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Abstract. Verification methods provide mathematically correct error bounds for the solution of4
a numerical problem. That includes the proof of solvability of the problem and often uniqueness of the5
solution within the computed bounds. There are many verification methods for standard problems6
in numerical analysis, including linear and nonlinear systems of equations, matrix decompositions,7
eigenproblems, local and global optimization, ordinary and partial differential equations. Many of8
those verification methods are included in INTLAB, the Matlab/Octave toolbox for reliable comput-9
ing. Despite several efforts, the solution of general sparse linear systems was an open problem. There10
are satisfactory algorithms for systems with symmetric positive definite input matrix. To that end11
error bounds for the solution of Ax = b with general matrix A could be computed using ATAx = AT b,12
but that reduces the applicability in double precision to matrices with condition number up to 108.13

We give in this note an algorithm to compute entrywise error bounds for the solution of general14
real or complex sparse systems with condition number up to the limit 1016. Our algorithm splits into15
three subalgorithms for symmetric positive definite, symmetric indefinite and general input matrix16
A. It is based on a mathematically correct lower bound on the smallest singular value σmin(A). A17
key point is a factorization L1L2 such that L1 and L2 have identical sets of singular values with the18
smallest one close to σmin(A)

1/2. A mathematically correct lower bound on σmin(L1) = σmin(L2)19
is then computed using LT

1 L1. Numerical evidence suggests that bounds for the solution of a linear20
system are computed for condition numbers up to 1016, and that often the bounds for all entries are21
close to maximal accuracy, i.e., the bounds differ by few bits.22

Based on that an alternative approach will be presented in Part II of this note. Those methods23
are simpler, but often slower. However, they are sometimes more stable, i.e., may produce verified24
inclusions where the methods of this Part I fail.25

Both approaches for square linear systems will be used in Part II of this note to compute verified26
error bounds for the solution of least squares problems and for underdetermined linear systems.27
Inclusions of the solution of general real or complex systems of nonlinear equations with sparse28
Jacobi matrix are computed by transforming the problem into a linear system with point matrix and29
interval right hand side.30
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1. Introduction. Standard algorithms to solve numerical problems, e.g. as pro-34

vided in Matlab [33], are mostly reliable, and usually they produce accurate results.35

However, there are exceptions. To cite Vel Kahan, “Numerical problems with standard36

numerical algorithms are rare; rare enough not to worry about all the time, but not37

yet rare enough to ignore them”.38

The purpose of verification methods is to provide rigorous error bounds for the39

solution of numerical problems. The bounds are computed in pure floating-point40

arithmetic and they are true with mathematical certainty. That includes the proof of41

solvability of the problem and possibly uniqueness of the solution within the computed42

bounds.43

Verification algorithms are available for many standard numerical problems in-44

cluding systems of linear and nonlinear equations, eigenproblems, local and global45

optimization, ordinary and partial differential equations, and more. For overviews46
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2 S. M. RUMP

cf. [37, 49, 41] and the literature cited over there. Many verification algorithms are47

included in INTLAB [47], the Matlab/Octave toolbox for reliable computing.48

For systems of linear equations with full matrix general purpose verification meth-49

ods are available. They prove to be reliable, i.e., even for ill-conditioned matrices50

narrow bounds for the solution are computed. For other numerical problems such51

as ordinary or partial differential equations there is a vast literature, cf. for exam-52

ple [30, 35, 2, 25, 31, 3, 4, 5], however, it seems difficult to provide general purpose53

verification algorithms.54

An open problem, which is part of the Grand challenges [38], are verification55

methods for systems of linear equations with sparse matrix. There are only satisfac-56

tory algorithms for systems with symmetric positive definite input matrix.57

For given symmetric (positive definite) A it is proposed in [45] to compute an58

approximation s̃ of the smallest singular value σmin(A) of A, set s ∶= 0.9s̃, factor59

B ∶= A− sI into B ≈ G̃G̃T together with an upper bound e on ∥E∥1 for E ∶= G̃G̃T −B.60

Since G̃G̃T is positive semidefinite, it follows that ∥E∥2 ⩽ ∥E∥1 because E is symmetric61

and62

(1.1) σmin(A) = σmin(G̃G̃T + sI −E) ⩾ σmin(G̃G̃T + sI) − ∥E∥2 ⩾ s − e .63

We put “positive definiteness” in quotes because it is not a prerequisite for the method64

but follows a posteriori. Later (cf. [53]) that method used a priori estimates on ∥E∥265

based on Demmel’s result [9], see also [14, Theorem 10.5]. If σmin(A) ⩾ α > 0, then A66

is nonsingular, and for an approximate solution x̃ of a linear system Ax = b it follows67

∥A−1b − x̃∥∞ ⩽ ∥A−1b − x̃∥2 ⩽ α−1∥b −Ax̃∥2.68

The method in (1.1) might be applied to ATA for general A, however, that squares69

the condition number and limits applications to cond(A) ≲ 108 in double precision70

