A $100 €$ Problem

Notation: \quad For $A \in \mathbb{R}^{n \times n}, x \in \mathbb{R}^{n}$ denote by $|A|,|x|$ the matrix, vector of absolute values. Hence $|A| \in \mathbb{R}_{\geq 0}^{n \times n},|x| \in \mathbb{R}_{\geq 0}^{n}$.
For $x, y \in \mathbb{R}^{n}$ comparison is entrywise, i.e., $x \geq y \quad: \Leftrightarrow \quad x_{i} \geq y_{i}$ for $i \in\{1, \ldots, n\}$.
Denote $e \in \mathbb{R}^{n}$ with $e:=(1, \ldots, 1)^{T}$.

Conjecture: $\quad A \in \mathbb{R}^{n \times n}$ with $|A| e=n e \Rightarrow \exists 0 \neq x \in \mathbb{R}^{n}:|A x| \geq|x|$.
The geometrical interpretation of the assumptions is that the rows of A lie on the octahedron centered at the origin with the nonzero entry of the vertices equal to n.

For a proof or counterexample of the conjecture I am happy to reward you with $100 €$.

Note: Theorem 5.8 in [8 proved

$$
A \in \mathbb{R}^{n \times n} \text { with }|A| e=n e \Rightarrow \exists 0 \neq x \in \mathbb{R}^{n}:|A x| \geq \frac{1}{3+2 \sqrt{2}}|x|
$$

A stronger conjecture

Denote the i-th row of A by r_{i}. Dr. Florian Bünger proposed the following stronger formulation:
Conjecture 2: $\quad A \in \mathbb{R}^{n \times n}, n \geq 2$ and $\left\|r_{i}\right\|_{2} \geq \sqrt{n-1}$ for all $i \in\{1, \ldots, n\} \Rightarrow$

$$
\exists 0 \neq x \in \mathbb{R}^{n}:|A x| \geq|x|
$$

This formulation is stronger because $|A| e=n e \Rightarrow n=\left|r_{i}\right| e \leq\left\|r_{i}\right\|_{2} \sqrt{n}$.
The geometrical interpretation of the assumptions of Conjecture 2 is that the rows of A lie on or outside the sphere centered at the origin with radius $\sqrt{n-1}$.

This second conjecture is particularly appealing because if true it is sharp in the following sense:
For any $\alpha>1$ Conjecture 2 does not hold true when replacing the assertion by $|A x| \geq \alpha|x|$.
A counterexample is the $n \times n$ matrix A with zero diagonal, all elements above the diagonal equal to 1 and all elements below the diagonal equal to -1 .

The matrix satisfies the assumptions, and $|A x|=|x|$ for $x=(1,1,0, \ldots)^{T}$.
However, it is shown in [8, Lemma 5.7] that there is no $x \in \mathbb{R}^{n}$ with $|A x|>|x|$.
This sharpness of Conjecture 2 may offer more efficient proof schemes.

I am happy to reward you with $100 €$ for a proof or counterexample of Conjecture 2.
That implies that a proof of Conjecture 2 is worth $200 €$.

For $\mathbb{I K} \in\left\{\mathbb{R}_{\geq 0}, \mathbb{R}, \mathbb{C}\right\}$ and a matrix $A \in \mathbb{K}^{n \times n}$ consider the quantity

$$
\begin{equation*}
\varrho^{\mathbb{K}}(A):=\max \left\{|\lambda|: \lambda \in \mathbb{K}, 0 \neq x \in \mathbb{K}^{n}\right\} . \tag{0.1}
\end{equation*}
$$

For $\mathbb{I K}=\mathbb{R}_{\geq 0}$ Perron-Frobenius Theory implies that this is the Perron root of a nonnegative matrix. For $\mathbb{I K}=\mathbb{R}$ this quantity was introduced in [8] as the sign-real spectral radius, and for $\mathbb{I K}=\mathbf{C}$ it was introduced in [11] and called the sign-complex spectral radius.

