −f2j . The finite termination property follows from a generalization
of the IDR Theorem based on the commutativity of the linear polynomials I− ωjA.
A numerical comparison of Richardson’s iteration, original IDR, and PIA is given in
Figure 1.2.

As is obvious from the derivation of PIA, AGS, and IDR, there are many brothers
of classical and primitive IDR. In 1976 Sonneveld already considered the acceleration
of Gauß-Seidel (AGS). Similarly, the IDR philosophy can be used as an accelerator for
the other classical splitting methods like Jacobi, SOR, SSOR, or Chebyshev, or even
more general semi-iterative methods. Thus, IDR is a whole family of methods instead
of a single instant. We remark that the well known method BiCGStab [22, 21] is

5

0 5 10

10
−10

10
0

10
10

matrix−vector multiplies

tr
ue

 a
nd

 u
pd

at
ed

 r
es

id
ua

ls

PIA for n = 5 and no scaling

0 20 40 60
10

0

10
10

10
20

10
30

matrix−vector multiplies
tr

ue
 a

nd
 u

pd
at

ed
 r

es
id

ua
ls

PIA for n = 20 and no scaling

0 100 200
10

0

10
100

10
200

matrix−vector multiplies

tr
ue

 a
nd

 u
pd

at
ed

 r
es

id
ua

ls

PIA for n = 100 and no scaling

0 5 10

10
−10

10
0

matrix−vector multiplies

tr
ue

 a
nd

 u
pd

at
ed

 r
es

id
ua

ls

PIA for n = 5 and scaling

0 20 40 60

10
−10

10
0

matrix−vector multiplies

tr
ue

 a
nd

 u
pd

at
ed

 r
es

id
ua

ls

PIA for n = 20 and scaling

0 100 200

10
−10

10
0

matrix−vector multiplies
tr

ue
 a

nd
 u

pd
at

ed
 r

es
id

ua
ls

PIA for n = 100 and scaling

Figure 1.1. A numerical comparison of PIA and Richardson’s iteration. The convergence
curves of PIA are in all cases, after some possible initial erratic behavior, below the convergence
curves of Richardson’s iteration. For small n, PIA manages to converge when Richardson’s iteration
actually diverges.

mathematically merely a reformulation of IDR and thus also an IDR algorithm.

Some of the methods based on IDR acceleration of classical splitting and semi-
iterative methods have been considered much more recently by Seiji Fujino et al. under
the names ISOR, IJacobi, IGS. The generalization of these methods to incorporate
more than one shadow vector seems very promising on distributed memory computers.
One has to look careful at the difference between preconditioning and using a variable
splitting before applying IDR acceleration or afterwards. The numerical behavior is
not very promising. But this picture changes, when we use more shadow vectors . . .

1.3. 2006–2010: IDR(s). In 2006 the rebirth of IDR took place. Almost
exactly 30 years after inventing IDR, Peter Sonneveld together with Martin van Gijzen
reconsidered IDR and introduced more shadow vectors: IDR(s)was born. They came
up with a variant called IDR(s) that used orthogonalization against a larger space,
where s denotes the dimension of that space. Algorithmically, the transition from
IDR to IDR(s) corresponds to replacing the single vector p ∈ Cn with a matrix or
block vector P ∈ Cn×s, 1 6 s 6 n.

To analyze IDR and IDR(s), we have to consider generalized Hessenberg decom-
positions (also referred to as rational Hessenberg decompositions) and to generalize
QOR, QMR and Ritz-Galërkin. We have to prove that the expressions for the iterates
and residuals based on polynomials are still valid. But: All these approaches extend
easily to generalized Hessenberg decompositions. The prototype IDR(s) algorithm
without the recurrences for xm and thus already slightly rewritten is given in Algo-
rithm 4. This variant forms the basis for eigenvalue computations based on IDR in
[5].

6

input : A, b, x0, p
output: fk, xk, γk, ωk

γ0 = 01

f0 = Ax0 − b2

∆g0 = on3

∆y0 = on4

for k = 1, . . . do5

sk = fk−1 + γk−1∆gk−16

tk = Ask7

if k = 1 or k is even then8

ωk = (tH
k sk)/(tH

k tk)9

else10

ωk = ωk−111

end12

∆xk = γk−1∆yk−1 − ωksk13

∆ fk = γk−1∆gk−1 − ωktk14

xk = xk−1 + ∆xk15

fk = fk−1 + ∆fk16

if k is even then17

∆yk = ∆yk−118

∆gk = ∆gk−119

else20

∆yk = ∆xk21

∆gk = ∆fk22

end23

γk = −(pHfk)/(pH∆gk)24

end25

Algorithm 3: Classical IDR

With mention a few remarks: We can start with any (simple) Krylov subspace
method. The steps in the s-loop only differ from the first block in that no new ωj

is computed. IDR(s)ORes is based on oblique projections and s + 1 consecutive
multiplications with the same linear factor I − ωjA. To understand IDR we have
to find the underlying Hessenberg decomposition. We already noted that essential
features of Krylov subspace methods can be described by a Hessenberg decomposition

AQm = Qm+1Hm = QmHm + qm+1hm+1,meT
m. (1.8)

Here, Hm denotes an unreduced Hessenberg matrix. In the perturbed case, e.g., in fi-
nite precision and/or based on inexact matrix-vector multiplies, we obtain a perturbed
Hessenberg decomposition

AQm + Fm = Qm+1Hm = QmHm + qm+1hm+1,meT
m. (1.9)

The matrix Hm of the perturbed variant will, in general, still be unreduced. It turns
out that in case of IDR we have to consider generalized Hessenberg decompositions.

