1570: Poröse Medien mit definierter Porenstruktur in der Verfahrenstechnik - Modellierung, Anwendungen, Synthese

Leitung: Prof. Dr. Frerich Keil

Das Problem der Behandlung von Transportprozessen und Reaktionen in porösen Medien begleitet die Verfahrenstechnik bereits seit den dreißiger Jahren des vorigen Jahrhunderts. Katalysatorträger, Membranen, Adsorbentien, Chromatographiesäulen, zu trocknende Materialien, wie z. B. Kohle oder Torf, sind porös. Die poröse Feststoffstruktur wurde zunächst als effektives Medium modelliert. Zu Beginn der fünfziger Jahre setzte langsam eine detailliertere Modellierung der Porenstruktur ein, die in den neunziger Jahren einen raschen Aufschwung nahm. Zum ersten Mal wurden von weltweit etwa fünf Gruppen Optimierprobleme anhand von Porenstrukturen gemäß vorgegebener Kriterien gelöst, die klar gezeigt haben, dass sich die Optimierung von Porenstrukturen lohnt, um z. B. Ausbeuten von Katalyseprozessen zu erhöhen. Es gab jedoch ein wesentliches Hindernis: man konnte die optimalen Strukturen nicht gezielt herstellen.

Diese Situation hat sich in den letzten zehn Jahren drastisch geändert. Durch Einsatz neuer Templattechniken, der Verwendung neuer Precursoren, polymerkontrollierte Phasentrennung mit z. B. Polyethlyenoxid (PEO), Direktschäumungsverfahren sowie lithographischer Methoden etc. ist es nun möglich geworden, Porenstrukturen auf der Nano-, Meso- und Makroskala entsprechend Vorgaben herzustellen. Dadurch wird die kontrollierte Synthese berechneter optimaler Strukturen möglich. In den letzten Jahren wurde daher der Terminus "Engineered Porous Materials" geprägt. Weiterhin wurden in den letzten Jahren wesentliche Fortschritte in der Charakterisierung poröser Materialien gemacht, zum einen aufgrund deutlich besserer Modelle, wie z. B. der "non-local density functional theory" (NLDFT), und zum anderen aufgrund bildgebender Verfahren, wie z. B. "Magnetic Resonance Imaging" (MRI), mehrdimensionale NMR oder Kombination von Physisorptionsexperimenten mit Kleinwinkelröntgenstreuung (in situ SANS/SAXS-Physisorption). Das MRI gestattet eine in-situ Beobachtung von Gaszusammensetzungen und Flüssigkeitsverteilungen im Inneren einzelner Pellets mit einer örtlichen Auflösung, die vor wenigen Jahren nicht möglich war, sowie die Messung von Diffusionskoeffizienten. In den letzten Monaten ist es zum ersten Mal gelungen, auf molekularer Ebene Reaktionen in Zeolithen einschließlich der Diffusionsvorgänge bis hin zum Reaktor durch Mehrskalenmethoden zu beschreiben.

Die neuen Möglichkeiten der Synthese, Charakterisierung und Modellierung sollen im beantragten Schwerpunkt für verfahrenstechnische Anwendungen genutzt werden. Dazu sollen Verfahrenstechniker und einschlägig bekannte Synthesechemiker sowie Werkstoffwissenschaftler gemeinsam das Potential definierter Porenstrukturen in der Verfahrenstechnik ausloten. Die Hauptgebiete sollen Modellierung, Anwendungen und Synthese von definierten Porenstrukturen in der Verfahrenstechnik sein. Es sollen einige paradigmatische Beispiele als Anwendungen herangezogen werden, überwiegend aus dem Bereich Umweltschutz und Energietechnik, z. B. Adsorption von Fluiden, Membrantrennungen und -Reaktoren, Trocknungstechnik, katalytische Mehrphasenreaktoren, Reinigung von Kraftwerksabgasen. Die benutzten porösen Materialien sollen entsprechend den Vorgaben optimaler verfahrenstechnischer Erfordernisse synthetisiert und dann im Betrieb getestet werden. Um vertiefte Einsichten in die Beziehungen zwischen Porenstruktur und Eigenschaften zu gewinnen, sollen detaillierte Porenmodelle und Modelle der Reaktions-/Diffusionsvorgänge erstellt werden, in Einzelfällen bis zur molekularen Auflösung (Monte Carlo, Molekulardynamik, DFT), deren Daten anhand der erwähnten Messmethoden geprüft werden sollen. Insbesondere sollen auch Analogien in der Modellierung verschiedener verfahrenstechnischer Anwendungen herausgearbeitet werden.