Finite Elements Methods Formulary for Prof. Estorff's exam

Finite Element Method in General

One wants to obtain the equilibrium equations for the body, discretized by finite elements in the form

 $M\cdot \ddot{U}+C\cdot \dot{U}+K\cdot U=R$

Displacement of the nodes:

 $U = \begin{bmatrix} U_1 & U_2 & \dots & U_n \end{bmatrix}^T$ n: degrees of freedom

Displacement within the element m:

$$\begin{split} &u^{(m)}(x,y,z)=H^{(m)}(x,y,z)\hat{U}\\ &H^{(m)}: \text{Displacement interpolation matrix} \end{split}$$

Strain inside the element m:

$$\begin{split} \epsilon^{(m)}(x,y,z) &= B^{(m)}(x,y,z) \hat{U} \\ B^{(m)}: \text{Verzerrungs-Verschiebungs-Matrix} \end{split}$$

Play around with those matrices and from the priciple of virtual displacement $\int_{V} \bar{\epsilon}^{T} \tau \, dV = \int_{V} \bar{U}^{T} f^{B} dV + \int_{S} \bar{U}^{ST} f^{S} \, dS + \sum_{i} \bar{U}^{iT} F^{i}$ it follows:

System of equations (stationary case KU = R)

$$\begin{split} \left[\sum_{m} \int_{v^{(m)}} B^{(m)T} C^{(m)} B^{(m)} \, dV^{(m)} \right] \hat{U} &= \sum_{m} \int_{v^{(m)}} H^{(m)T} f^{B(m)} \, dV^{(m)} \\ &+ \sum_{m} \int_{S^{(m)}} H^{S(m)T} f^{S(m)} \, dS^{(m)} + \sum_{m} \int_{v^{(m)}} B^{(m)T} \tau^{I(m)} \, dV^{(m)} + F \end{split}$$

From that one can obtain a formular to calculate each of the matrices in the equilibrium equasions:

Stiffness matrix:
$$K = \sum_{m} \int_{V^{(m)}} B^{(m)T} C^{(m)} B^{(m)} dV^{(m)} = \sum K^{(m)}$$

Volume forces: $R_B = \sum_{m} \int_{V^{(m)}} H^{(m)T} f^{B(m)} dV^{(m)} = \sum_{m} R_B^{(m)}$
Surface forces: $R_S = \sum_{m} \int_{S^{(m)}} H^{S(m)T} f^{S(m)} dS^{(m)} = \sum_{m} R_S^{(m)}$
Initial stresses: $R_I = \sum_{m} \int_{v^{(m)}} B^{(m)T} \tau^{I(m)} dV^{(m)} = \sum_{m} R_I^{(m)}$
Single forces: $R_C = F$

With d'Alembert Principle the matrices for the time dependent case follow:

Mass matrix:
$$M = \sum_{m} \int_{V(m)} \rho^{(m)} H^{(m)T} H^{(m)} dV^{(m)} = \sum_{m} M^{(m)}$$

Damping matrix: $C = \sum_{m} \int_{V(m)} \kappa^{(m)} H^{(m)T} H^{(m)} dV^{(m)} = \sum_{m} C^{(m)}$

According to the choosen elements one has to concidere only certain components of stress, strain and displacement:

