Finite Elements Methods Formulary for Prof. Estorff's exam

Finite Element Method in General

One wants to obtain the equilibrium eqautions for the body, discretized by finite elements in the form
$M \cdot \ddot{U}+C \cdot \dot{U}+K \cdot U=R$

Displacement of the nodes:

$U=\left[\begin{array}{llll}U_{1} & U_{2} & \ldots & U_{n}\end{array}\right]^{T} \quad n$: degrees of freedom

Displacement within the element m :

$u^{(m)}(x, y, z)=H^{(m)}(x, y, z) \hat{U}$
$H^{(m)}$: Displacement interpolation matrix

Strain inside the element m :

$\epsilon^{(m)}(x, y, z)=B^{(m)}(x, y, z) \hat{U}$
$B^{(m)}$: Verzerrungs-Verschiebungs-Matrix
Play around with those matrices and from the priciple of virtual displacement $\int_{V} \bar{\epsilon}^{T} \tau d V=\int_{V} \bar{U}^{T} f^{B} d V+\int_{S} \bar{U}^{S T} f^{S} d S+\sum_{i} \bar{U}^{i T} F^{i}$ it follows:

System of equations (stationary case $K U=R$)

$$
\begin{aligned}
& {\left[\sum_{m} \int_{v^{(m)}} B^{(m) T} C^{(m)} B^{(m)} d V^{(m)}\right] \hat{U}=\sum_{m} \int_{v^{(m)}} H^{(m) T} f^{B(m)} d V^{(m)}} \\
& \quad+\sum_{m} \int_{S^{(m)}} H^{S(m) T} f^{S(m)} d S^{(m)}+\sum_{m} \int_{v^{(m)}} B^{(m) T} \tau^{I(m)} d V^{(m)}+F
\end{aligned}
$$

From that one can obtain a formular to calculate each of the matrices in the equlibrium equasions:

Stiffness matrix: $K=\sum_{m} \int_{V^{(m)}} B^{(m) T} C^{(m)} B^{(m)} d V^{(m)}=\sum K^{(m)}$
Volume forces: $R_{B}=\sum_{m} \int_{V^{(m)}} H^{(m) T} f^{B(m)} d V^{(m)}=\sum_{m} R_{B}^{(m)}$
Surface forces: $R_{S}=\sum_{m} \int_{S^{(m)}} H^{S(m) T} f^{S(m)} d S^{(m)}=\sum_{m} R_{S}^{(m)}$
Initial stresses: $R_{I}=\sum_{m} \int_{v^{(m)}} B^{(m) T} \tau^{I(m)} d V^{(m)}=\sum_{m} R_{I}^{(m)}$
Single forces: $R_{C}=F$

With d'Alembert Principle the matrices for the time dependent case follow:
Mass matrix: $M=\sum_{m} \int_{V(m)} \rho^{(m)} H^{(m) T} H^{(m)} d V^{(m)}=\sum_{m} M^{(m)}$
Damping matrix: $C=\sum_{m} \int_{V^{(m)}} \kappa^{(m)} H^{(m) T} H^{(m)} d V^{(m)}=\sum_{m} C^{(m)}$

According to the choosen elements one has to concidere only certain components of stress, strain and displacement:

TABLE 4.2 Corresponding kinematic and static variables in various problems

Problem	Displacement components	Strain vector ϵ^{T}	Stress vector τ^{T}
Bar	u	[$\left.\epsilon_{x, x}\right]$	$\left[\tau_{x x}\right]$
Beam	w	[$\kappa_{x x}$]	[$M_{x x}$]
Plane stress	u, v	$\left[\begin{array}{lll}\boldsymbol{\epsilon}_{x x} & \boldsymbol{\epsilon}_{y y} & \gamma_{x y}\end{array}\right]$	$\left[\begin{array}{lll}\tau_{x x} & \tau_{y y} & \tau_{x y}\end{array}\right]$
Plane strain	u, v	$\left[\epsilon_{x x} \epsilon_{y y} \gamma_{x y}\right]$	$\left[\begin{array}{lll}\tau_{x x} & \tau_{y y} & \tau_{x y}\end{array}\right]$
Axisymmetric	u, v	$\left[\begin{array}{llll}\epsilon_{x x} & \epsilon_{y y} & \gamma_{x y} & \epsilon_{z z}\end{array}\right]$	$\left[\begin{array}{llll}\tau_{x x} & \tau_{y y} & \tau_{x y} & \tau_{z z}\end{array}\right]$
Three-dimensional	u, v, w	$\left[\begin{array}{llllll}\epsilon_{x x} & \epsilon_{y y} & \epsilon_{z z} & \gamma_{x y} & \gamma_{y z} & \gamma_{z x}\end{array}\right]$	$\left[\begin{array}{lllll}\tau_{x x} & \tau_{y y} & \tau_{z z} & \tau_{x y} & \tau_{y z} \\ \tau_{z x}\end{array}\right]$
Plate bending	w	$\left[\kappa_{x x} \kappa_{y y} \kappa_{x y}\right]$	[$M_{x x} M_{y y} M_{x y}$]
Notation: $\epsilon_{x x}=\frac{\partial u}{\partial x}$,	$\gamma_{x y}=\frac{\partial u}{\partial y}+$	$\kappa_{x x}=\frac{\partial^{2} w}{\partial x^{2}}, \kappa_{y y}=\frac{\partial^{2} w}{\partial y^{2}}$	$2 \frac{\partial^{2} w}{\partial x \partial y}$