AQmUm = Qm+1Hm = QmHm + qm+1hm+1,meT
m (1.10)

7

0 5 10

10
−10

10
0

10
10

matrix−vector multiplies

tr
ue

 a
nd

 u
pd

at
ed

 r
es

id
ua

ls

RIP for n = 5 and no scaling

0 20 40 60

10
0

10
20

matrix−vector multiplies
tr

ue
 a

nd
 u

pd
at

ed
 r

es
id

ua
ls

RIP for n = 20 and no scaling

0 100 200

10
0

10
100

10
200

matrix−vector multiplies

tr
ue

 a
nd

 u
pd

at
ed

 r
es

id
ua

ls

RIP for n = 100 and no scaling

0 5 10

10
−10

10
0

matrix−vector multiplies

tr
ue

 a
nd

 u
pd

at
ed

 r
es

id
ua

ls

RIP for n = 5 and scaling

0 20 40 60

10
−10

10
0

matrix−vector multiplies

tr
ue

 a
nd

 u
pd

at
ed

 r
es

id
ua

ls

RIP for n = 20 and scaling

0 100 200

10
−10

10
0

matrix−vector multiplies
tr

ue
 a

nd
 u

pd
at

ed
 r

es
id

ua
ls

RIP for n = 100 and scaling

Figure 1.2. A numerical comparison of Richardson’s iteration, classical IDR, and PIA.
Classical IDR performs best for these small-scale test problems and converges in all cases to a
reasonable level of accuracy, even when PIA and Richardson’s iteration diverge.

and perturbed generalized Hessenberg decompositions

AQmUm + Fm = Qm+1Hm = QmHm + qm+1hm+1,meT
m (1.11)

with upper triangular (possibly even singular) matrices Um. Generalized Hessenberg
decompositions correspond to an oblique projection of the pencil (A, I) to the pencil
(Hm,Um) as long as Qm+1 has full rank,

Q̂H
m(A, I)QmUm = Q̂H

m(AQmUm,QmUm)

= Q̂H
m(Qm+1Hm,QmUm) = (IT

mHm,Um) = (Hm,Um),
(1.12)

here Q̂H
m := IT

mQ†
m+1.

In understanding IDR, we have to understand the concept of OrthoRes-type
methods. The entries of the Hessenberg matrices of Hessenberg decompositions are de-
fined in different variations. Three well-known ways for implementing the QOR/QMR
approach are commonly denoted as OrthoRes, OrthoMin, and OrthoDir. The
prototype IDR(s) belongs to the class OrthoRes and uses short recurrences, there-
fore we refer to it as IDR(s)ORes. OrthoRes-type methods have a generalized
Hessenberg decomposition

ARmUm = Rm+1H◦
m = RmH◦

m + rm+1h
◦
m+1,meT

m, (1.13)

where eTH◦
m = oT

m, eT = (1, . . . , 1), and the matrix

Rm+1 =
(
r0, . . . , rm

)
= Qm+1 diag

(
‖r0‖2
‖q1‖2

, . . . ,
‖rm‖2
‖qm+1‖2

)
(1.14)

8

input : A, b, x0, s, P
output: Rm+1, cs+1, cs+2, . . ., ω1, ω2, . . .
r0 = b−Ax01

compute Rs+1 = R0:s =
(
r0, . . . , rs

)
using, e.g., OrthoRes2

∇R1:s =
(
∇r1, . . . ,∇rs

)
=

(
r1 − r0, . . . , rs − rs−1

)
3

m← s + 1, j ← 14

while not converged do5

cm = (PH∇Rm−s:m−1)−1PHrm−16

vm−1 = rm−1 −∇Rm−s:m−1cm7

compute ωj8

∇rm = −∇Rm−s:m−1cm − ωjAvm−19

rm = rm−1 +∇rm10

m← m + 111

∇Rm−s:m−1 =
(
∇rm−s, . . . ,∇rm−1

)
12

for k = 1, . . . , s do13

cm = (PH∇Rm−s:m−1)−1PHrm−114

vm−1 = rm−1 −∇Rm−s:m−1cm15

∇rm = −∇Rm−s:m−1cm − ωjAvm−116

rm = rm−1 +∇rm17

m← m + 118

∇Rm−s:m−1 =
(
∇rm−s, . . . ,∇rm−1

)
19

end20

j ← j + 121

end22

Algorithm 4: IDR(s)ORes

is diagonally scaled to be the matrix of residual vectors.