Problem	Displacement components	Strain vector $\boldsymbol{\epsilon}^{T}$	Stress vector $\boldsymbol{\tau}^{\scriptscriptstyle T}$	
Bar	и	$[\epsilon_{xx}]$	$[au_{xx}]$	
Beam	W	$\begin{bmatrix} \boldsymbol{\epsilon}_{xx} \end{bmatrix}$ $\begin{bmatrix} \boldsymbol{\kappa}_{xx} \end{bmatrix}$	$[M_{xx}]$	
Plane stress	и, v	$[\epsilon_{xx} \epsilon_{yy} \gamma_{xy}]$	$\begin{bmatrix} au_{xx} & au_{yy} & au_{xy} \end{bmatrix}$	
Plane strain	и, v	$[\epsilon_{xx} \epsilon_{yy} \gamma_{xy}]$	$[au_{xx} au_{yy} au_{xy}]$	
Axisymmetric	и, v	$\left[\epsilon_{rr} \epsilon_{vv} \gamma_{rv} \epsilon_{zz}\right]$	$\begin{bmatrix} \tau_{xx} \ \tau_{yy} \ \tau_{xy} \ \tau_{zz} \end{bmatrix} \\ \begin{bmatrix} \tau_{xx} \ \tau_{yy} \ \tau_{zz} \ \tau_{xy} \ \tau_{yz} \end{bmatrix}$	
Three-dimensional	u, v, w	$\begin{bmatrix} \boldsymbol{\epsilon}_{xx} & \boldsymbol{\epsilon}_{yy} & \boldsymbol{\epsilon}_{zz} & \boldsymbol{\gamma}_{xy} & \boldsymbol{\gamma}_{yz} & \boldsymbol{\gamma}_{zx} \end{bmatrix} \begin{bmatrix} \boldsymbol{\kappa}_{xx} & \boldsymbol{\kappa}_{yy} & \boldsymbol{\kappa}_{xy} \end{bmatrix}$	$\begin{bmatrix} \tau_{xx} & \tau_{yy} & \tau_{zz} & \tau_{xy} & \tau_{yz} & \tau_{zx} \end{bmatrix}$	
Plate bending	W	$\begin{bmatrix} \kappa_{xx} & \kappa_{yy} & \kappa_{xy} \end{bmatrix}$	$[M_{xx}M_{yy}M_{xy}]$	
Notation: $\epsilon_{xx} = \frac{\partial u}{\partial x}, \ \epsilon_{yy}$	$=\frac{\partial v}{\partial y}, \ \gamma_{xy}=\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x},$	$\ldots, \kappa_{xx} = \frac{\partial^2 w}{\partial x^2}, \kappa_{yy} = \frac{\partial^2 w}{\partial y^2}, \kappa_{xy}$	$= 2 \frac{\partial^2 w}{\partial x \partial y}.$	

TABLE 4.2 Corresponding kinematic and static variables in various problems

(Isoparametric) Truss Elements

Displacement of the nodes:

Global: $\hat{U} = \begin{bmatrix} u_1 & v_1 & u_2 & v_2 & \dots & v_n \end{bmatrix}^T$ Local: $\tilde{U} = \begin{bmatrix} \tilde{u}_1 & \tilde{v}_1 & \tilde{u}_2 & \tilde{v}_2 & \dots & \tilde{v}_n \end{bmatrix}^T$ n: number of nodes in element \hat{U} can be linked with the overall node displacement vector of the system (has the same orientation).

Interpolation:

Coordinates: $\tilde{x}(r) = \sum h_i \tilde{x}_i$ Displacements: $\tilde{u}(r) = \sum h_i \tilde{u}_i$ In the following, an element with 2 nodes is considered.

Displacement interpolation matrix:

 $\tilde{H} = \begin{bmatrix} h_1 & 0 & h_2 & 0 \end{bmatrix} = \begin{bmatrix} \frac{1}{2}(1-r) & 0 & \frac{1}{2}(1+r) & 0 \end{bmatrix} \text{ with } \begin{array}{c} x(r) = \tilde{H} \cdot \tilde{X} \\ u(r) = \tilde{H} \cdot \tilde{U} \end{array}$

Setting up the strain displacement matrix:

$$\begin{aligned} \epsilon_x &= \frac{du}{dx} \\ & \iff \tilde{B} = \begin{bmatrix} h_{1x} & 0 & h_{2x} & 0 \end{bmatrix} = \begin{bmatrix} -\frac{1}{L} & 0 & \frac{1}{L} & 0 \end{bmatrix} \\ \epsilon &= \tilde{B} \cdot \tilde{U} \end{aligned}$$

because $h_{ix} = \frac{\partial h_i}{\partial x} = \frac{\partial h_i}{\partial r} \frac{\partial r}{\partial x} = \frac{\partial h_i}{\partial r} \left(\frac{\partial x}{\partial r}\right)^{-1} = \frac{\partial h_i}{\partial r} \left(\frac{L}{2}\right)^{-1} \end{aligned}$

Setting up the stiffness matrix:

$$\begin{split} \tilde{K} &= \int_{V} \tilde{B}^{T} C \tilde{B} \, dV = A E \int_{0}^{L} \tilde{B}^{T} \tilde{B} \, dx \qquad \text{with } A: \text{ Cross-sectional area of truss} \\ \text{It follows: } \tilde{K} &= \frac{EA}{L} \left[\begin{array}{ccc} 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right] \end{split}$$

Transformed to global directions:

$$K = T^T \tilde{K} T = \frac{EA}{L} \begin{bmatrix} \cos^2 \alpha & \cos \alpha \sin \alpha & -\cos \alpha \cos \beta & -\cos \alpha \sin \beta \\ \cos \alpha \sin \alpha & \sin^2 \alpha & -\sin \alpha \cos \beta & -\sin \alpha \sin \beta \\ -\cos \alpha \cos \beta & -\sin \alpha \cos \beta & \cos^2 \beta & \sin \beta \cos \beta \\ -\cos \alpha \sin \beta & -\sin \alpha \sin \beta & \sin \beta \cos \beta & \sin^2 \beta \end{bmatrix}$$