(Isoparametric) Truss Elements

Displacement of the nodes:

Global: $\hat{U}=\left[\begin{array}{llllll}u_{1} & v_{1} & u_{2} & v_{2} & \ldots & v_{n}\end{array}\right]^{T}$
Local: $\tilde{U}=\left[\begin{array}{cccccc}\tilde{u}_{1} & \tilde{v}_{1} & \tilde{u}_{2} & \tilde{v}_{2} & \ldots & \tilde{v}_{n}\end{array}\right]^{T} \quad n$: number of nodes in element \hat{U} can be linked with the overall node displacement vector of the system (has the same orientation).

Interpolation:

Coordinates: $\tilde{x}(r)=\sum h_{i} \tilde{x}_{i} \quad$ Displacements: $\tilde{u}(r)=\sum h_{i} \tilde{u}_{i}$
In the following, an element with 2 nodes is considered.

Displacement interpolation matrix:

$\tilde{H}=\left[\begin{array}{llll}h_{1} & 0 & h_{2} & 0\end{array}\right]=\left[\begin{array}{llll}\frac{1}{2}(1-r) & 0 & \frac{1}{2}(1+r) & 0\end{array}\right]$ with $\begin{aligned} & x(r)=\tilde{H} \cdot \tilde{X} \\ & u(r)=\tilde{H} \cdot \tilde{U}\end{aligned}$

Setting up the strain displacement matrix:

$$
\begin{gathered}
\epsilon_{x}=\frac{d u}{d x} \\
\epsilon=\tilde{B} \cdot \tilde{U}
\end{gathered} \Longrightarrow \tilde{B}=\left[\begin{array}{llll}
h_{1 x} & 0 & h_{2 x} & 0
\end{array}\right]=\left[\begin{array}{cccc}
-\frac{1}{L} & 0 & \frac{1}{L} & 0
\end{array}\right]
$$

because $h_{i x}=\frac{\partial h_{i}}{\partial x}=\frac{\partial h_{i}}{\partial r} \frac{\partial r}{\partial x}=\frac{\partial h_{i}}{\partial r}\left(\frac{\partial x}{\partial r}\right)^{-1}=\frac{\partial h_{i}}{\partial r}\left(\frac{L}{2}\right)^{-1}$

Setting up the stiffness matrix:

$\tilde{K}=\int_{V} \tilde{B}^{T} C \tilde{B} d V=A E \int_{0}^{L} \tilde{B}^{T} \tilde{B} d x \quad$ with A : Cross-sectional area of truss
It follows: $\tilde{K}=\frac{E A}{L}\left[\begin{array}{cccc}1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$

Transformed to global directions:

$K=T^{T} \tilde{K} T=\frac{E A}{L}\left[\begin{array}{cccc}\cos ^{2} \alpha & \cos \alpha \sin \alpha & -\cos \alpha \cos \beta & -\cos \alpha \sin \beta \\ \cos \alpha \sin \alpha & \sin 2 & -\sin \alpha \cos \beta & -\sin \alpha \sin \beta \\ -\cos \alpha \cos \beta & -\sin \alpha \cos \beta & \cos ^{2} \beta & \sin \beta \cos \beta \\ -\cos \alpha \sin \beta & -\sin \alpha \sin \beta & \sin \beta \cos \beta & \sin ^{2} \beta\end{array}\right]$

$$
\begin{array}{ccc}
r=-1 & r=0 & r=+1 \ldots 3 \text {-node case } \\
r=-1 & r=-\frac{1}{3} & r=+\frac{1}{3}
\end{array} \begin{aligned}
r=+1 \ldots 4 \text {-node case }
\end{aligned}
$$

