
A 100 e Problem

Notation: For A ∈ IRn×n, x ∈ IRn denote by |A|, |x| the matrix, vector of absolute values.

Hence |A| ∈ IRn×n
≥0 , |x| ∈ IRn

≥0.

For x, y ∈ IRn comparison is entrywise, i.e., x ≥ y :⇔ xi ≥ yi for i ∈ {1, ..., n}.

Denote e ∈ IRn with e := (1, ..., 1)T .

Conjecture: A ∈ IRn×n with |A|e = ne ⇒ ∃ 0 6= x ∈ IRn : |Ax| ≥ |x|.

The geometrical interpretation of the assumptions is that the rows of A lie on the octahedron

centered at the origin with the nonzero entry of the vertices equal to n.

For a proof or counterexample of the conjecture I am happy to reward you with 100 e.

Note: Theorem 5.8 in [8] proved

A ∈ IRn×n with |A|e = ne ⇒ ∃ 0 6= x ∈ IRn : |Ax| ≥ 1
3+2
√
2
|x|.

A stronger conjecture

Denote the i-th row of A by ri. Dr. Florian Bünger proposed the following stronger formulation:

Conjecture 2: A ∈ IRn×n, n ≥ 2 and ‖ri‖2 ≥
√
n− 1 for all i ∈ {1, . . . , n} ⇒

∃ 0 6= x ∈ IRn : |Ax| ≥ |x|.

This formulation is stronger because |A|e = ne ⇒ n = |ri|e ≤ ‖ri‖2
√
n.

The geometrical interpretation of the assumptions of Conjecture 2 is that the rows of A lie

on or outside the sphere centered at the origin with radius
√
n− 1.

This second conjecture is particularly appealing because if true it is sharp in the following sense:

For any α > 1 Conjecture 2 does not hold true when replacing the assertion by |Ax| ≥ α|x|.

A counterexample is the n× n matrix A with zero diagonal, all elements above the

diagonal equal to 1 and all elements below the diagonal equal to −1.

The matrix satisfies the assumptions, and |Ax| = |x| for x = (1, 1, 0, . . .)T .

However, it is shown in [8, Lemma 5.7] that there is no x ∈ IRn with |Ax| > |x|.

This sharpness of Conjecture 2 may offer more efficient proof schemes.

I am happy to reward you with 100 e for a proof or counterexample of Conjecture 2.

That implies that a proof of Conjecture 2 is worth 200 e.

1



Theoretical background

For IK ∈ {IR≥0, IR,C} and a matrix A ∈ IKn×n consider the quantity

%IK(A) := max{|λ| : λ ∈ IK, 0 6= x ∈ IKn}.(0.1)

For IK = IR≥0 Perron-Frobenius Theory implies that this is the Perron root of a nonnegative matrix. For

IK = IR this quantity was introduced in [8] as the sign-real spectral radius, and for IK = C it was introduced

in [11] and called the sign-complex spectral radius.

The sign-real spectral radius originated in the investigation of the componentwise distance to the nearest

singular matrix [9, 7]. One reason why %IK gained interest in matrix theory was that Collatz’s [4] character-

ization of the Perron root extends to the sign-real and the sign-complex spectral radius:

A ∈ IKn×n : %IK(A) = max
x∈IKn

x 6=0

min
xi 6=0

∣∣∣∣ (Ax)i
xi

∣∣∣∣ .(0.2)

Moreover, all three quantities %IK share a number of other quantities with the Perron root:

%IK(AH) = %IK(A)

|S1| = |S2| = I ⇒ %IK(S1AS2) = %IK(A)

P ∈ IRn×n permutation matrix ⇒ %IK(PTAP ) = %IK(A)

D ∈ IKn×n nonsingular diagonal ⇒ %IK(D−1AD) = %IK(A)

α ∈ IK ⇒ %IK(αA) = |α|%IK(A)

µ ⊆ {1, . . . , n} ⇒ %IK(A[µ]) ≤ %IK(A) [inheritance]

A triangular ⇒ %IK(A) = maxi |Aii|

The %IK are continuous [8], and in [13] it was shown that the first four linear transformations and their

combinations capture all linear operators leaving %IR invariant. A number of other properties of %IK are

discussed in [3, 5, 6, 12] and the literature cited over there. Bounds using cycle products were investigated

[10, 1], and in [2] a number of topological, invariance and other properties are discussed.
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