Figure 5.3 Interpolation functions of two to four variable-number-nodes one-dimensional element

Transformation matrix

$$\begin{split} \tilde{u} &= T u \\ T &= \begin{bmatrix} \cos\alpha & \sin\alpha & 0 & 0 \\ -\sin\alpha & \cos\alpha & 0 & 0 \\ 0 & 0 & \cos\beta & \sin\beta \\ 0 & 0 & -\sin\beta & \cos\beta \end{bmatrix} \end{split}$$

Related transformations:

$$H = \tilde{H}T$$

$$M = T^T \tilde{M}T$$

$$R_B = T^T \tilde{R}_B$$

$$R_S = T^T \tilde{R}_S$$

$$R_I = T^T \tilde{R}_I$$

Isoparametric Plate Elements

Displacement of the nodes:

 $\hat{U} = \begin{bmatrix} u_1 & \dots & u_n & v_1 & \dots & v_n \end{bmatrix}^T$ n: number of nodes in element \hat{U} can be linked with the overall node displacement vector of the system.

Interpolation:

Coordinates: $x(r,s) = \sum h_i x_i$; $y(r,s) = \sum h_i y_i$ Displacements: $u(r,s) = \sum h_i u_i$; $v(r,s) = \sum h_i v_i$ In the following formulars, an element with 4 nodes is concidered.

Displacement interpolation matrix:

 $H = \left[\begin{array}{cccccc} h_1 & h_2 & h_3 & h_4 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & h_1 & h_2 & h_3 & h_4 \end{array} \right] \text{ with } \begin{array}{c} X(r,s) = H \cdot \hat{X} \\ U(r,s) = H \cdot \hat{U} \end{array}$

Match H with the vector of displacements of all nodes U to obtain the global stiffness matric $H^{(m)}$ for the element.

Setting up the strain displacement matrix:

$$\begin{aligned} \epsilon_x &= \frac{du}{dx} \ \epsilon_y = \frac{dv}{dy} \\ \epsilon_{xy} &= \frac{du}{dy} + \frac{dv}{dx} \\ \epsilon &= B \cdot \hat{U} \end{aligned} \implies B = \begin{bmatrix} h_{1x} \ h_{2x} \ h_{3x} \ h_{4x} \ 0 \ 0 \ 0 \ 0 \\ 0 \ 0 \ 0 \ 0 \ h_{1y} \ h_{2y} \ h_{3y} \ h_{4y} \\ h_{1y} \ h_{2y} \ h_{3y} \ h_{4y} \ h_{1x} \ h_{2x} \ h_{3x} \ h_{4x} \end{bmatrix}$$

Match B with the vector of displacements of all nodes U to obtain the global stiffness matric $B^{(m)}$ for the element.

Calculating derivatives of h_i :

$$\begin{bmatrix} h_{ix} \\ h_{iy} \end{bmatrix} = \begin{bmatrix} \frac{\partial h_i}{\partial x} \\ \frac{\partial h_i}{\partial y} \end{bmatrix} = J^{-1} \cdot \begin{bmatrix} \frac{\partial h_i}{\partial r} \\ \frac{\partial h_i}{\partial s} \end{bmatrix} \text{ with } J = \begin{bmatrix} \frac{\partial x}{\partial r} & \frac{\partial y}{\partial r} \\ \frac{\partial x}{\partial s} & \frac{\partial y}{\partial s} \end{bmatrix}$$

Inverse 4x4 matrix: $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \longrightarrow A^{-1} = \frac{1}{\det(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$

Setting up the stiffness matrix:

$$K = \int_{V} B^{T} C B \, dV = t \cdot \int_{-1}^{1} \int_{-1}^{1} B^{T} C B \, dr \, ds \quad t: \text{ thickness of the element}$$

Match K with the vector of displacements of all nodes U to obtain the global stiffness matric $K^{(m)}$ for the element.