(a) 2 to 4 variable-number-nodes truss element

(b) Interpolation functions

Figure 5.3 Interpolation functions of two to four variable-number-nodes one-dimensional element

Transformation matrix

$\tilde{u}=T u$
$T=\left[\begin{array}{cccc}\cos \alpha & \sin \alpha & 0 & 0 \\ -\sin \alpha & \cos \alpha & 0 & 0 \\ 0 & 0 & \cos \beta & \sin \beta \\ 0 & 0 & -\sin \beta & \cos \beta\end{array}\right]$
Related transformations:
$H=\tilde{H} T$
$M=T^{T} \tilde{M} T$
$R_{B}=T^{T} \tilde{R}_{B}$
$R_{S}=T^{T} \tilde{R}_{S}$

$R_{I}=T^{T} \tilde{R}_{I}$

Isoparametric Plate Elements

Displacement of the nodes:

$\hat{U}=\left[\begin{array}{llllll}u_{1} & \ldots & u_{n} & v_{1} & \ldots & v_{n}\end{array}\right]^{T} \quad n$: number of nodes in element
\hat{U} can be linked with the overall node displacement vector of the system.

Interpolation:

Coordinates: $x(r, s)=\sum h_{i} x_{i} ; \quad y(r, s)=\sum h_{i} y_{i}$
Displacements: $u(r, s)=\sum h_{i} u_{i} ; \quad v(r, s)=\sum h_{i} v_{i}$
In the following formulars, an element with 4 nodes is concidered.

Displacement interpolation matrix:

$H=\left[\begin{array}{cccccccc}h_{1} & h_{2} & h_{3} & h_{4} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & h_{1} & h_{2} & h_{3} & h_{4}\end{array}\right]$ with $\begin{aligned} & X(r, s)=H \cdot \hat{X} \\ & U(r, s)=H \cdot \hat{U}\end{aligned}$
Match H with the vector of displacements of all nodes U to obtain the global stiffness matric $H^{(m)}$ for the element.

Setting up the strain displacement matrix:

$$
\begin{gathered}
\epsilon_{x}=\frac{d u}{d x} \epsilon_{y}=\frac{d v}{d y} \\
\epsilon_{x y}=\frac{d u}{d y}+\frac{d v}{d x} \\
\quad \epsilon=B \cdot \hat{U}
\end{gathered} \Longrightarrow B=\left[\begin{array}{cccccccc}
h_{1 x} & h_{2 x} & h_{3 x} & h_{4 x} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & h_{1 y} & h_{2 y} & h_{3 y} & h_{4 y} \\
h_{1 y} & h_{2 y} & h_{3 y} & h_{4 y} & h_{1 x} & h_{2 x} & h_{3 x} & h_{4 x}
\end{array}\right]
$$

Match B with the vector of displacements of all nodes U to obtain the global stiffness matric $B^{(m)}$ for the element.

Calculating derivatives of h_{i} :
$\left[\begin{array}{l}h_{i x} \\ h_{i y}\end{array}\right]=\left[\begin{array}{c}\frac{\partial h_{i}}{\partial x} \\ \frac{\partial h_{i}}{\partial y}\end{array}\right]=J^{-1} \cdot\left[\begin{array}{c}\frac{\partial h_{i}}{\partial r} \\ \frac{\partial h_{i}}{\partial s}\end{array}\right]$ with $J=\left[\begin{array}{ll}\frac{\partial x}{\partial r} & \frac{\partial y}{\partial r} \\ \frac{\partial x}{\partial s} & \frac{\partial y}{\partial s}\end{array}\right]$
Inverse 4x4 matrix: $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \rightarrow A^{-1}=\frac{1}{\operatorname{det}(A)}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$

Setting up the stiffness matrix:

$K=\int_{V} B^{T} C B d V=t \cdot \int_{-1}^{1} \int_{-1}^{1} B^{T} C B d r d s \quad t:$ thickness of the element
Match K with the vector of displacements of all nodes U to obtain the global stiffness matric $K^{(m)}$ for the element.