Next we depict the underlying generalized Hessenberg decomposition. We already
noted in the remarks following Algorithm 4 that the IDR recurrences of IDR(s)ORes
can be summarized by

vm−1 := rm−1 −∇Rm−s:m−1cm = Rm−s−1:m−1ym

= (1− γ
(m)
s) rm−1 +

∑s−1
`=1(γ(m)

s−`+1 − γ
(m)
s−`) rn−`−1 + γ

(m)
1 rm−s−1 ,

1 · rm := (I− ωjA)vm−1 .

Here, m > s, and the index of the scalar ωj is defined by

j :=
⌊

m

s + 1

⌋
,

compare with the so-called “index functions” in [25]. Removing vm−1 from the re-
currence we obtain the generalized Hessenberg decomposition

ARmYmD(m)
ω = Rm+1Y◦

m, (1.15)

where non-zero elements in the upper triangular part of the columns of the upper
triangular matrix Ym and the unreduced extended upper Hessenberg matrix Y◦

m

9

are given by the elements in the vectors ym, the diagonal matrix D(m)
ω has s + 1

repeated copies of ωj along the diagonal and the lower diagonal of the unreduced
extended upper Hessenberg matrix Y◦

m is given by minus ones, which makes it an
OrthoRes-type matrix, i.e., the columns sum to zero.

2. IDR(s)Eig. The IDR(s)Eig approach in [5] is based on the upper unre-
duced Hessenberg/upper triangular pencil of the generalized Hessenberg decomposi-
tion (1.15). For details we refer the reader to the forthcoming technical report [5]. We
simply sketch the mathematical transformations with the aid of small pictures based
on IDR(s)ORes with s = 3 for 12 steps.

2.1. Sonneveld pencil. In this small section we consider the Sonneveld pen-
cil and Sonneveld matrix. The IDR(s)ORes pencil, the so-called Sonneveld pencil
(Y◦

m,YmD(m)
ω), can be depicted by

××××◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
+××××◦ ◦ ◦ ◦ ◦ ◦ ◦
◦+××××◦ ◦ ◦ ◦ ◦ ◦
◦ ◦+××××◦ ◦ ◦ ◦ ◦
◦ ◦ ◦+××××◦ ◦ ◦ ◦
◦ ◦ ◦ ◦+××××◦ ◦ ◦
◦ ◦ ◦ ◦ ◦+××××◦ ◦
◦ ◦ ◦ ◦ ◦ ◦+××××◦
◦ ◦ ◦ ◦ ◦ ◦ ◦+××××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦+×××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦+××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦+×


,



××××◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦××××◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦××××◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦××××◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦××××◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦××××◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦××××◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦××××◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦××××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦×××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦×


.

We observe a nice banded structure of this pencil. The eigenvalues can easily be
computed using the QZ algorithm. The data dependencies can be reduced to obtain
the approximate eigenvalues in a more stable manner. The upper triangular matrix
YmD(m)

ω could be inverted, which results in the Sonneveld matrix, a full unreduced
Hessenberg matrix. The QR algorithm on the Sonneveld matrix could be used to
obtain the same approximations to eigenvalues.

2.2. Purified pencil. We know the eigenvalues ≈ roots of kernel polynomials
1/ωj . We are only interested in the other eigenvalues. The purified IDR(s)ORes

pencil (Y◦
m,UmD(m)

ω), that has only the remaining eigenvalues and some infinite
ones as eigenvalues, can be depicted by

××××◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
+××××◦ ◦ ◦ ◦ ◦ ◦ ◦
◦+××××◦ ◦ ◦ ◦ ◦ ◦
◦ ◦+××××◦ ◦ ◦ ◦ ◦
◦ ◦ ◦+××××◦ ◦ ◦ ◦
◦ ◦ ◦ ◦+××××◦ ◦ ◦
◦ ◦ ◦ ◦ ◦+××××◦ ◦
◦ ◦ ◦ ◦ ◦ ◦+××××◦
◦ ◦ ◦ ◦ ◦ ◦ ◦+××××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦+×××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦+××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦+×


,



×××◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦××◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦×◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦×××◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦××◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦×◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦×××◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦××◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦×◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦


.

We get rid of the infinite eigenvalues using a change of basis (block Gauß elim-
ination/Schur complement). The resulting deflated purified IDR(s)ORes pencil,
after the elimination step (Y◦

mGm,UmD(m)
ω), where Gm denotes the block Gauß-

10

eliminator, can be depicted by

×××××××◦ ◦ ◦ ◦ ◦
+××××××◦ ◦ ◦ ◦ ◦
◦+×××××◦ ◦ ◦ ◦ ◦
◦ ◦ ◦+◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦++×××××××◦
◦ ◦ ◦ ◦+××××××◦
◦ ◦ ◦ ◦ ◦+×××××◦
◦ ◦ ◦ ◦ ◦ ◦ ◦+◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦++××××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦+×××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦+××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦+


,



×××◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦××◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦×◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦×××◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦××◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦×◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦×××◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦××◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦×◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦


.