Figure 5.11 Interpolation functions of three to six variable-number-nodes two-dimensional triangle

(a) 4 to 9 variable-number-nodes two-dimensional element

(b) Interpolation functions

Figure 5.4 Interpolation functions of four to nine variable-number-nodes two-dimensional element

Beam Elements

Displacement of the nodes:

 $\hat{U} = \begin{bmatrix} w_1 & \varphi_1 & w_2 & \varphi_2 \end{bmatrix}^T$ for an element with 2 nodes

Displacement interpolation matrix (Hermite Beam): $w(x) = H\hat{U}$

$$H = \begin{bmatrix} 1 - 3\frac{x^2}{L^2} + 2\frac{x^3}{L^3} & x - 2\frac{x^2}{L} + \frac{x^3}{L^2} & 3\frac{x^2}{L^2} - 2\frac{x^3}{L^3} & -\frac{x^2}{L} + \frac{x^3}{L^2} \end{bmatrix}$$
$$\implies K = EI\begin{bmatrix} \frac{\frac{12}{L^3}}{6} & 4\\ \frac{6}{L^2} & \frac{4}{L} & \\ -\frac{12}{L^3} & -\frac{6}{L^2} & \frac{12}{L^3} \\ \frac{6}{L^2} & \frac{2}{L} & -\frac{6}{L^2} & \frac{4}{L} \end{bmatrix}$$

For different H the strain displacement matrix B has to be determined first to calculate $K = \int_{V} B^{T} C B \, dV$.

Isoparametric:

Displacement of the nodes:

 $\hat{U} = \begin{bmatrix} w_1 & \dots & w_q & \varphi_1 & \dots & \varphi_q \end{bmatrix}^T$ q: number of nodes in element

Interpolation:

 $w(r) = \sum h_i w_i$ $\varphi(r) = \sum h_i \varphi_i$ Use the interpolation functions for a 1D element.

For displacement interpolation matrix H and strain interpolation matrix B concider displacement and rotation separatly:

$$H_w = \begin{bmatrix} h_1 & \dots & h_q & 0 & \dots & 0 \end{bmatrix} \quad H_\varphi = \begin{bmatrix} 0 & \dots & 0 & h_1 & \dots & h_q \end{bmatrix}$$
$$B_w = J^{-1} \begin{bmatrix} \frac{\partial h_1}{\partial r} & \dots & \frac{\partial h_q}{\partial r} & 0 & \dots & 0 \end{bmatrix} \quad B_\varphi = J^{-1} \begin{bmatrix} 0 & \dots & 0 & \frac{\partial h_1}{\partial r} & \dots & \frac{h_q}{\partial r} \end{bmatrix}$$

with the Jacobian $J = \frac{\partial x}{\partial r}$

Material Matrices

Problem	Material matrix C
Bar Beam	E EI
Plane stress	$\frac{E}{1-\nu^2} \begin{bmatrix} 1 & \nu & 0 \\ \nu & 1 & 0 \\ 0 & 0 & \frac{1-\nu}{2} \end{bmatrix}$
Plane strain	$\frac{E(1-\nu)}{(1+\nu)(1-2\nu)} \begin{bmatrix} 1 & \frac{\nu}{1-\nu} & 0 \\ \frac{\nu}{1-\nu} & 1 & 0 \\ \cdot & 0 & 0 & \frac{1-2\nu}{2(1-\nu)} \end{bmatrix}$
Axisymmetric	$\frac{E(1-\nu)}{(1+\nu)(1-2\nu)} \begin{bmatrix} 1 & \frac{\nu}{1-\nu} & 0 & \frac{\nu}{1-\nu} \\ \frac{\nu}{1-\nu} & 1 & 0 & \frac{\nu}{1-\nu} \\ 0 & 0 & \frac{1-2\nu}{2(1-\nu)} & 0 \\ \frac{\nu}{1-\nu} & \frac{\nu}{1-\nu} & 0 & 1 \end{bmatrix}$
Three-dimensional	$\frac{E(1-\nu)}{(1+\nu)(1-2\nu)} \begin{bmatrix} 1 & \frac{\nu}{1-\nu} & \frac{\nu}{1-\nu} \\ \frac{\nu}{1-\nu} & 1 & \frac{\nu}{1-\nu} \\ \frac{\nu}{1-\nu} & \frac{\nu}{1-\nu} & 1 \\ \frac{\nu}{2(1-\nu)} \\ \frac{1-2\nu}{2(1-\nu)} \\ \frac{1-2\nu}{2(1-\nu)} \\ \frac{1-2\nu}{2(1-\nu)} \end{bmatrix}$
	Elements not $\frac{1-2\nu}{2(1-\nu)}$ shown are zeros $\frac{1-2\nu}{2(1-\nu)}$
Plate bending	$\frac{Eh^3}{12(1-\nu^2)} \begin{bmatrix} 1 & \nu & 0 \\ \nu & 1 & 0 \\ 0 & 0 & \frac{1-\nu}{2} \end{bmatrix}$

TABLE 4.3 Generalized stress-strain matrices for isotropic materials and the problems in Table 4.2

Notation: E = Young's modulus, ν = Poisson's ratio, h = thickness of plate, I = moment of inertia

Calculating Loads

In general $R_S = \int_S H^{ST} q(x) \, dS$ for distributed loads q(x).