(binary64). That is the reason why [49, Challenge 10.15] asks for a verification method71

for sparse linear systems of reasonable size with cond(A) ⩾ 1010.72

Most methods to solve full linear systems use an approximate inverse as precon-73

ditioner which is prohibitive for sparse system matrix. The method [40] replaces an74

approximate inverse by the approximate solution of n linear systems with the columns75

of the identity matrix as right hand side.76

For general symmetric sparse matrix a factorization A ≈ L̃1L̃
T
2 obtained by fac-77

toring D =D1D2 of an LDLT factorization and setting L̃1 ∶= LD1 and L̃2 ∶= LDT
2 was78

proposed in [45], and similarly A ≈ L̃M̃T for general A with computing L̃ and M̃ by79

an LU -decomposition. Lower bounds of σmin(A) follow by80

σmin(A) ⩾ σmin(L̃1)σmin(L̃2) − ∥A − L̃1L̃
T
2 ∥281

and similarly for A ≈ L̃M̃T , where the lower bounds on the smallest singular value82

of the factors follow by applying (1.1) to L̃T
1 L̃1 − s̃I and so forth. If the condition83

numbers of a factor F is of the order cond(A)1/2, then cond(FTF ) ≈ cond(A) and84

those methods work fine. However, not too many details were given in [45].85

Next we proved the following theorem [46, Theorem 1.1]:86

Theorem 1.1. Let symmetric A ∈ Rn×n, 0 < λ̃ ∈ R and L̃1, D̃1, L̃2, D̃2 ∈ Rn×n be87

given. If the inertia of D̃1 and D̃2 are equal, then for any matrix norm88

(1.2) σmin(A) > λ̃ −max{∥A − λ̃I − L̃1D̃1L̃
T
1 ∥, ∥A + λ̃I − L̃2D̃2L̃

T
2 ∥}.89

If all eigenvalues of D̃1 are positive, then90

(1.3) σmin(A) > λ̃ − ∥A − λ̃I − L̃1D̃1L̃
T
1 ∥.91
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VERIFIED ERROR BOUNDS FOR SPARSE SYSTEMS PART I 3

This approach needs two LDLT -decompositions and is applicable for condition num-92

bers of A close to u−1 ≈ 1016. In [48] it was proposed to apply Theorem 1.1 to the93

augmented matrix B ∶= ⎛⎝
0 AT

A 0

⎞
⎠. That symmetric matrix has the same condition94

number as A because its eigenvalues are ±σi(A). For the time being the approaches95

in [45, 46, 48] were not further pursued because the symmetric pivoting of the LDLT -96

decomposition was not stable enough.97

Nowadays good scaling and equilibration routines are available [11, 12] making98

those methods attractive. That was observed by Terao and Ozaki [57] and triggered99

our note in two parts. They proposed to apply the idea in Theorem 1.1 to the100

augmented matrix B. For an approximation s̃ of the smallest singular value of B101

they compute L̃D̃L̃T ≈ B − sI with s ∶= 0.5s̃. Since for nonsingular A the inertia102

of B is known to be (−n,0, n), the lower bound on σmin(A) = σmin(B) ⩾ s̃ − ∥B −103

L̃D̃L̃T ∥2 follows if the inertia of D̃ is (−n,0, n) as well. They use in particular the104

preconditioning in [11] to ensure stability of the LDLT -decomposition. However,105

only the factors L̃, D̃ of the shifted matrix B − s̃I are available, not of B itself. It106

was proposed and analysed in [53] that nevertheless a residual iteration based on L̃, D̃107

works, and that is used by Terao and Ozaki [57].108

In this note we treat three cases separately, namely symmetric (positive definite),109

symmetric indefinite and general matrices. For the first case we improve the bound110

(1.1) in [53] utilizing sparsity and Perron-Frobenius Theory. For the second case111

we factor a symmetric matrix A into A ≈ F1F2 with F1, F2 having identical sets of112

singular values, and numerical evidence suggesting cond(F1) ≈ cond(A)1/2. Then we113

apply (1.1) to F1F
T
1 to compute a lower bound α on σmin(F1) = σmin(F2), such that114

σmin(A) ⩾ α2 − ∥A − F1F2∥2. For general matrices we use a similar scheme for the115

augmented matrix B.116

In all three cases the matrix A (or the augmented matrix B) is expressed as the117

product of two matrices F1F2. In contrast to A = LDLT this bears the advantage118

that the entries of the residual A−F1F2 (or B−F1F2) are one dot product each. Thus119

an inclusion of good quality can be computed using one of the many accurate dot120

product algorithms [32, 36, 10, 39, 61, 60]. In contrast, an inclusion of A − LDLT is121

computed in two steps with an interval factor in the second product.122

We want to stress that there is hardly a general purpose algorithm to solve sparse123

linear systems. Indeed we tried many examples from the Suite Sparse Matrix Collec-124

tion [8] and found linear systems where our verification method is by two orders of125

magnitude faster than the built-in backslash Matlab operator (but also vice versa).126

That should not happen because our verification methods include an approximate127

solution of the linear system.128

As test matrices we took all real square matrices of the Suite Sparse Matrix129

Collection with dimension n satisfying 104 ⩽ n ⩽ 106 and estimated condition number130

κ with 1010 ⩽ κ ⩽ 1016. That resulted in 306 test cases. In 300 cases we could compute131

accurate verified inclusions of the solution, usually about a factor 3 to 10 slower than132

Matlab’s backslash operator, but also sometimes faster. That is the price we pay for133

mathematically rigorous bounds.134

Our primary target is that our algorithm ends successfully, i.e., verifies non-135

singularity of the input matrix and computes error bounds for the solution of the linear136

system. Our algorithm is tuned to that goal accepting some penalty in computing137

time. Besides the mathematically rigorous verification, the second focus is to compute138

accurate bounds for the solution, in many cases with maximum relative error ≲ 10−15,139
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4 S. M. RUMP

i.e., close to maximally accurate bounds in double precision (binary64). That allowed140

to compute the relative error of the approximation produced by Matlab’s backslash141

operator. That was often of the order 10−8, but also worse. In many cases our142

algorithm was twice as fast and more accurate than the method proposed in [57].143