Using Laplace expansion of the determinant of zUmD(m)
ω −Y◦

mGm we can get rid of
the trivial constant factors corresponding to infinite eigenvalues. This amounts to a
deflation.

2.3. Deflated pencil. Let D denote an deflation operator that removes every
s + 1th column and row from the matrix the operator is applied to. The deflated
purified IDR(s)ORes pencil, after the deflation step (D(Y◦

mGm), D(UmD(m)
ω)), can

be depicted by 
××××××◦ ◦ ◦
+×××××◦ ◦ ◦
◦+××××◦ ◦ ◦
◦ ◦+××××××
◦ ◦ ◦+×××××
◦ ◦ ◦ ◦+××××
◦ ◦ ◦ ◦ ◦+×××
◦ ◦ ◦ ◦ ◦ ◦+××
◦ ◦ ◦ ◦ ◦ ◦ ◦+×

 ,


×××◦ ◦ ◦ ◦ ◦ ◦
◦××◦ ◦ ◦ ◦ ◦ ◦
◦ ◦×◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦×××◦ ◦ ◦
◦ ◦ ◦ ◦××◦ ◦ ◦
◦ ◦ ◦ ◦ ◦×◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦×××
◦ ◦ ◦ ◦ ◦ ◦ ◦××
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦×

 .

The block-diagonal matrix D(UmD(m)
ω) has invertible upper triangular blocks and

can be inverted to expose the underlying Lanczos process, a Lanczos process with s
left-hand and one right-hand side. We refer to this process as BiORes(s,1), as this is
a process of OrthoRes-type. In the next section we show that IDR(s) is a Lanczos
process with multiple left-hand sides.

2.4. BiORes(s,1). Inverting the block-diagonal matrix D(UmD(m)
ω)) gives an

algebraic eigenvalue problem with a block-tridiagonal unreduced upper Hessenberg
matrix

Lm := D(Y◦
mGm) ·D(UmD(m)

ω))−1 =


××××××◦ ◦ ◦
+×××××◦ ◦ ◦
◦+××××◦ ◦ ◦
◦ ◦+××××××
◦ ◦ ◦+×××××
◦ ◦ ◦ ◦+××××
◦ ◦ ◦ ◦ ◦+×××
◦ ◦ ◦ ◦ ◦ ◦+××
◦ ◦ ◦ ◦ ◦ ◦ ◦+×

 .

This is the matrix of the underlying BiORes(s, 1) process. The extended matrix
version Lm satisfies

AQm = Qm+1Lm,

where the reduced residuals q js+k, k = 0, . . . , s− 1, j = 0, 1, . . ., with Ω0(z) ≡ 1 and
Ωj(z) =

∏j
k=1(1−ωkz) are given by Ωj(A)q js+k = rj(s+1)+k. The reduced residuals

11

are defined by

Ωj(A)q js+k = rj(s+1)+k = (I− ωjA)vj(s+1)+k−1

and every vj(s+1)+k−1 is orthogonal to P. Thus, q js+k ⊥ Ωj−1(AH)P. Using induc-
tion [13] one can prove that q js+k ⊥ Kj(AH,P); thus, this is a two-sided Lanczos
process with s left and one right starting vectors. This can more easily be proven
using the representations (S := P⊥)

G0 = K(A, r0), where K(A, r0) denotes the full Krylov subspace,

Gj =
j−1⋂
k=0

Ωk(A)−1Ωj(A)(S) =
(j−1

+
k=0

Ωj(A)−H Ωk(A)H {P}
)⊥

=
(
Ωj(A)−HKj(AH,P)

)⊥
= Ωj(A)

(
Kj(AH,P)

)⊥
of the Sonneveld spaces. This has to be compared with Theorem 4.2 in [13] and
with Theorem 4.1 in [11] (here a similar result is obtained; the authors use a slightly
different method of proof).

The first equality

Gj =
j−1⋂
k=0

Ωk(A)−1Ωj(A)(S) =
j⋂

k=1

(I− ωjA) · · · (I− ωkA)(S)

follows from the observations that the first s + 1 residuals obviously are in G0 :=
K(A, r0), the next s + 1 residuals (or any other vectors in G1) are in the I − ω1A
image of S = P⊥, the last s + 1 residuals are in the I− ωjA image of S = P⊥, and,
since they are computed as images of linear combinations of previous information, also
images of linear combinations of previously obtained images (I−ωj−1A) · · · (I−ωkA)
of S = P⊥.