In the following a load acting between note 1 and 2 of a 4-node-isoparametric element where s = const = 1 is considered.

Set up H^S matrix

Consider only the displacements of the two nodes contained in the surface the load is working on:

$$\begin{bmatrix} u_S \\ v_S \end{bmatrix} = H^S \hat{U}^S \quad \text{mit } \hat{U}^S = \begin{bmatrix} u_1 & u_2 & v_1 & v_2 \end{bmatrix}$$
$$H^S = \begin{bmatrix} \frac{1}{2}(1+r) & \frac{1}{2}(1-r) & 0 & 0 \\ 0 & 0 & \frac{1}{2}(1+r) & \frac{1}{2}(1-r) \end{bmatrix}$$

Integrate

Rewrite q(x) in local coordinates to obtain q(r) and integrate over the surface:

$$R = \begin{bmatrix} R_{x1} & R_{x2} & R_{y1} & R_{y2} \end{bmatrix}^T = t \cdot \int_{-1}^{1} H^{ST} q(r) \det(J^S) dr$$

with $q(r) = \begin{bmatrix} q_x(r) \\ q_y(r) \end{bmatrix} = f^S$ and t : thickness of the plate

Jabobian matrix

Since s = const here, the Jacobian degenerates to $J^S = \begin{bmatrix} \frac{\partial x}{\partial r} & \frac{\partial y}{\partial r} \end{bmatrix}$.

Because J^S is not quadratic anymore, one has to use the Gramian determinant:

$$det(J^S) = \sqrt{J^S J^{ST}} = \sqrt{\left(\frac{\partial x}{\partial r}\right)^2 + \left(\frac{\partial y}{\partial r}\right)^2}$$

Load in one direction (after the other)

For a vertical load with $q_x(x) = 0$ only the vertical displacement and forces have to be concidered:

$$\begin{aligned} v_S &= H^S \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \implies H^S = \begin{bmatrix} h_1 & h_2 \end{bmatrix} = \begin{bmatrix} \frac{1}{2}(1+r) & \frac{1}{2}(1-r) \end{bmatrix} \\ R &= \begin{bmatrix} R_{y1} \\ R_{y2} \end{bmatrix} = t \cdot \int_{-1}^{1} H^{ST} q_y(r) \det(J) dr \end{aligned}$$

Always try set up single forces that representate the distributed load first!

Setting up Mass Matrices

$$M^{(m)} = \int_{V^{(m)}} \rho^{(m)} H^{(m)T} H^{(m)} \, dV^{(m)}$$

Consistent mass matrix:

1D:
$$M^{(m)} = \int_{0}^{L} A(x)\rho^{(m)}H^{(m)T}H^{(m)} dx = \int_{-1}^{1} A(r)\rho^{(m)}H^{(m)T}H^{(m)}det(J) dr$$

2D: $M^{(m)} = \int_{-1}^{1} \int_{-1}^{1} t(x)\rho^{(m)}H^{(m)T}H^{(m)}det(J) dr ds$

Lumped mass matrix:

$$M^{(m)} = \begin{bmatrix} \frac{m}{n} & 0 & 0\\ 0 & \ddots & 0\\ 0 & 0 & \frac{m}{n} \end{bmatrix} \quad \text{with } m: \text{ Mass of the element;} \quad n: \text{ Number of }$$

nodes in element

Calculating Stresses

In general: $\sigma = C \cdot BU$

Truss: $\sigma = C\epsilon = E \frac{\Delta L}{L}$ with $\Delta L = \tilde{u}_2 - \tilde{u}_1$

Plate (at $s = s^*, r = r^*$): $\sigma = C \cdot B \mid_{r^*, s^*} U$

Jacobian Matrix

Transformation of coordinates / chain rule /...:

$$J = \begin{bmatrix} \frac{\partial x}{\partial r} & \frac{\partial y}{\partial r} & \frac{\partial z}{\partial r} \\ \frac{\partial x}{\partial s} & \frac{\partial y}{\partial s} & \frac{\partial z}{\partial s} \\ \frac{\partial x}{\partial t} & \frac{\partial y}{\partial t} & \frac{\partial z}{\partial t} \end{bmatrix}$$
so that
$$\begin{bmatrix} \frac{\partial}{\partial r} \\ \frac{\partial}{\partial s} \\ \frac{\partial}{\partial t} \end{bmatrix} = J \begin{bmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{bmatrix}$$