Beam Elements

Displacement of the nodes:

$\hat{U}=\left[\begin{array}{llll}w_{1} & \varphi_{1} & w_{2} & \varphi_{2}\end{array}\right]^{T} \quad$ for an element with 2 nodes

Displacement interpolation matrix (Hermite Beam):
$w(x)=H \hat{U}$
$H=\left[\begin{array}{c}\left.\left.\left.1-3 \frac{x^{2}}{L^{2}}+2 \frac{x^{3}}{L^{3}} \quad x-2 \frac{x^{2}}{L}+\frac{x^{3}}{L^{2}} \quad 3 \frac{x^{2}}{L^{2}}-2 \frac{x^{3}}{L^{3}} \quad-\frac{x^{2}}{L}+\frac{x^{3}}{L^{2}}\right] .\right] ~\right], ~\end{array}\right]$
$\Longrightarrow K=E I\left[\begin{array}{ccccc}\frac{12}{L^{3}} & & & \\ \frac{6}{L^{2}} & \frac{4}{L} & & \\ -\frac{12}{L^{3}} & -\frac{6}{L^{2}} & \frac{12}{L^{3}} & \\ \frac{6}{L^{2}} & \frac{2}{L} & -\frac{6}{L^{2}} & \frac{4}{L}\end{array}\right]$
For different H the strain displacement matrix B has to be determined first to calculate $K=\int_{V} B^{T} C B d V$.

Isoparametric:

Displacement of the nodes:
$\hat{U}=\left[\begin{array}{llllll}w_{1} & \ldots & w_{q} & \varphi_{1} & \ldots & \varphi_{q}\end{array}\right]^{T} \quad q$: number of nodes in element
Interpolation:
$w(r)=\sum h_{i} w_{i} \quad \varphi(r)=\sum h_{i} \varphi_{i}$
Use the interpolation functions for a 1 D element.

For displacement interpolation matrix H and strain interpolation matrix B concider displacement and rotation seperatly:

$$
\begin{aligned}
& H_{w}=\left[\begin{array}{llllll}
h_{1} & \ldots & h_{q} & 0 & \ldots & 0
\end{array}\right] \quad H_{\varphi}=\left[\begin{array}{lllllll}
0 & \ldots & 0 & h_{1} & \ldots & h_{q}
\end{array}\right] \\
& B_{w}
\end{aligned}=J^{-1}\left[\begin{array}{llllll}
\frac{\partial h_{1}}{\partial r} & \ldots & \frac{\partial h_{q}}{\partial r} & 0 & \ldots & 0
\end{array}\right] \quad B_{\varphi}=J^{-1}\left[\begin{array}{llllll}
0 & \ldots & 0 & \frac{\partial h_{1}}{\partial r} & \ldots & \frac{h_{q}}{\partial r}
\end{array}\right] .
$$

with the Jacobian $J=\frac{\partial x}{\partial r}$

Material Matrices

TABLE 4.3 Generalized stress-strain matrices for isotropic materials and the problems in Table 4.2

Problem

Material matrix \mathbf{C}
Bar
Beam

Plane stress

$$
\frac{E}{1-\nu^{2}}\left[\begin{array}{ccc}
1 & \nu & 0 \\
\nu & 1 & 0 \\
0 & 0 & \frac{1-\nu}{2}
\end{array}\right]
$$

$$
\frac{E(1-\nu)}{(1+\nu)(1-2 \nu)}\left[\begin{array}{ccc}
1 & \frac{\nu}{1-\nu} & 0 \\
\frac{\nu}{1-\nu} & 1 & 0 \\
0 & 0 & \frac{1-2 \nu}{2(1-\nu)}
\end{array}\right]
$$

$$
\frac{E(1-\nu)}{(1+\nu)(1-2 \nu)}\left[\begin{array}{cccc}
1 & \frac{\nu}{1-\nu} & 0 & \frac{\nu}{1-\nu} \\
\frac{\nu}{1-\nu} & 1 & 0 & \frac{\nu}{1-\nu} \\
0 & 0 & \frac{1-2 \nu}{2(1-\nu)} & 0 \\
\frac{\nu}{1-\nu} & \frac{\nu}{1-\nu} & 0 & 1
\end{array}\right]
$$

$$
\frac{E h^{3}}{12\left(1-\nu^{2}\right)}\left[\begin{array}{ccc}
1 & \nu & 0 \\
\nu & 1 & 0 \\
0 & 0 & \frac{1-\nu}{2}
\end{array}\right]
$$

Notation: $E=$ Young's modulus, $\nu=$ Poisson's ratio, $h=$ thickness of plate, $I=$ moment of inertia

Calculating Loads

In general $R_{S}=\int_{S} H^{S T} q(x) d S$ for distributed loads $q(x)$.
In the following a load acting between note 1 and 2 of a 4-node-isoparametric element where $s=$ const $=1$ is considered.