We assume a set of floating-point numbers F with an arithmetic according to the144

IEEE754 floating-point standard [18] to be given. We use double precision (binary64)145

in a nearest rounding1 with relative rounding error unit u = 2−53 ≈ 10−16, and we146

use directed rounding downwards (towards −∞) and upwards (towards +∞). We use147

float(⋅) to indicate the result of an expression with all operations executed in floating-148

point. If the order of execution is not unique, results are true for any order. The error149

of a single operation ○ ∈ {+,−,×, /} of floating-point numbers a, b is bounded by [14]150

(1.4) ∣float(a ○ b) − a ○ b∣ ⩽ u ⋅min ( ∣a ○ b∣ , ∣float(a ○ b)∣ ) .151

For ○ ∈ {+,−} this is also true for compatible vectors or matrices a, b with comparison152

and absolute value to be understood entrywise. When using a directed rounding (1.4)153

remains true when replacing u by 2u.154

Our goal is to calculate mathematically correct but also accurate inclusions for the155

solution of a sparse linear system Ax = b. To that end we use the following notations:156

(1.5)

JexprK2,1 evaluation in extended precision, result rounded into F
⟨expr⟩ inclusion computed using directed roudings in F
⟪expr⟫2,1 inclusion computed in extended precision and rounded into F

157

We added the subscripts 2,1 to emphasize that the evaluation is performed in extended158

precision but the result is rounded into working precision, i.e., into F.159

The notations in (1.5) are used exclusively for expressions where each entry is160

computable by a dot product. For the two latter notations for inclusions the expression161

has to satisfy an additional property: When computing the expression in rounding162

downwards, then the computed result is a mathematically correct lower bound of the163

true result, and similarly for rounding upwards. Typical examples for J⋅K2,1 are Ax−b164

or A −RTR. The second expression is not suitable for ⟨⋅⟩ or ⟪⋅⟫2,1 because the result165

computed in rounding downwards is not necessarily a correct lower bound of the true166

result. It becomes suitable by rewriting it into RTR −A.167

For the implementation of J⋅K2,1 and ⟪⋅⟫2,1 any of the many accurate dot product168

algorithms is suitable. There is a new, very fast Matlab implementation which will169

be used in Part II of this note.170

In [57] the toolbox Advanpix [15] was used, a multiple-precision Matlab package171

emulating a large number of Matlab’s algorithms. In order to have a fair comparison172

with [57] we used [15] in this note as well. The number d of decimal digits of precision173

can be freely specified by mp.Digits(d). The package includes a particularly fast174

implementation of extended precision arithmetic to be specified by mp.Digits(34)175

with relative rounding error unit 2−113. This precision is what we are using throughout176

this note. Sample executable Matlab/INTLAB codes for the expressions in (1.5) for177

1Our results in rounding to nearest are true for any rounding of ties.
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VERIFIED ERROR BOUNDS FOR SPARSE SYSTEMS PART I 5

Ax − b are178

(1.6)

JexprK2,1 res = double(A ∗ mp(x) − b);
⟨expr⟩ setround(−1); resinf = A ∗ x − b;

setround(+1); ressup = A ∗ x − b;

res = infsup(resinf,ressup);
⟪expr⟫2,1 setround(−1); resinf = double(A ∗ mp(x) − b);

setround(+1); ressup = double(A ∗ mp(x) − b);
res = infsup(resinf,ressup);

179

Note that the type cast mp(x) ensures that A*mp(x) is computed in extended pre-180

cision with extended precision result, and in turn that ensures that the difference181

in A*mp(x)-b is computed in extended precision as well. Moreover, the typecast182

double(⋅) in the implementation of ⟪⋅⟫2,1 respects the rounding mode so that resinf⩽183

Ax − b ⩽ressup holds true.184

It is common to use ∥P ∥2 ⩽
√

∥P ∥1∥P ∥∞ to bound the spectral norm of a matrix185

P . However, Perron-Frobenius Theory and [7] imply for any positive vector x the186

better bound187

(1.7) ∥P ∥2 ⩽ ∥∣P ∣∥2 = σmax(∣P ∣) =
√
λmax(∣P ∣T ∣P ∣) ⩽ max

k

(∣P ∣T (∣P ∣x))
k

xk
188

for general P and189

(1.8) ∥P ∥2 ⩽ max
k

(∣P ∣x)k
xk

190

for symmetric/Hermitan P . To that end we used in [52] the following algorithm:191

(1.9)

function N = NormBnd(A,herm)
x = ones(size(A,1),1); M = [12]; iter = 0; A = mag(A);
while(abs(diff(M)/sum(M)) > .1) && (iter < 10)
iter = iter + 1;

y = A ∗ x;

if herm,y = A′ ∗ y;end

x = y./x;

M = [min(x)max(x)];
scale = max(y);
x = max(y/scale,1e − 12);

end

setround(1)
if herm, N = max((A ∗ x)./x); else N = max(sqrt((A′ ∗ (A ∗ x))./x)); end

end

192

That algorithm is used in [57] as well. Compared to sqrt(norm(A,1)*norm(A,inf))193

numerical evidence suggests that few power iterations in (1.9) starting with the vector194

x of all 1′s is faster and improves the bound by a factor 2.195

This manuscript is for review purposes only.