The second equality

j−1⋂
k=0

Ωk(A)−1Ωj(A)(S) =
(j−1

+
k=0

Ωj(A)−H Ωk(A)H {P}
)⊥

is based on

BP⊥ = (B−H P)⊥

and

U⊥ ∩ V⊥ = (U ∪ V)⊥ = (U + V)⊥.

The second relations are basic linear algebra. The first relation follows from the
observation that

P⊥ =
{
v ∈ Cn | PHv = os

}
⇒ BP⊥ =

{
Bv ∈ Cn | PHv = os

}
,

since, for invertible B,

y ∈ BP⊥ ⇔
{
y = Bv ∧PHv = os

}
⇔ PHv = PHB−1y = (B−HP)Hy = os.

12

The third and fourth equality(j−1

+
k=0

Ωj(A)−H Ωk(A)H {P}
)⊥

=
(
Ωj(A)−HKj(AH,P)

)⊥
= Ωj(A)

(
Kj(AH,P)

)⊥
are satisfied

• since the polynomials Ωk(A), 0 6 k < j form a basis of the space of polyno-
mials of degree less j, and

• by the property proved above, respectively.

2.5. Generalizations of IDR(s). The residuals computed last in a complete
cycle are uniquely defined. Based on the analysis of a possible breakdown of IDR(s),
Sonneveld and van Gijzen came up with their new implementation IDR(s)BiO [23].
In this implementation of the IDR Theorem they use basis vectors g−1, . . . ,g−s ∈ Gj ,
which are not simply residual differences, but linear combinations of these.

The new vectors vm and rm+1 are in this general setting given by the updates

vm = rm −
s∑

i=1

gm−iγi =: rm −Gmcm, and thus,

rm+1 = (I− ωA)vm = rm − ωAvm −
s∑

i=1

gm−iγi,

where cm is determined such that PHvm = o.

Recently, the relations between IDR(s) and BiCGStab(`) and combinations of
both methods have been investigated.

• In [13] the authors derive different implementations of ML(k)BiCGStab-like
algorithms.

• In [14] the authors combine the IDR philosophy with higher degree stabi-
lization polynomials. The resulting method is named IDR(s)Stab(`). The
approach is comparable to the one resulting in BiCGStab(`).

• In [20] the authors derive the algorithm GBiCGStab(s,L), which is sim-
ilar to IDR(s)Stab(`). In their own words: “Our algorithm is to theirs
what the Gauss-Seidel iteration is to the Jacobi iteration.” A predecessor of
GBiCGStab(s,L) seems to be the method called GIDR(s,L) in [19].

• In [12] the ideas behind BiCGStab2 [4] and GPBiCG [29] are considered.

The relation of IDR(s) to Petrov-Galërkin with a rational Krylov space motived the
method IDR-Ritz [11]. Another, simpler motivation is that the residual polynomials
should be designed to dampen the spectrum. Using the residual polynomial repre-
sentation of IDR(s) we could choose the 1/ωj close but not equal to eigenvalues, at
least we should choose them in the field of values of A.

The minimization used in IDR(s)ORes and IDR(s)BiO results in values ωj

which are in the field of values of A−H, thus Simoncini and Szyld suggest to use a
few steps of the Arnoldi method to compute some Ritz values, which are then used in
some ordering as 1/ωj values. For real non-symmetric matrices this typically results
in an algorithm based on complex arithmetic in place of real arithmetic.

13

Last but not least: Certain old ideas have been reactivated. Sonneveld presented
the hitherto unpublished Accelerated Gauß-Seidel (AGS) method at the Kyoto Forum
on Krylov Subspace Methods in 2008. Based on the algorithm in the proceedings,
Seiji Fujino et al. considered the acceleration of the classical splitting methods (Jacobi,
Gauß-Seidel and SOR). The resulting methods are called

• IDR(s)-Jacobi (w/o adaptive tuning),
• IDR(s)-GS,
• IDR(s)-SOR.

These approaches result in a “tight packing” of preconditioning and Krylov sub-
space methods, compare with PIA. In most of these methods the ωj are fixed by the
splitting chosen.

3. Parallelization of IDR(s) and IDR(s)Eig. To understand aspects of a
possible parallelization, we take a look at the structure of IDR(s). IDR(s) is a
typical Krylov subspace method. Most known Krylov subspace methods are based on

• matrix-vector products (“black-box” or with a sparse matrix),
• some kind of (bi-)orthogonalization (frequently Gram-Schmidt),
• solution of small linear systems,
• dots (line search minimization),
• axpys or gemvs (updates of vectors).

3.1. . . . a short introduction to IDR(s) parallelization. Here, we simply
sketch the IDR(s) variant IDR(s)BiO described in the technical report [23]. Its
Matlab source code can be downloaded from

http://ta.twi.tudelft.nl/nw/users/gijzen/IDR.html.

We remark that this version of IDR(s) is contained in release 3.0 of the IFISS package.
The structure of an unpreconditioned IDR(s)BiO is sketched as a pseudo-code in
Algorithm 5. A parallelization is easily possible, we could use, e.g.: {Sca,P}LAPACK,
CUBLAS/CUDA, cloud computing, MPI & OpenMP, . . .