Used to calculate:

$$\begin{bmatrix} \frac{\partial h}{\partial x} \\ \frac{\partial h}{\partial y} \\ \frac{\partial h}{\partial z} \end{bmatrix} = J^{-1} \begin{bmatrix} \frac{\partial h}{\partial t} \\ \frac{\partial h}{\partial s} \\ \frac{\partial h}{\partial t} \end{bmatrix} \text{ and } \int_{V} \dots dV = \int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1} \dots det(J) dr ds dt$$

Rules for Variational Operator

$$\delta \frac{du}{dx} = \frac{d}{dx} \delta u$$
 $\delta \int_{a}^{b} f(x) \, dx = \int_{a}^{b} \delta f(s) \, dx$

Integration by Parts

$$\int_{a}^{b} u'(x)v(x) \, dx = \left[u(x)v(x)\right]_{a}^{b} - \int_{a}^{b} u(x)v'(x) \, dx$$

Variation of the Total Potential

Total potential: $\Pi = U - W$ U: Strain energy W: Potential of external loads

Obtain natural boundary conditions and partial differential equation by solving $\delta \Pi = 0$, where Π is the (hopefully given) potential of the system.

Ritz Method

Insert an approximation function for displacement with coefficients a_1, a_2, a_3, \ldots and solve $\frac{\partial \Pi}{\partial a_1}, \frac{\partial \Pi}{\partial a_2}, \ldots$

Note that $\frac{\partial}{\partial a_1} \int_a^b f(a_i) \, dx = \int_a^b \frac{\partial}{\partial a_1} f(a_i) \, dx.$

More stuff...

Gauss Integration

$$\begin{split} K &= \int_{V} F(r,s,t) \, dr \, ds \, dt \quad \text{mit} \quad F(r,s,t) = B^{T} C B \, det(J) \\ \text{Gauss:} \\ \int_{a}^{b} F(r) \, dr &= \alpha_{1} F(r_{1}) + \alpha_{2} F(r_{2}) + \ldots + \alpha_{n} F(r_{n}) \end{split}$$

Polynomials up to the order (2n-1) can be integrated axactly.

Example

The integral $\int_{-1}^{1} F(r) dr$ shall be approximated using just one approximation point: $\int_{-1}^{1} F(r) dr = 2 - F(0)$

$$\int_{-1} F(r) \, dr = 2 \cdot F(0)$$

two approximation points:

$$\int_{-1}^{1} F(r) dr = 1 \cdot F(-0.57735) + 1 \cdot F(0.57735)$$

n	r_{i}			α_i			
1	0.	(15 zeros	s)	2.	(15 zeros)		
2	± 0.57735	02691	89626	1.00000	00000	00000	
3	±0.77459	66692	41483	0.55555	55555	55556	
	0.00000	00000	00000	0.88888	88888	88889	
4	±0.86113	63115	94053	0.34785	48451	37454	
	±0.33998	10435	84856	0.65214	51548	62546	
5	± 0.90617	98459	38664	0.23692	68850	56189	
	± 0.53846	93101	05683	0.47862	86704	99366	
	0.00000	00000	00000	0.56888	88888	88889	
6	± 0.93246	95142	03152	0.17132	44923	79170	
	± 0.66120	93864	66265	0.36076	15730	48139	
	± 0.23861	91860	83197	0.46791	39345	72691	

TABLE 5.6 Sampling points and weights in Gauss-Legendre numerical integration (interval -1 to +1)

Newton-Cotes Integration

$$K = \int_{V} F(r, s, t) dr ds dt \quad \text{mit} \quad F(r, s, t) = B^{T}CB det(J)$$

Newton-Cotes:
$$\int_{a}^{b} F(r) dr = (b-a) \sum_{i=0}^{n} C_{i}^{n} F_{i} + R_{n}$$

with C_{i}^{n} : Newton-Cotes constants; R_{n} : Remainder (error estimation)

The approximation points F_i are linearly distributed, for the distance between to points $h=\frac{b-a}{n}$ holds.

Example

The integral $\int_{-1}^{1} F(r) dr$ shall be approximated using

just one interval:

$$\int_{-1}^{1} F(r) dr = 2 \cdot \left(\frac{1}{2}F(-1) + \frac{1}{2}F(1) + R_1\right)$$

two intervals:

$$\int_{-1}^{1} F(r) dr = 2 \cdot \left(\frac{1}{6}F(-1) + \frac{4}{6}F(0) + \frac{1}{6}F(1) + R_2\right)$$