6 S. M. RUMP

We use standard eigenvalue perturbation bounds [58] for symmetric or Hermitian196

n × n matrices A,E, i.e.,197

(1.10) λk(A) +λn(E) ⩽ λk(A+E) ⩽ λk(A) +λ1(E) ⇒ ∣λk(A+E) −λk(A)∣ ⩽ ∥E∥2198

for λ1 ⩾ . . . ⩾ λn denoting the eigenvalues and k ∈ {1, . . . , n}. Moreover, forA,B ∈ Rn×n199

we use [17, Theorem 3.3.16]200

(1.11) σmin(AB) ⩾ σmin(A)σmin(B) .201

A real or complex signature matrix S is diagonal with ∣Skk ∣ = 1 for all k. For vectors202

(and similarly for matrices) we use ∣ ⋅ ∣ for the vector of absolute values, and x ⩽ y203

denotes entrywise comparison.204

We begin this note with some improved floating-point error estimates on matrix205

products, on the 2-norm of residuals and an a priori error estimate of Cholesky decom-206

position, improving on the mostly used γk ∶= ku
1−ku , cf. [14]. In particular we present207

computable bounds on the error of matrix products and residuals when using directed208

rounding. In the following sections we introduce our methods for linear systems with209

symmetric (positive definite), with symmetric indefinite, and with general matrix.210

All three methods are based on the computation of a lower bound of the smallest211

singular value of some symmetric (Hermitian) matrix. We discuss how to obtain an212

approximation of the smallest singular value, and we show how a true lower bound is213

used to obtain rigorous and sharp error bounds for A−1b.214

Extra sections discuss scaling and equilibration, as well as some factorization of215

Hermitian 2×2 matrices. We show how to handle complex linear systems, data afflicted216

with tolerances, and present Algorithm VerifySparselss to compute rigorous error217

bounds for a linear system with real or complex sparse matrix and multiple right hand218

sides. This is our main algorithm and it chooses between subalgorithms for symmetric219

(positive definite), symmetric indefinite and general matrix, and real or complex data.220

We compare our algorithm with that in [57] and close the paper with a compilation221

of computational results.222

2. Floating-point error estimates. The result c of a floating-point operation223

is called faithful if there is no other floating-point number between c and the true224

real result. In IEEE754 operations with rounding to nearest, towards ±∞ or towards225

zero are faithful. We begin with error bounds for the computed approximation of dot226

products and matrix products.227

For x, y ∈ Fn with at most µ nonzero products the linear estimate228

(2.1) ∣float(xT y) − xT y∣ ⩽ µu∣x∣T ∣y∣229

was shown in [23]. The bound is true for any order of evaluation of xT y and without230

restriction on the dimension n. Hence, the error of the floating-point approximation231

of AB for A ∈ Fm×k,B ∈ Fk×n is bounded by232

(2.2) ∣float(AB)ij − (AB)ij ∣ ⩽ µu(∣A∣∣B∣)ij233

for µ denoting the maximum number of nonzero products to compute the entries of234

AB. To obtain a computable bound using (2.2) the extra matrix product P ∶= ∣A∣∣B∣235

with error bound is necessary. That extra matrix product can be avoided by using236

directed rounding. To that end we need an error estimate like (2.2) for floating-point237

dot products with directed rounding. In that case a restriction of k is mandatory238
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VERIFIED ERROR BOUNDS FOR SPARSE SYSTEMS PART I 7

because in rounding upwards, for example, the result of 1+ e for tiny positive e is the239

successor of 1, so that the error is about 2u.240

The first bound for directed rounding was given by Ozaki [42], namely ∣float(AB)−241

AB∣ ⩽ 2(µ + 4)uAB. It was designed for mixed-precision calculations. The bound242

requires 4µ ⩽ u but also that both A,B are nonnegative. For general A,B it was243

shown in [27, Corollary 4] that244

(2.3) ∣float(AB)ij − (AB)ij ∣ ⩽ 2µu(∣A∣∣B∣)ij245

is true for computing float(AB) using a faithful rounding provided that µ ⩽ (2u)−1/2.246

The assumption µ ⩽ (2u)−1/2 bounding the number of nonzero products seems247

hardly an obstacle when using double precision (binary64), i.e. µ ⩽ 226 = 67,108,864248

nonzero products per entry. But if so, the following Lemma 2.1 may be used up to249

µ ⩽ 2,251,799,813,685,248 ≈ 2.2 ⋅ 1015 nonzero products per entry. Note that it is250

mandatory to bound the number of nonzero products µ, cf. [27].251

Lemma 2.1. Let A ∈ Fm×k and B ∈ Fk×n be given, and let float(AB) be calculated252

in a faithful-rounding. Denote by µ the maximum number of nonzero products to253

compute the entries of AB. If 2(µ − 1)u ⩽ 1, then254

(2.4) ∣float(AB)ij − (AB)ij ∣ ⩽ (2µ + 1)u(∣A∣∣B∣)ij .255

Proof. Let z ∈ Fn be a vector of floating-point numbers, and let float(∑n
k=1 zk) be256

computed in some faithful rounding in any order. Then [26, Corollary 3.3] shows257

(2.5) ∣float(
n

∑
k=1

zk) −
n

∑
k=1

zk ∣ ⩽ 2(µ − 1)u
n

∑
k=1

∣zk ∣258

provided that the vector z has not more than µ nonzero elements. Let x, y ∈ Fn be259

given, denote zk ∶= float(xkyk) for k ∈ {1, . . . , n}, and let float(xT y) = float(∑n
k=1 zk),260

all computed in some faithful rounding. Then261

∣float(xkyk) − xkyk ∣ ⩽ 2u∣xkyk ∣ and ∣zk ∣ = ∣float(xkyk)∣ ⩽ (1 + 2u)∣xkyk ∣ .262