A näıve CUBLAS implementation for instance would be based on the parallel eval-
uation of small sized problems and several calls to cublasSaxpy(), cublasSgemv(),
cublasSdot(), and cublasScopy(). But there is room for improvement. The imple-
mentation of the matrix-vector multiplication with A should be adjusted to the type
of matrix given, e.g.,

• (fully optimized parallel) “black-box”,
• reordering of a given sparse matrix using some heuristics (e.g., reverse Cuthill-

McKee, multi-color schemes, . . .) for a better block-distribution to the nodes
and to reduce communication,

• parallel implementation of an H-matrix format.

We could also allow for a (parallel) preconditioner.

Most important is the load balancing, especially in a non-homogeneous environ-
ment, since we have several synchronization points in the algorithm, namely the dots
from orthogonalization and (possibly) the computation of ωj and (possibly) the com-
putation of the norm of the residual or backward error.

The näıve CUBLAS implementation can be enhanced by using some other IDR(s)
variant. The triangular bi-orthogonalisation scheme could be replaced:

14

http://ta.twi.tudelft.nl/nw/users/gijzen/IDR.html

• Instead of modified Gram-Schmidt we could use (iterated) classical Gram-
Schmidt.

• Furthermore, we could adopt delayed re-orthogonalization [6] to the case of
iterated Gram-Schmidt-like bi-orthogonalisation.

• We could use other triangular basis transformations. This would result in full
s× s-systems, but the main computational effort takes place elsewhere.

Similarly to the approaches used in parallel implementations of CG [10, 3] we could
try to minimize the number of synchronization barriers given by the orthogonalisation
against P, any other occurring (bi-)orthogonalization and the computation of ω by
utilization of algebraic rewritings. The recent parallel variant in [2] is based on a
minimization of synchronization barriers.

Next we give a few remarks about the general structure of IDR(s). We can quite
easily get rid of the synchronization points caused by the computation of the non-zero
scalars ωj . One idea is to precompute a certain amount of Ritz values like in [11] or
to use the CPU (or some nodes of the GPU) to compute rough approximations to
eigenvalues based on the Sonneveld pencil [5].

If we use a method like IDR(s)-Jacobi, we typically have a lower convergence
rate, but have removed all synchronization points due to (bi)-orthogonalization of the
basis vectors in the Sonneveld spaces or their pre-images. This may give a speedup
that covers the price paid due to a slower convergence.

But: We can never get rid of the orthogonalization against P. This has to be
carried out in every IDR(s) method. This part of the algorithm should be optimized
using code adopted to the architecture we are working on.

We give a few remarks on the structure of P and the resulting cost of orthogonal-
ization. We could adopt the generic choice for P, namely, using randomly generated
orthonormal columns to the type of problem. If the problem is the discrete version of
a 2D or 3D physical problem, we could use as test vectors pj the discretization of test
functions with compact support, e.g., we could use some (non-)overlapping Schwarz-
like vectors. These vectors can be stored more compactly and could be distributed
to all nodes in a distributed memory architecture. To save memory, we could use
randomly generated vectors with only ±1 and 0. The orthogonalization against P is
in this case based on the computation of two sums of subsets of the vectors and finally
one subtraction. Additional structure gives additional gain in efficiency. Both ideas
can be combined. One has to careful balance the benefits and the risks of resulting
instabilities.

Last we give a few remarks about the structure of IDR(s)Eig and its possible
parallelization. As IDR(s)Eig is based on (a given variant) of IDR(s), the same
comments apply. We only have to store the vectors defining the orthogonalization
against P (in every step one vector of length s), any triangular basis transformations
(in every sweep of s + 1 steps a few s × s triangular matrices) and the ωj used for
s + 1 consecutive steps. The computation of the eigenvalues should be performed on
some of the pencils using an adopted QZ algorithm working near the original band of
the banded pencil, the shift strategy should be chosen as to minimize communication
between diagonal blocks while retaining favorable convergence properties. It is not
known by now, which IDR(s)Eig algorithm is the one most stable. Thus, up to now,
nobody did consider to come up with a stable eigenvalue solver designed for the special
structure of pencils stemming from IDR(s) algorithms. Once a good candidate for an

15

IDR(s) algorithm suitable for stable eigenvalue computations is known, one can come
up with a parallel variant.

4. Conclusions. We gave a short introduction to Krylov subspace methods
with special emphasis on IDR. We sketched the IDR and IDR(s) families and in-
dicated how to compute eigenvalues using one particular instance of IDR(s), namely,
IDR(s)ORes. We sketched the relation between the algorithm IDR(s)ORes for the
approximate solution of linear systems, the eigenvalue routine IDR(s)Eig based on it,
and a two-sided Lanczos process BiORes(s,1). We briefly indicated how to parallelize
one member of the IDR(s) family, namely the more recent variant IDR(s)BiO. We
gave only a rather philosophical treatment of a parallel implementation of IDR(s)Eig.
Much work, both theoretical and practical, remains to be done.