Number of intervals <i>n</i>	Cö	C_1^n	C_2^n	C3	<i>C</i> ⁴	C_3^a	Cë	Upper bound on error R_n as a function of the derivative of F
1	$\frac{1}{2}$	$\frac{1}{2}$						$10^{-1}(b-a)^3F^{11}(r)$
2	$\frac{1}{6}$	$\frac{4}{6}$	$\frac{1}{6}$					$10^{-3}(b-a)^{s}F^{1v}(r)$
3	$\frac{1}{8}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{1}{8}$				$10^{-3}(b-a)^5F^{1v}(r)$
4	$\frac{1}{8}$ $\frac{7}{90}$	$\frac{32}{90}$	$\frac{12}{90}$	$\frac{32}{90}$	$\frac{7}{90}$			$10^{-6}(b-a)^{7}F^{VI}(r)$
5	$\frac{19}{288}$	$\frac{75}{288}$	$\frac{50}{288}$	$\frac{50}{288}$	$\frac{75}{288}$	$\frac{19}{288}$		$10^{-6}(b - a)^{7}F^{\vee i}(r)$
6	$\frac{41}{840}$	$\frac{216}{840}$	$\frac{27}{840}$	$\frac{272}{840}$	$\frac{27}{840}$	216 840	$\frac{41}{840}$	$10^{-9}(b-a)^9 F^{\text{VIII}}(a)$

TABLE 5.5 Newton-Cotes numbers and error estimates

Centrale Differences Method

 ${}^{t}\ddot{U} = \frac{1}{\Delta t^{2}} \left({}^{t-\Delta t}U - 2 {}^{t}U + {}^{t+\Delta t}U \right) \qquad {}^{t}\dot{U} = \frac{1}{2\Delta t} \left({}^{-t-\Delta t}U + {}^{t+\Delta t}U \right)$ Error is of order $(\Delta t)^{2}$. System of equations at time t: $M {}^{t}U + C {}^{t}\dot{U} + K {}^{t}U = {}^{t}R$

Because the system is concidered at time t, not at time $t + \Delta t$ the method is called and explicit integration method.

Insert approximations for ${}^t \ddot{U}$ and ${}^t \dot{U}$: $\left(\frac{1}{\Delta t^2}M + \frac{1}{2\Delta t}C\right){}^{t+\Delta t}U = {}^t R - \left(K - \frac{2}{\Delta t^2}M\right){}^t U - \left(\frac{1}{\Delta t^2}M - \frac{1}{2\Delta t}C\right){}^{t-\Delta t}U$

Since ${}^{0}U$, ${}^{0}\dot{U}$ and ${}^{0}\ddot{U}$ are known, one only needs to calculate ${}^{-\Delta t}U$ to start the calculation of one time step after another.

From the equations for ${}^t\ddot{U}$ and ${}^t\dot{U}$ one obtains: ${}^{-\Delta t}U = {}^0U - \Delta t^0\dot{U} + \frac{\Delta t^2}{2}{}^0\ddot{U}$

Now one can calculate $\Delta^t U$ and respectively ${}^{t+\Delta t}U$ and then ${}^t\dot{U}$ and ${}^t\dot{U}$ for every time step.

TABLE 9.1 Step-by-step solution using central difference method (general mass and damping matrices)

- 1. Form stiffness matrix K, mass matrix M, and damping matrix C.
- 2. Initialize ^oU, ^oU, and ^oU.
- 3. Select time step Δt , $\Delta t \leq \Delta t_{cr}$, and calculate integration constants:

$$a_0 = \frac{1}{\Delta t^2};$$
 $a_1 = \frac{1}{2 \Delta t};$ $a_2 = 2a_0;$ $a_3 = \frac{1}{a_2}$

- 4. Calculate ${}^{-\Delta t}\mathbf{U} = {}^{0}\mathbf{U} \Delta t {}^{0}\dot{\mathbf{U}} + a_{3} {}^{0}\ddot{\mathbf{U}}.$
- 5. Form effective mass matrix $\hat{\mathbf{M}} = a_0 \mathbf{M} + a_1 \mathbf{C}$.
- 6. Triangularize $\mathbf{\hat{M}}$: $\mathbf{\hat{M}} = \mathbf{L}\mathbf{D}\mathbf{L}^{T}$.