Hence the definition of µ and using 2(µ − 1)u ⩽ 1 shows263

∣float(xT y) − xT y∣ ⩽ ∣float(∑n
k=1 zk) −∑

n
k=1 zk ∣ + ∣∑n

k=1(zk − xkyk)∣

⩽ 2(µ − 1)u∑n
k=1 ∣zk ∣ + 2u∑n

k=1 ∣xkyk ∣

⩽ [2(µ − 1)u(1 + 2u) + 2u] ∣xT ∣∣y∣

⩽ 2(µ + 1)u∣xT ∣∣y∣

264

and the result follows by applying this estimate to each entry of AB.265

We start with a mathematically correct a priori error bound for a matrix product AB266

and for a residual AB −C without computing ∣A∣∣B∣.267

Lemma 2.2. Let A ∈ Fm×` and B ∈ F`×n be given, and let µi and νj denote the268

number of nonzero elements in the i-th row of A and the j-th column of B, respectively.269

Furthermore, denote by %i and σj the Euclidean norm of the i-th row of A and the j-th270

column of B, respectively. Then using a nearest-rounding and any order of evaluation271

(2.6) ∥float(AB) −AB∥2 ⩽ u
n

∑
k=1

min(µk, νk)ρkσk272
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8 S. M. RUMP

without limit on n. For C ∈ Fm×n and E ∶= float(AB −C) it follows273

(2.7) ∥float(AB −C) − (AB −C)∥2 ⩽ u(∥E∥2 +
n

∑
k=1

min(µk, νk)ρkσk)274

without limit on n. Denote by µ the maximum number of nonzero products in the275

products (AB)ij. If a faithful-rounding is used and µ ⩽ (2u)−1/2, then (2.6) and (2.7)276

remain true when replacing u by 2u. For faithful-rounding and 2(µ − 1)u ⩽ 1, (2.6)277

and (2.7) remain true when replacing u by 2u and min(µk, νk) by min(µk, νk) + 1.278

Proof. The computation of the element (AB)ij involves at most min(µi, νj) non-279

zero products. Hence (2.2) implies for a nearest-rounding280

∣float(AB)ij − (AB)ij ∣ ⩽ min(µi, νj)u(∣A∣∣B∣)ij ⩽ min(µi, νj)u%iσj .281

Let %̂ and σ denote the column vectors with elements µi%i and σj , respectively. Then282

using the outer product ρ̂σT it follows283

∥float(AB) −AB∥2 ⩽ ∥ ∣float(AB) −AB∣ ∥2 ⩽ ∥%̂σT ∥2u = σT ρ̂u = u
n

∑
k=1

σkµkρk.284

Denoting similarly by σ̂ the column vector with elements νjσj gives285

∥float(AB) −AB∥2 ⩽ σ̂T ρu = u
n

∑
k=1

νkσkρk286

and implies (2.6). Using P ∶= float(AB) and (1.4) gives287

∥float(AB −C) − (AB −C)∥2 = ∥float(P −C) − (AB −C)∥2

= ∥float(P −C) − (P −C) + (P −AB)∥2

⩽ u∥E∥2 + ∥P −AB)∥2

288

and proves (2.7). For faithful rounding the estimates follow by (2.3) and (2.4).289

The application of Lemma 2.2 is as follows. We compute M1 = A*B in rounding290

upwards with the estimate α ∶= 2u∑n
k=1 min(µk, νk)ρkσk as in (2.3). That is an a priori291

bound for the error of ∥float(AB) − AB∥. If not sufficiently accurate, we calculate292

M0 = A*B in rounding downwards. Hence M0 ⩽ AB ⩽ M1 implies the improved a293

posteriori bound ∥float(AB) −AB∥2 ⩽ ∥max(∣M0∣, ∣M1∣)∥2 .294

Corollary 2.3. Let A ∈ Fn×n be given and denote by µk the number of nonzero295

elements in the k-th row of A. Then for a nearest-rounding296

(2.8) ∥float(AAT ) −AAT ∥2 ⩽ u
n

∑
k=1

µk(AAT )kk297

is true without limit on n. If maxµk ⩽ (2u)−1/2 and rounding upwards is used, then298

(2.9) ∥float(AAT ) −AAT ∥2 ⩽ u
n

∑
k=1

µk (float(AAT ))
kk
.299

If maxµk ⩽ u−1/2, then (2.9) remains true when replacing µk by µk + 1.300
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Proof. Denote by %k the Euclidean norm of the k-th row of A. Then Lemma 2.2301

implies302

∥float(AAT ) −AAT ∥2 ⩽ u
n

∑
k=1

µkρ
2
k = u

n

∑
k=1

µk(AAT )kk .303

In rounding upwards (AAT )kk ⩽ (float(AAT ))
kk

and the results follows.304

We often need estimates of a residual. For example, if C ≈ AB is a decomposition,305

we need an upper bound for ∥C − AB∥2. We compute that bound in three stages.306

First, we use the a priori estimate in (2.7). If not successful, then we compute a307

better bound using an inclusion of C − AB obtained by using rounding downwards308

and upwards. If still not successful, accurate dot products are used.309

Next we list executable Matlab code for the three stages to compute upper bounds310

for the spectral norm of a general residual C−AB. That is sufficient for our verification311

methods because we construct decompositions with two factors by transforming, e.g.,312