Set up H^{S} matrix

Consider only the displacements of the two nodes contained in the surface the load is working on:

$$
\begin{aligned}
& {\left[\begin{array}{c}
u_{S} \\
v_{S}
\end{array}\right]=H^{S} \hat{U}^{S}}
\end{aligned} \operatorname{mit} \hat{U}^{S}=\left[\begin{array}{cccc}
u_{1} & u_{2} & v_{1} & v_{2}
\end{array}\right] \quad\left[\begin{array}{cccc}
\frac{1}{2}(1+r) & \frac{1}{2}(1-r) & 0 & 0 \\
0 & 0 & \frac{1}{2}(1+r) & \frac{1}{2}(1-r)
\end{array}\right] .
$$

Integrate

Rewrite $q(x)$ in local coordinates to obtain $q(r)$ and integrate over the surface:
$R=\left[\begin{array}{llll}R_{x 1} & R_{x 2} & R_{y 1} & R_{y 2}\end{array}\right]^{T}=t \cdot \int_{-1}^{1} H^{S T} q(r) \operatorname{det}\left(J^{S}\right) d r$
with $q(r)=\left[\begin{array}{c}q_{x}(r) \\ q_{y}(r)\end{array}\right] \hat{=} f^{S} \quad$ and $t:$ thickness of the plate

Jabobian matrix

Since $s=$ const here, the Jacobian degenerates to $J^{S}=\left[\begin{array}{cc}\frac{\partial x}{\partial r} & \frac{\partial y}{\partial r}\end{array}\right]$.
Because J^{S} is not quadratic anymore, one has to use the Gramian determinant:

$$
\operatorname{det}\left(J^{S}\right)=\sqrt{J^{S} J^{S T}}=\sqrt{\left(\frac{\partial x}{\partial r}\right)^{2}+\left(\frac{\partial y}{\partial r}\right)^{2}}
$$

Load in one direction (after the other)

For a vertical load with $q_{x}(x)=0$ only the vertical displacement and forces have to be concidered:

$$
\begin{aligned}
& v_{S}=H^{S}\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] \Longrightarrow H^{S}=\left[\begin{array}{ll}
h_{1} & h_{2}
\end{array}\right]=\left[\begin{array}{ll}
\frac{1}{2}(1+r) & \frac{1}{2}(1-r)
\end{array}\right] \\
& R=\left[\begin{array}{l}
R_{y 1} \\
R_{y 2}
\end{array}\right]=t \cdot \int_{-1}^{1} H^{S T} q_{y}(r) \operatorname{det}(J) d r
\end{aligned}
$$

Always try set up single forces that representate the distributed load first!

Setting up Mass Matrices

$M^{(m)}=\int_{V^{(m)}} \rho^{(m)} H^{(m) T} H^{(m)} d V^{(m)}$
Consistent mass matrix:
1D: $M^{(m)}=\int_{0}^{L} A(x) \rho^{(m)} H^{(m) T} H^{(m)} d x=\int_{-1}^{1} A(r) \rho^{(m)} H^{(m) T} H^{(m)} \operatorname{det}(J) d r$
2D: $M^{(m)}=\int_{-1}^{1} \int_{-1}^{1} t(x) \rho^{(m)} H^{(m) T} H^{(m)} \operatorname{det}(J) d r d s$

Lumped mass matrix:

$M^{(m)}=\left[\begin{array}{ccc}\frac{m}{n} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \frac{m}{n}\end{array}\right] \quad$ with m : Mass of the element; n : Number of nodes in element

Calculating Stresses

In general: $\sigma=C \cdot B U$

Truss: $\sigma=C \epsilon=E \frac{\Delta L}{L} \quad$ with $\Delta L=\tilde{u}_{2}-\tilde{u}_{1}$

Plate (at $\left.s=s^{*}, r=r^{*}\right): \sigma=\left.C \cdot B\right|_{r^{*}, s^{*}} U$

Jacobian Matrix

Transformation of coordinates / chain rule /...:
$J=\left[\begin{array}{lll}\frac{\partial x}{\partial r} & \frac{\partial y}{\partial r} & \frac{\partial z}{\partial r} \\ \frac{\partial x}{\partial s} & \frac{\partial y}{\partial s} & \frac{\partial z}{\partial s} \\ \frac{\partial x}{\partial t} & \frac{\partial y}{\partial t} & \frac{\partial z}{\partial t}\end{array}\right]$ so that $\left[\begin{array}{c}\frac{\partial}{\partial r} \\ \frac{\partial}{\partial s} \\ \frac{\partial}{\partial t}\end{array}\right]=J\left[\begin{array}{c}\frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z}\end{array}\right]$
Used to calculate:
$\left[\begin{array}{c}\frac{\partial h}{\partial z} \\ \frac{\partial h}{\partial y} \\ \frac{\partial h}{\partial z}\end{array}\right]=J^{-1}\left[\begin{array}{c}\frac{\partial h}{\partial h} \\ \frac{\partial h}{\partial s} \\ \frac{\partial \hbar}{\partial t}\end{array}\right]$ and $\int_{V} \ldots d V=\int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1} \ldots \operatorname{det}(J) d r d s d t$