The sign-real spectral radius originated in the investigation of the componentwise distance to the nearest singular matrix [9, 7]. One reason why $\varrho^{\mathbb{K}}$ gained interest in matrix theory was that Collatz's [4] characterization of the Perron root extends to the sign-real and the sign-complex spectral radius:

$$
\begin{equation*}
A \in \mathbb{K}^{n \times n}: \quad \varrho^{\mathbb{K}}(A)=\max _{\substack{x \in \mathbb{K} n \\ x \neq 0}} \min _{x_{i} \neq 0}\left|\frac{(A x)_{i}}{x_{i}}\right| . \tag{0.2}
\end{equation*}
$$

Moreover, all three quantities $\varrho^{\mathbb{K}}$ share a number of other quantities with the Perron root:

$$
\begin{aligned}
& \varrho^{\mathbb{K}}\left(A^{H}\right)=\varrho^{\mathbb{K}}(A) \\
\left|S_{1}\right|=\left|S_{2}\right|=I & \Rightarrow \varrho^{\mathbb{K}}\left(S_{1} A S_{2}\right)=\varrho^{\mathbb{K}}(A) \\
P \in \mathbb{R}^{n \times n} \text { permutation matrix } & \Rightarrow \varrho^{\mathbb{K}}\left(P^{T} A P\right)=\varrho^{\mathbb{K}}(A) \\
D \in \mathbb{K}^{n \times n} \text { nonsingular diagonal } & \Rightarrow \varrho^{\mathbb{K}}\left(D^{-1} A D\right)=\varrho^{\mathbb{K}}(A) \\
\alpha \in \mathbb{I K} & \Rightarrow \varrho^{\mathbb{K}}(\alpha A)=|\alpha| \varrho^{\mathbb{K}}(A) \\
\mu \subseteq\{1, \ldots, n\} & \Rightarrow \varrho^{\mathbb{K}}(A[\mu]) \leq \varrho^{\mathbb{K}}(A) \quad[\text { inheritance }] \\
A \text { triangular } & \Rightarrow \varrho^{\mathbb{K}}(A)=\max _{i}\left|A_{i i}\right|
\end{aligned}
$$

The $\varrho^{\mathbb{I K}}$ are continuous [8], and in [13] it was shown that the first four linear transformations and their combinations capture all linear operators leaving $\varrho^{\mathbb{R}}$ invariant. A number of other properties of $\varrho^{\mathbb{I K}}$ are discussed in [3, 5, 6, 12] and the literature cited over there. Bounds using cycle products were investigated [10, 1], and in [2] a number of topological, invariance and other properties are discussed.

REFERENCES

[1] F. Bünger. A short note on the ratio between sign-real and sign-complex matrices of a real square matrix. Linear Algebra and its Applications (LAA), 529:126-132, 2017.
[2] F. Bünger and A. Seeger. On sign-real spectral radii and sign-real expansive matrices. Linear Algebra and its Applications (LAA), 680:293-324, 2024.
[3] A. Goldberger and M. Neumann. Perron-Frobenius theory of seminorms: a topological approach. Linear Algebra and its Applications (LAA), 399:245-284, 2005.
[4] L. Collatz. Einschließungssatz für die charakteristischen Zahlen von Matrizen. Math. Z., 48:221-226, 1942.
[5] J.M. Peña. A characterization of the distance of infeasibility under block-structered perturbations. Linear Algebra and its Applications (LAA), 370:193-216, 2003.
[6] M. Radons. Direct solution of piecewise linear systems. Theor. Comp. Sc., 626:97-109, 2016.
[7] S.M. Rump. Almost Sharp Bounds for the Componentwise Distance to the Nearest Singular Matrix. Linear and Multilinear Algebra (LAMA), 42:93-107, 1997.
[8] S.M. Rump. Theorems of Perron-Frobenius type for matrices without sign restrictions. Linear Algebra and its Applications (LAA), 266:1-42, 1997.
[9] S.M. Rump. Bounds for the Componentwise Distance to the Nearest Singular Matrix. SIAM J. Matrix Anal. Appl. (SIMAX), 18(1):83-103, 1997.
[10] S.M. Rump. The sign-real spectral radius and cycle products. Linear Algebra and its Applications (LAA), 279:177-180, 1998.
[11] S.M. Rump. Perron-Frobenius Theory for Complex Matrices. Linear Algebra and its Applications (LAA), 363:251-273, 2003.
[12] X. Shi and Y. Wei. A sharp version of Bauer-Fike's theorem. J. Comput. Appl. Math., 236(13):3218-3227, 2012.
[13] B. Zalar. Linear operators preserving the sign-real spectral radius. Linear Algebra and its Applications (LAA), 301(1-3):99-112, 1999.