M ≈ LDLT into M ≈ L1L2. We assume that the maximum number µk of nonzero313

products in the computation of the entries of AB is restricted by maxµk ⩽ (2u)−1/2 =314

67,108,864. If only maxµk ⩽ u−1/2 ≈ 4.5 ⋅ 1015 is satisfied, then the code is adapted315

following Corollary 2.3.316

Lemma 2.4. Let A ∈ Fm×k, B ∈ Fk×n and C ∈ Fm×n. Then executing the Matlab317

code318

(2.10)

setround(1); Q = A ∗ B − C;

mu = sum(spones(A),2); nu = sum(spones(B));
rho = vecnorm(A,2,2); sigma = vecnorm(B,2);
errAB = (min(mu′,nu). ∗ sigma) ∗ rho;

alpha = NormBnd(Q,false) + pow2(−52) ∗ (NormBnd(C,false) + errAB);

319

implies ∥C −AB∥2 ⩽ α. Executing after (2.10) the Matlab code320

(2.11)
setround(−1); Q = max(Q,abs(A ∗ B − C));
beta = NormBnd(Q,false);

321

implies ∥C −AB∥2 ⩽ β. Furthermore, after executing322

(2.12)

setround(0); mp.Digits(34);
F = C − mp(A) ∗ B; u = pow2(−53); v = pow2(−113);
setround(1); G = double(abs(F));
mu = sum(spones(A),2); nu = sum(spones(B));
rho = vecnorm(A,2,2); sigma = vecnorm(B,2);
normG2 = NormBnd(G,false);
errAB = (min(mu′,nu). ∗ sigma) ∗ rho;

gamma = normG2 + v ∗ (normG2 + errAB);

323

it follows ∥C − AB∥2 ⩽ γ. Finally, let A ∈ Fn×k, B = SAT for a signature matrix324

This manuscript is for review purposes only.



10 S. M. RUMP

S ∈ Fk×k and C ∈ Fn×n. Then executing325

(2.13)

setround(0); mp.Digits(34);
F = C − mp(A) ∗ B; v = pow2(−113);
setround(1); G = double(abs(F));
normG2 = NormBnd(G,false);
errAtA = sum(spones(A),2)′ ∗ sqr(vecnorm(A,2,2));
alpha = normG2 + v ∗ (normG2 + errAtA);

326

implies ∥C −AB∥2 ⩽ α.327

Remark 2.5. In order to compute mathematically correct bounds directed round-328

ings are used. Moreover, in the calls of NormBnd from (1.9) the second parameter can329

be replaced by true for Hermitian input. In a practical implementation the three oc-330

currences of the matrix G in (2.12) would be replaced by one matrix F to save memory,331

in particular for large and sparse input A,B,C.332

Remark 2.6. For the codes in (2.12) it is not necessary to compute upper bounds333

for the Euclidean norms %i and σj in extended precision because these computations334

are perfectly well conditioned. Note that the computation of µ and ν is error-free.335

Proof. For the first code (2.10) the rounding upwards implies that the computed336

quantities mu, nu, rho, sigma are upper bounds of µ, ν, %, σ in Lemma 2.2, so that337

(2.7) proves ∥C −AB∥2 ⩽ α. Note that 2u = 2−52 is used because of upward directed338

rounding. For (2.11) let339

setround(−1); Q1 = A ∗ B − C;

setround(+1); Q2 = A ∗ B − C;
340

Note that Q2 is the matrix Q in (2.10) and Q1 is implicitly computed in (2.11). Then341

the rounding modes imply2 Q1 ⩽ AB − C ⩽ Q2 with entrywise comparison. Hence342

∣AB −C ∣ ⩽ max (∣Q1∣, ∣Q2∣) and ∥C −AB∥2 ⩽ β follows.343

The third code (2.12) uses the multiple precision toolbox [15] and computes the344

residual F = C - mp(A)*B in extended precision and rounding to nearest with relative345

rounding error v ∶= 2−113. The rounding upwards in the third line implies that the346

quantities mu, nu, rho, sigma are upper bounds of µ, ν, %, σ in Lemma 2.2. Denote347

M ∶= mp(A) ∗ B. Then F = fl(C −M) and (2.6) implies348

(2.14) ∥C −AB∥2 ⩽ ∥C −M +M −AB∥2 ⩽ (1 + v)∥F ∥2 + v
n

∑
k=1

min(µk, νk)ρkσk .349

The toolbox Advanpix [15] respects the rounding mode, in particular the type cast350

double from mp-tpye to binary64. Hence the double precision matrix G satisfies ∣F ∣ ⩽351

G by the third line, and therefore ∥F ∥2 ⩽ ∥∣F ∣∥2 ⩽ ∥G∥2 ⩽ normG2 and ∥C −AB∥2 ⩽ γ.352

The fourth code (2.13) uses again the multiple precision toolbox [15]. By assump-353

tion the set of nonzero elements of A and B are identical, and rows and corresponding354

columns of A and B have the same Euclidean length. When using the code (2.12) to355

bound ∥C −AB∥2, then356

mu = sum(spones(A),2) = sum(spones(B)) = nu′357

2Note that this is true for using A*B-C, but would not necessarily be true when using C-A*B.
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and358
rho = vecnorm(A,2,2) = vecnorm(B,2)′ = sigma′359

and the result follows.360

Note that (2.14) implies that ∥C−AB∥2 is very close to ∥F ∥2 and therefore to ∥G∥2, so361

that the overestimation of the computed γ in (2.12) is basically ∥G∥2 ⩽ maxk σk(∣G∣).362