Rules for Variational Operator

$\delta \frac{d u}{d x}=\frac{d}{d x} \delta u$
$\delta \int_{a}^{b} f(x) d x=\int_{a}^{b} \delta f(s) d x$

Integration by Parts

$\int_{a}^{b} u^{\prime}(x) v(x) d x=[u(x) v(x)]_{a}^{b}-\int_{a}^{b} u(x) v^{\prime}(x) d x$

Variation of the Total Potential

Total potential: $\Pi=U-W$
U : Strain energy $\quad W$: Potential of external loads
Obtain natural boundary conditions and partial differential equation by solving $\delta \Pi=0$, where Π is the (hopefully given) potential of the system.

Ritz Method

Insert an approximation function for displacement with coefficients $a_{1}, a_{2}, a_{3}, \ldots$ and solve $\frac{\partial \Pi}{\partial a_{1}}, \frac{\partial \Pi}{\partial a_{2}}, \ldots$
Note that $\frac{\partial}{\partial a_{1}} \int_{a}^{b} f\left(a_{i}\right) d x=\int_{a}^{b} \frac{\partial}{\partial a_{1}} f\left(a_{i}\right) d x$.

More stuff...

Gauss Integration

$K=\int_{V} F(r, s, t) d r d s d t \quad \operatorname{mit} \quad F(r, s, t)=B^{T} C B \operatorname{det}(J)$
Gauss:
$\int_{a}^{b} F(r) d r=\alpha_{1} F\left(r_{1}\right)+\alpha_{2} F\left(r_{2}\right)+\ldots+\alpha_{n} F\left(r_{n}\right)$
Polynomials up to the order $(2 n-1)$ can be integrated axactly.

Example

The integral $\int_{-1}^{1} F(r) d r$ shall be approximated using just one approximation point:
$\int_{-1}^{1} F(r) d r=2 \cdot F(0)$
two approximation points:
$\int_{-1}^{1} F(r) d r=1 \cdot F(-0.57735)+1 \cdot F(0.57735)$

TABLE 5.6 Sampling points and weights in Gauss-Legendre numerical integration (interval -1 to +1)

n	r_{i}				α_{i}		
1	0.	$(15$ zeros $)$	2.	$(15$ zeros $)$			
2	± 0.57735	02691	89626	1.00000	00000	00000	
3	± 0.77459	66692	41483	0.55555	55555	55556	
	0.00000	00000	00000	0.88888	88888	88889	
4	± 0.86113	63115	94053	0.34785	48451	37454	
	± 0.33998	10435	84856	0.65214	51548	62546	
5	± 0.90617	98459	38664	0.23692	68850	56189	
	± 0.53846	93101	05683	0.47862	86704	99366	
	0.00000	00000	00000	0.56888	88888	88889	
6	± 0.93246	95142	03152	0.17132	44923	79170	
	± 0.66120	93864	66265	0.36076	15730	48139	
	± 0.23861	91860	83197	0.46791	39345	72691	

Newton-Cotes Integration

$K=\int_{V} F(r, s, t) d r d s d t \quad$ mit $\quad F(r, s, t)=B^{T} C B \operatorname{det}(J)$
Newton-Cotes:
$\int_{a}^{b} F(r) d r=(b-a) \sum_{i=0}^{n} C_{i}^{n} F_{i}+R_{n}$
with C_{i}^{n} : Newton-Cotes constants; R_{n} : Remainder (error estimation)
The approximation points F_{i} are linearly distributed, for the distance between to points $h=\frac{b-a}{n}$ holds.

Example

The integral $\int_{-1}^{1} F(r) d r$ shall be approximated using
just one interval:
$\int_{-1}^{1} F(r) d r=2 \cdot\left(\frac{1}{2} F(-1)+\frac{1}{2} F(1)+R_{1}\right)$
two intervals:
$\int_{-1}^{1} F(r) d r=2 \cdot\left(\frac{1}{6} F(-1)+\frac{4}{6} F(0)+\frac{1}{6} F(1)+R_{2}\right)$