Acknowledgments. I am indebted to my co-author Martin Gutknecht. It was
(and still is) a pleasure to write the joint report [5]. Without Peter Sonneveld answer-
ing my e-mail dating to 2006 and sending me an e-mail informing me about the DCSE
symposium on IDR, June 3, 2009, nothing of this would have happened. I thank Mar-
tin van Gijzen for our interesting encounter in Harrachov 2007 and many interesting
discussions since then. I have to thank our whole IDR family. I am deeply grateful
for the support by Prof. Seiji Fujino from the Research Institute for Information
Technology of Kyushu University who enabled my visit to Japan and thus my talks
at Kyushu University and at the University of Tokyo. Last but not least I would like
to thank Prof. Kengo Nakajima and Prof. Takahiro Katagiri at the Supercomputing
Division of the Information Technology Center of the University of Tokyo for making
my talk and this extended abstract possible.

Postscript. Just after the slides for the talk in Tokyo had been finished (5th
February 2010), Tijmen Collignon and Martin van Gijzen published a technical report
[2] on parallelization of IDR(s) (9th February 2010). In this report some of the ideas
presented in the talk have been considered, namely, the use of specially structured P
and some algebraic rewritings to minimize the number of synchronization points.

REFERENCES

[1] W. E. Arnoldi. The principle of minimized iterations in the solution of the matrix eigenvalue
problem. Quart. Appl. Math., 9:17–29, 1951.

[2] Tijmen P. Collignon and Martin B. van Gijzen. Fast solution of nonsymmetric linear systems
on Grid computers using parallel variants of IDR(s). Reports of the Department of Applied
Mathematical Analysis Report 10-05, Delft University of Technology, 2010.

[3] Eduardo F. D’Azevedo, Victor Eijkhout, and Charles H. Romine. A matrix framework for
conjugate gradient methods and some variants of CG with less synchronization overhead.
In PPSC, pages 644–646, 1993.

[4] Martin H. Gutknecht. Variants of BICGSTAB for matrices with complex spectrum. SIAM J.
Sci. Comput., 14(5):1020–1033, September 1993.

[5] Martin H. Gutknecht and Jens-Peter M. Zemke. Eigenvalue computations based on IDR, 2010.
Technical Report (to appear 2010).

[6] V. Hernández, J. E. Román, and A Tomás. A parallel variant of the Gram-Schmidt pro-
cess with reorthogonalization. In G. R. Joubert, W. E. Nagel, F. J. Peters, O. G. Plata,
P. Tirado, and E. L. Zapata, editors, Proceedings of the International Conference on Par-
allel Computing (ParCo 2005), volume 33, pages 221–228. Central Institute for Applied
Mathematics, Jülich, Germany, 2006.

[7] Karl Hessenberg. Behandlung linearer Eigenwertaufgaben mit Hilfe der Hamilton-Cayleyschen
Gleichung. Numerische Verfahren, Bericht 1, Institut für Praktische Mathematik (IPM),

16

Technische Hochschule Darmstadt, July 1940. Scanned report and biographical sketch of
Karl Hessenberg’s life online available at http://www.hessenberg.de/karl1.html.

[8] C. Lanczos. An iteration method for the solution of the eigenvalue problem of linear differential
and integral operators. J. Res. Nat. Bureau Standards, 45:255–281, 1950.

[9] C. Lanczos. Solution of systems of linear equations by minimized iterations. J. Res. Nat.
Bureau Standards, 49:33–53, 1952.

[10] Gérard Meurant. Multitasking the conjugate gradient method on the CRAY X-MP/48. Parallel
Comput., 5(3):267–280, 1987.

[11] Valeria Simoncini and Daniel Szyld. Interpreting IDR as a Petrov-Galerkin method. Report
09-10-22, Dipartimento di Matematica, Università di Bologna and Department of Mathe-
matics, Temple University, Philadelphia, 2009.

[12] Gerard L. G. Sleijpen and Kuniyoshi Abe, 2010. Publication in preparation (January 2010).
[13] Gerard L. G. Sleijpen, Peter Sonneveld, and Martin B. van Gijzen. Bi-CGSTAB as an induced

dimension reduction method. Reports of the Department of Applied Mathematical Analysis
Report 08-07, Delft University of Technology, 2008. ISSN 1389-6520.

[14] Gerard L. G. Sleijpen and Martin B. van Gijzen. Exploiting BiCGstab(`) strategies to induce
dimension reduction. Reports of the Department of Applied Mathematical Analysis Report
09-02, Delft University of Technology, 2009. ISSN 1389-6520.

[15] P. Sonneveld and M. B. van Gijzen. IDR(s): a family of simple and fast algorithms for solving
large nonsymmetric systems of linear equations. Report 07-07, Department of Applied
Mathematical Analysis, Delft University of Technology, 2007.