B. For each time step:

1. Calculate effective loads at time t:

$${}^{\prime}\mathbf{\hat{R}} = {}^{\prime}\mathbf{R} - (\mathbf{K} - a_{2}\mathbf{M}) {}^{\prime}\mathbf{U} - (a_{0}\mathbf{M} - a_{1}\mathbf{C}) {}^{\prime-\Delta\prime}\mathbf{U}$$

2. Solve for displacements at time $t + \Delta t$:

$$\mathbf{L}\mathbf{D}\mathbf{L}^{T\ t+\Delta t}\mathbf{U} = {}^{t}\hat{\mathbf{R}}$$

3. If required, evaluate accelerations and velocities at time t:

$${}^{t}\ddot{\mathbf{U}} = a_{0}({}^{t-\Delta t}\mathbf{U} - 2{}^{t}\mathbf{U} + {}^{t+\Delta t}\mathbf{U})$$
$${}^{t}\dot{\mathbf{U}} = a_{1}(-{}^{t-\Delta t}\mathbf{U} + {}^{t+\Delta t}\mathbf{U})$$

A. Initial calculations:

Newmark Integration

Assumptions:

$${}^{t+\Delta t}\dot{U} = {}^{t}\dot{U} + \left[(1-\delta){}^{t}\ddot{U} + \delta^{t+\Delta t}\ddot{U} \right] \Delta t$$
$${}^{t+\Delta t}U = {}^{t}U + {}^{t}\dot{U}\Delta t + \left[\left(\frac{1}{2} - \alpha\right){}^{t}\ddot{U} + \alpha^{t+\Delta t}\ddot{U} \right] \Delta t^{2}$$

Obtain ${}^{t+\Delta t}\ddot{U}$ from second equation, insert in first equation.

Insert the resulting equations for ${}^{t+\Delta t}\dot{U}$ and ${}^{t+\Delta t}\ddot{U}$ in the euation of motion at time $t + \Delta t$.

 $M^{t+\Delta t}U + C^{t+\Delta t}\dot{U} + K^{t+\Delta t}U =^{t+\Delta t} R$

Because the system is concidered at time $t + \Delta t$, not at time t the method is called and implicit integration method.

TABLE 9.4 Step-by-step solution using Newmark integration method

A. Initial calculations:

- 1. Form stiffness matrix K, mass matrix M, and damping matrix C.
- 2. Initialize ⁰U, ⁰U, and ⁰U.
- 3. Select time step Δt and parameters α and δ and calculate integration constants:

$$\delta \ge 0.50; \qquad \alpha \ge 0.25(0.5 + \delta)^2$$

$$a_0 = \frac{1}{\alpha \Delta t^2}; \qquad a_1 = \frac{\delta}{\alpha \Delta t}; \qquad a_2 = \frac{1}{\alpha \Delta t}; \qquad a_3 = \frac{1}{2\alpha} - 1;$$

$$a_4 = \frac{\delta}{\alpha} - 1; \qquad a_5 = \frac{\Delta t}{2} \left(\frac{\delta}{\alpha} - 2\right); \qquad a_6 = \Delta t (1 - \delta); \qquad a_7 = \delta \Delta t$$

- 4. Form effective stiffness matrix $\hat{\mathbf{K}}$: $\hat{\mathbf{K}} = \mathbf{K} + a_0 \mathbf{M} + a_1 \mathbf{C}$.
- 5. Triangularize $\hat{\mathbf{K}}$: $\hat{\mathbf{K}} = \mathbf{L}\mathbf{D}\mathbf{L}^{T}$.

B. For each time step:

1. Calculate effective loads at time $t + \Delta t$:

$$^{t+\Delta t}\hat{\mathbf{R}} = {}^{t+\Delta t}\mathbf{R} + \mathbf{M}(a_0 {}^{t}\mathbf{U} + a_2 {}^{t}\hat{\mathbf{U}} + a_3 {}^{t}\hat{\mathbf{U}}) + \mathbf{C}(a_1 {}^{t}\mathbf{U} + a_4 {}^{t}\hat{\mathbf{U}} + a_5 {}^{t}\hat{\mathbf{U}})$$

2. Solve for displacements at time $t + \Delta t$:

$$\mathbf{L}\mathbf{D}\mathbf{L}^{T t + \Delta t}\mathbf{U} = {}^{t + \Delta t}\mathbf{\hat{R}}$$

3. Calculate accelerations and velocities at time $t + \Delta t$: ${}^{t+\Delta t} \ddot{\mathbf{U}} = a_0 ({}^{t+\Delta t} \mathbf{U} - {}^t \mathbf{U}) - a_2 {}^t \dot{\mathbf{U}} - a_3 {}^t \ddot{\mathbf{U}}$ ${}^{t+\Delta t} \dot{\mathbf{U}} = {}^t \dot{\mathbf{U}} + a_6 {}^t \ddot{\mathbf{U}} + a_7 {}^{t+\Delta t} \ddot{\mathbf{U}}$

More stuff

More stuff

All figures and tables are taken from the book "Finite-Element-Procedures" by Klaus-Jürgen Bathe. It is the only source I used...

SoSe 11, Lars Radtke