TABLE 5.5 Newton-Cotes numbers and error estimates
$\left.\begin{array}{cccccccc}\hline \begin{array}{l}\text { Number of } \\ \text { intervals } n\end{array} & C_{0}^{n} & C_{1}^{n} & C_{2}^{n} & C_{3}^{n} & C_{4}^{n} & C_{3}^{n} & C_{6}^{n}\end{array} \begin{array}{c}\begin{array}{c}\text { Upper bound on } \\ \text { error } R_{n} \text { as }\end{array} \\ \text { a function of } \\ \text { the derivative of } F\end{array}\right]$

Centrale Differences Method

${ }^{t} \ddot{U}=\frac{1}{\Delta t^{2}}\left({ }^{t-\Delta t} U-2{ }^{t} U+{ }^{t+\Delta t} U\right) \quad{ }^{t} \dot{U}=\frac{1}{2 \Delta t}\left(-{ }^{t-\Delta t} U+{ }^{t+\Delta t} U\right)$
Error is of order $(\Delta t)^{2}$.
System of equations at time t :
$M^{t} U+C^{t} \dot{U}+K^{t} U={ }^{t} R$
Because the system is concidered at time t, not at time $t+\Delta t$ the method is called and explicit integration method.

Insert approximations for ${ }^{t} \ddot{U}$ and ${ }^{t} \dot{U}$:

$$
\left(\frac{1}{\Delta t^{2}} M+\frac{1}{2 \Delta t} C\right)^{t+\Delta t} U=^{t} R-\left(K-\frac{2}{\Delta t^{2}} M\right)^{t} U-\left(\frac{1}{\Delta t^{2}} M-\frac{1}{2 \Delta t} C\right)^{t-\Delta t} U
$$

Since ${ }^{0} U,{ }^{0} \dot{U}$ and ${ }^{0} \ddot{U}$ are known, one only needs to calculate ${ }^{-\Delta t} U$ to start the calculation of one time step after another.

From the equations for ${ }^{t} \ddot{U}$ and ${ }^{t} \dot{U}$ one obtains: ${ }^{-\Delta t} U={ }^{0} U-\Delta t^{0} \dot{U}+\frac{\Delta t^{2}}{2}{ }^{0} \ddot{U}$
Now one can calculate ${ }^{\Delta t} U$ and respectivly ${ }^{t+\Delta t} U$ and then ${ }^{t} \ddot{U}$ and ${ }^{t} \dot{U}$ for every time step.

TABLE 9.1 Step-by-step solution using central difference method (general mass and damping matrices)
A. Initial calculations:

1. Form stiffness matrix \mathbf{K}, mass matrix \mathbf{M}, and damping matrix \mathbf{C}.
2. Initialize ${ }^{0} \mathbf{U},{ }^{0} \dot{\mathbf{U}}$, and ${ }^{0} \ddot{\mathbf{U}}$.
3. Select time step $\Delta t, \Delta t \leq \Delta t_{c r}$, and calculate integration constants:

$$
a_{0}=\frac{1}{\Delta t^{2}} ; \quad a_{1}=\frac{1}{2 \Delta t} ; \quad a_{2}=2 a_{0} ; \quad a_{3}=\frac{1}{a_{2}}
$$

4. Calculate ${ }^{-\Delta t} \mathbf{U}={ }^{0} \mathbf{U}-\Delta t{ }^{0} \dot{\mathbf{U}}+a_{3}{ }^{0} \ddot{\mathbf{U}}$.
5. Form effective mass matrix $\hat{\mathbf{M}}=a_{0} \mathbf{M}+a_{1} \mathbf{C}$.
6. Triangularize $\hat{\mathbf{M}}: \hat{\mathbf{M}}=\mathrm{LDL}^{T}$.
B. For each time step:
7. Calculate effective loads at time t :

$$
\prime \hat{\mathbf{R}}={ }^{\prime} \mathbf{R}-\left(\mathbf{K}-a_{2} \mathbf{M}\right) \mathbf{U}-\left(a_{0} \mathbf{M}-a_{1} \mathbf{C}\right)^{i-\Delta t} \mathbf{U}
$$

2. Solve for displacements at time $t+\Delta t$:

$$
\mathbf{L D L}^{T i+\Delta t} \mathbf{U}={ }^{t} \hat{\mathbf{R}}
$$

3. If required, evaluate accelerations and velocities at time t :

$$
\begin{aligned}
& \ddot{\mathbf{U}}=a_{0}\left(t^{\left(\Delta^{\Delta}\right)} \mathbf{U}-2^{\prime} \mathbf{U}+{ }^{t+\Delta^{\prime}} \mathbf{U}\right) \\
& \dot{\mathbf{U}}=a_{1}\left(-t^{t-\Delta^{\prime}} \mathbf{U}+{ }^{\left.t^{+\Delta^{\prime}} \mathbf{U}\right)}\right.
\end{aligned}
$$