[16] Peter Sonneveld. History of IDR: an example of serendipity. PDF file sent by Peter Sonneveld
on Monday, 24th of July 2006, July 2006. 8 pages; evolved into [17].

[17] Peter Sonneveld. AGS-IDR-CGS-BiCGSTAB-IDR(s): The circle closed. A case of serendipity.
In Proceedings of the International Kyoto Forum 2008 on Krylov subspace methods, pages
1–14, September 2008.

[18] Peter Sonneveld and Martin B. van Gijzen. IDR(s): A family of simple and fast algorithms
for solving large nonsymmetric systems of linear equations. SIAM Journal on Scientific
Computing, 31(2):1035–1062, 2008. Received Mar. 20, 2007.

[19] Masaaki Tanio and Masaaki Sugihara. GIDR(s,L): generalized IDR(s). In The 2008 annual
conference of the Japan Society for Industrial and Applied Mathematic, pages 411–412,
Chiba, Japan, September 2008. (In Japanese).

[20] Masaaki Tanio and Masaaki Sugihara. GBi-CGSTAB(s, L): IDR(s) with higher-order sta-
bilization polynomials. Technical Report METR 2009-16, Department of Mathematical
Informatics, Graduate School of information Science and Technology, University of Tokio,
April 2009.

[21] H. A. van der Vorst. Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the
solution of nonsymmetric linear systems. SIAM J. Sci. Statist. Comput., 13:631–644, 1992.
Received May 21, 1990.

[22] H. A. van der Vorst and P. Sonneveld. CGSTAB, a more smoothly converging variant of CG-S.
Report 90-50, Department of Mathematics and Informatics, Delft University of Technology,
1990.

[23] Martin B. van Gijzen and Peter Sonneveld. An elegant IDR(s) variant that efficiently exploits
bi-orthogonality properties. Reports of the Department of Applied Mathematical Analysis
Report 08-21, Delft University of Technology, 2008. ISSN 1389-6520.

[24] P. Wesseling and P. Sonneveld. Numerical experiments with a multiple grid and a precon-
ditioned Lanczos type method. In Approximation Methods for Navier-Stokes Problems,
volume 771 of Lecture Notes in Mathematics, pages 543–562. Springer, 1980.

[25] Man-Chung Yeung and Daniel Boley. Transpose-free multiple Lanczos and its application in
Padé approximation. J. Comput. Appl. Math., 177(1):101–127, 2005.

[26] Man-Chung Yeung and Tony F. Chan. ML(k)BiCGSTAB: a BiCGSTAB variant based on
multiple Lanczos starting vectors. SIAM J. Sci. Comput., 21(4):1263–1290, 1999. Received
May 16, 1997, electr. publ. Dec. 15, 1999.

[27] Jens-Peter M. Zemke. Hessenberg eigenvalue-eigenmatrix relations. Linear Algebra and its
Applications, 414(2–3):589–606, 2006.

[28] Jens-Peter M. Zemke. Abstract perturbed Krylov methods. Linear Algebra and its Applications,
424(2–3):405–434, 2007.

[29] Shao-Liang Zhang. GPBi-CG: generalized product-type methods based on Bi-CG for solving
nonsymmetric linear systems. SIAM Journal on Scientific Computing, 18(2):537–551,
1997.

17

http://www.hessenberg.de/karl1.html

input : A, b, x0, s, P
output: Rm+1, cs+1, cs+2, . . ., ω1, ω2, . . .
x = x01

r = b−Ax2

ω = 13

PT = PT
4

G = zeros(n, s)5

U = zeros(n, s)6

M = eye(s)7

while not converged do8

PTr = PT · r9

for k = 1, . . . , s do10

% Solve small system and make v orthogonal to P:11

c = M(k : s, k : s)−1PTr(k : s)12

v = r−G(:, k : s)c13

U(:, k) = U(:, k : s)c + ωv14

% Compute G(:,k) = AU(:,k)15

G(:, k) = AU(:, k)16

% Bi-Orthogonalize the new basis vectors:17

for j = 1, . . . , k − 1 do18

α = (PT(j, :)G(:, k))/M(j, j)19

G(:, k) = G(:, k)− αG(:, j)20

U(:, k) = U(:, k)− αU(:, j)21

end22

% New column of M = P’*G (first k-1 entries are zero)23

M(k : s, k) = PT(k : s, :)G(:, k)24

% Make r orthogonal to p j, j = 1,...,k25

β = PTr(k)/M(k, k)26

r = r− βG(:, k)27

x = x + βU(:, k)28

% New PTr = P’*r (first k components are zero)29

if k < s then30

PTr(k + 1 : s) = PTr(k + 1 : s)− βM(k + 1 : s, k)31

end32

end33

% Note: r is already perpendicular to P so v = r34

v = r35

t = Av36

select or compute ω37

r = r− ωt38

x = x + ωv39

end40

Algorithm 5: IDR(s)BiO

18