For the special case of Cholesky decomposition A ≈ R̃T R̃ there is an a priori363

estimate [53, Lemma 2.2], [14, Theorem 10.5] of the residual ∥R̃T R̃ − A∥2 without364

computing R̃T R̃. We improve this estimate by applying Perron-Frobenius Theory.365

Lemma 2.7. Let symmetric A ∈ Fn×n be given and assume that the floating-point366

Cholesky factorization of A runs to completion. Denote the computed factor by R̃,367

and let the vector µ ∈ Nn consist of µi denoting the number of nonzero elements in368

the i-th column of R̃ and assume umaxµk < 1. Denote by Φ ∈ Rn×n the matrix with369

Φij ∶= min(µi, µj) + 1 and by D ∈ Rn×n the diagonal matrix with Dkk = ( Akk

1−Φkku
)

1/2
.370

Then for a nearest-rounding in the absence of underflow and overflow ∆A ∶= R̃T R̃−A371

satisfies372

(2.15) ∥∆A∥2 ⩽ u∥DΦD∥2.373

If a faithful-rounding is used and maxµk ⩽ (2u)−1/2, then the estimate remains true374

when replacing u by 2u.375

Remark 2.8. The matrix Φ is a full matrix. Hence computing (2.15) seems to be376

costly, in particular for sparse A. However, Φ has a special structure which is utilized377

in Corollary 2.9 to compute an improved upper bound for ∥∆A∥2 efficiently.378

Proof. In [51] it was shown that379

∣∆A∣ij ⩽ (i + 1)u(∣R̃T ∣∣R̃∣)ij380

for 1 ⩽ i, j ⩽ n. The number of nonzero products in the computation of R̃ij does not381

exceed min(µi, µj), plus a square root in case i = j. Using the improved error estimate382

in Lemma 2.2 and carefully going through the proof of Theorem 4.4 in [51] gives383

∣∆A∣ij ⩽ ϕiju(∣R̃T ∣∣R̃∣)ij for ϕij ∶= min(µi, µj) + 1.384

Following the proof of [14, Theorem 10.5] denote the i-th column of R̃ by r̃i. Then385

∥r̃i∥2
2 = r̃Ti r̃i ⩽ Aii + ∣∆Aii∣ ⩽ Aii + ϕiiur̃

T
i r̃i386

and ∥r̃i∥2
2 ⩽ (1 − ϕiiu)−1Aii. Then Cauchy-Schwarz’s inequality implies387

(2.16)

∣∆A∣ij ⩽ ϕiju∣r̃Ti ∣∣r̃j ∣ ⩽ ϕiju∥r̃i∥2∥r̃j∥2

⩽ ( Aii

1 − ϕiiu
)

1/2
ϕij (

Ajj

1 − ϕjju
)

1/2

u ⩽ (DΦD)ij u
388

and proves (2.15) and the lemma.389

By definition DΦD is symmetric positive definite, so ∥DΦD∥2 is equal to the largest390

eigenvalue, i.e., the Perron root of DΦD. Hence DΦD ⩾ 0 and Perron-Frobenius391

Theory [7], [16, Theorem 8.1.26] imply392

(2.17) ∥DΦD∥2 ⩽ max
k

(DΦDx)k
xk

for every positive x ∈ Rn .393
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Moreover, a power iteration converges monotonically to ∥DΦD∥2 for any positive394

starting vector x. A problem is, however, that the matrix Φ if full. Fortunately, the395

product Φx for x ∈ Fn can be computed efficiently as follows. My dearest thanks to396

Marko Lange [28] who provided the ingenious piece of Matlab code in (2.18).397

Corollary 2.9. Let 0 < v ∈ Rn be sorted in ascending order and define Φ ∈ Rn×n398

by Φij ∶= min(vi, vj). Then for x ∈ Rn the vector w computed by the code399

(2.18)

rcx = cumsum(x,1,′ reverse′);
vx = v. ∗ x;

w = cumsum(vx) − vx + v. ∗ rcx;

400

is equal to Φx.401

It is not difficult to verify that indeed w = Φx. The requirement that v is sorted is402

crucial, and that is no obstacle because of the definition of Φ.403

The previous estimate [53, Lemma 2.2], [14, Theorem 10.5] continues from (2.16)404

by replacing the entries ϕij of Φ in (2.15) by
√
ϕiiϕjj . That implies ∥∆A∥ij ⩽ ddT405

for d denoting the column vector with dk = (ϕkkAkk

1−ϕkku
)

1/2
and the estimate ∥∆A∥2 ⩽406

∥ddT ∥2 = dT d. Therefore407

(2.19) ∥∆A∥2 ⩽
n

∑
k=1

(µk + 1)u
1 − (µk + 1)u

Akk.408

We later show numerical evidence that the new estimate (2.15) together with Corollary409

2.9 improves upon the original one in [53, Lemma 2.2] by an order of magnitude and410

more, and upon (2.19) by about a factor 1.5. Executing the code in (2.18) in rounding411

upwards computes an upper bound for Φx because the quantities involved are positive.412