Newmark Integration

Assumptions:
${ }^{t+\Delta t} \dot{U}={ }^{t} \dot{U}+\left[(1-\delta)^{t} \ddot{U}+\delta^{t+\Delta t} \ddot{U}\right] \Delta t$
${ }^{t+\Delta t} U={ }^{t} U+{ }^{t} \dot{U} \Delta t+\left[\left(\frac{1}{2}-\alpha\right)^{t} \ddot{U}+\alpha^{t+\Delta t} \ddot{U}\right] \Delta t^{2}$
Obtain ${ }^{t+\Delta t} \ddot{U}$ from second equation, insert in first equation.
Insert the resulting eqations for ${ }^{t+\Delta t} \dot{U}$ and ${ }^{t+\Delta t} \ddot{U}$ in the euation of motion at time $t+\Delta t$.
$M^{t+\Delta t} U+C^{t+\Delta t} \dot{U}+K^{t+\Delta t} U={ }^{t+\Delta t} R$
Because the system is concidered at time $t+\Delta t$, not at time t the method is called and implicit integration method.

TABLE 9.4 Step-by-step solution using Newmark integration method
A. Initial calculations:

1. Form stiffness matrix \mathbf{K}, mass matrix \mathbf{M}, and damping matrix \mathbf{C}.
2. Initialize ${ }^{0} \mathbf{U},{ }^{0} \dot{\mathbf{U}}$, and ${ }^{0} \ddot{\mathbf{U}}$.
3. Select time step Δt and parameters α and δ and calculate integration constants:

$$
\begin{array}{cc}
\delta \geq 0.50 ; \quad \alpha \geq 0.25(0.5+\delta)^{2} \\
a_{0}=\frac{1}{\alpha \Delta t^{2}} ; & a_{1}=\frac{\delta}{\alpha \Delta t} ; \quad a_{2}=\frac{1}{\alpha \Delta t} ; \quad a_{3}=\frac{1}{2 \alpha}-1 \\
a_{4}=\frac{\delta}{\alpha}-1 ; & a_{5}=\frac{\Delta t}{2}\left(\frac{\delta}{\alpha}-2\right) ; \quad a_{6}=\Delta t(1-\delta) ; \quad a_{7}=\delta \Delta t
\end{array}
$$

4. Form effective stiffness matrix $\hat{\mathbf{K}}: \hat{\mathbf{K}}=\mathbf{K}+a_{0} \mathbf{M}+a_{1} \mathbf{C}$.
5. Triangularize $\hat{\mathbf{K}}: \widehat{\mathbf{K}}=\mathbf{L D L}{ }^{T}$.
B. For each time step:
6. Calculate effective loads at time $t+\Delta t$:

$$
{ }^{t+\Delta^{t}} \hat{\mathbf{R}}={ }^{t+\Delta t} \mathbf{R}+\mathbf{M}\left(a_{0}{ }^{t} \mathbf{U}+a_{2}{ }^{t} \dot{\mathbf{U}}+a_{3}{ }^{t} \ddot{\mathbf{U}}\right)+\mathbf{C}\left(a_{1}{ }^{t} \mathbf{U}+a_{4}{ }^{t} \dot{\mathbf{U}}+a_{5}{ }^{t} \ddot{\mathbf{U}}\right)
$$

2. Solve for displacements at time $t+\Delta t$:

$$
\mathbf{L D} \mathbf{D L}^{t+\Delta t} \mathbf{U}={ }^{t+\Delta t} \hat{\mathbf{R}}
$$

3. Calculate accelerations and velocities at time $t+\Delta t$:

$$
\begin{aligned}
& { }^{\left.{ }^{+\Delta \Delta} \not{\mathbf{U}} \ddot{\mathbf{U}}=a_{0}{ }^{\left({ }^{\prime}+\Delta t\right.} \mathbf{U}-{ }^{\prime} \mathbf{U}\right)-a_{2}{ }^{\prime} \dot{\mathbf{U}}-a_{3}{ }^{\prime} \ddot{\mathbf{U}}} \\
& { }^{{ }^{+\Delta t}} \dot{\mathbf{U}}={ }^{\prime} \dot{\mathbf{U}}+a_{6}{ }^{\prime} \ddot{\mathbf{U}}+a_{7}{ }^{t+\Delta t^{\prime}} \ddot{\mathbf{U}}
\end{aligned}
$$

More stuff

More stuff

All figures and tables are taken from the book "Finite-ElementProcedures" by Klaus-Jürgen Bathe. It is the only source I used...

SoSe 11, Lars Radtke