3. Scaling, equilibration and approximation of smallest singular value.413

Our verification method requires a Cholesky and/or LDLT -decomposition of a sym-414

metric matrix A ∈ Fn×n. To that end it is important to scale the matrix. Denote415

by κ(A) the 2-norm condition number of A and by Dn the set of nonsingular diag-416

onal n × n matrices. For Hermitian A an optimal diagonal scaling [6, Lemma 1] is417

symmetric418

inf
D1,D2∈Dn

κ(D1AD2) = inf
D∈Dn

κ(DAD) .419

If for positive definite A the diagonal is scaled to 1, then its condition number is at420

least not far from the optimal scaling by [54, Theorem 4.3]421

κ(A) ⩽ q min
D∈Dn

κ(DHAD)422

where q denotes the maximum number of nonzero elements per row of A. In order to423

avoid rounding errors by scaling we use424

d = pow2(round(log2(1./sqrt(diagA)))); A = (d. ∗ A). ∗ d′;425

for symmetric positive definite A. Note that d is a vector. For D denoting the diagonal426

matrix with diagonal d, the command (d.*A).*d’ is an efficient computation ofDAD.427

No rounding errors occur because the elements of d are powers of 2. For a linear system428

Ax = b we scale the right hand side by b = d.*b. If x̂ is the solution of the scaled429

linear system DADx̂ =Db, then Dx̂ is the solution of the original linear system.430
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Practical experience suggests that an equilibration with ∣A∣ being close to a scalar431

multiple of a doubly stochastic matrix is advisable [13, 1]. To that end the famous432

Sinkhorn-Knopp algorithm is the algorithm of choice. For a good introduction and433

historical remarks see [24]. For symmetric A a vector d is computed by the simple434

iteration d = 1./(abs(A)*d). Starting with d = ones(n,1) it converges to a vector435

δ if, and only if, A has total support with ∣DAD∣ being a scalar multiple of a doubly436

stochastic matrix for D = diag(δ). In our case it is not necessary to compute δ with437

high accuracy because its entries are rounded to the nearest power of 2 to avoid438

rounding errors, and in our case a good starting vector for symmetric positive definite439

A is 1./sqrt(diag(A)). We use 2 iteration steps, each scaling columns and rows:440

(3.1)

d = 1./sqrt(diagA);
for k = 1 ∶ 4, d = 1./(abs(A) ∗ d); end
A = (d. ∗ A). ∗ d′;

441

For symmetric but indefinite A diagonal elements may be zero, so the scaling (3.1)442

is not applicable. Several scalings DAD are possible, for example using D ∶= diag(d)443

with dk being the columnwise maximum, or Σ`∣Ak`∣. We use the Euclidean norm of444

columns together with the Sinkhorn-Knopp algorithm, i.e.,445

(3.2)

d = 1./vecnorm(A,2)′;
for k = 1 ∶ 4, d = 1./(abs(A) ∗ d); end
A = (d. ∗ A). ∗ d′;

446

The scaling of the right hand side and transformation of the solution is as before.447

For a general matrix we use Matlab’s equilibrate and add two Sinkhorn-Knopp448

iterations [24]:449

(3.3)

[p,row,col] = equilibrate(A,′ vector′);
for k = 1 ∶ 2

col = 1./(abs(A(p, ∶)′) ∗ row); row = 1./(abs(A(p, ∶)) ∗ col);
end

row = sign(row). ∗ pow2(round(log2(abs(row))));
col = sign(row). ∗ pow2(round(log2(abs(col))));
A = row. ∗ A(p, ∶). ∗ col′;

450

The outputs p, row, col of the function equilibrate are vectors. Denote the diago-451

nal matrices with row, col in the diagonal by R,C, respectively, and the permutation452

matrix mapping {1, . . . , n} into p by P . Then the equilibrated matrix is B ∶= RPAC453

with entries close to ±1 in the diagonal and all its off-diagonal entries limited by about454

1 in absolute value. After transforming the right hand side into c = row.*b(p,:), it455

follows A−1b = Cy for By = c. As in (3.2) we avoid rounding errors by replacing the456

entries of the vectors row and col by the nearest power of 2.457

As has been mentioned we need two kinds of decompositions, Cholesky and458

LDLT . Mathematically, pivoting is not necessary for symmetric positive input matrix459

A, however, permuting A may reduce the fill-in significantly. Therefore we use460

(3.4) [R,FLAG,p] = chol(A,′ vector′);461
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producing an error flag and permutation information. For the permutation matrix P462

mapping {1, . . . , n} into p it follows RTR ≈ PTAP . The latter matrix is A(p,p) in463

Matlab notation.464

Matlab offers two possibilities for scaling in the LDLT -decomposition of a real465

symmetric matrix, both based on Duff’s multifrontal method ”MA57“ [12]. First, a466

threshold for the pivot tolerance is introduced by the call467

(3.5) [L,D,p] = ldl(A,thresh,′ vector′);468

such that LDLT approximates A(p,p). A larger threshold requires more computing469

time but may produce a more stable result. The maximum threshold is thresh =470

0.5, and we always use this value.471

There may be an obstacle when applying ldl to an augmented matrix B ∶=472

⎛
⎝

0 AT

A 0

⎞
⎠. Here the blocks of D are all 2 × 2 with zero diagonal, see Lemma 9.1.473

In that case D should contain totally 2n nonzero entries for A ∈ Fn×n. However, it474

happens that (3.5) computes D with less nonzero elements, i.e., D is singular, even475

for moderate condition number. That happens when ldl is applied to the augmented476

matrix B and occurred in 54 out of 211 test cases. In such a case the part of L cor-477

responding to zero blocks in D are the rows of the identity matrix. So a remedy may478

be to replace the zero blocks of D by the corresponding parts of A(p,p). However, in479

that case the residual LDLT −A(p, p) is usually not small enough. Another remedy480

in that case nnz(D) < n may be to use481

(3.6) [L,D,p] = ldl(A + realmin ∗ speye(n),thresh,′ vector′); D(1 ∶ n + 1 ∶ n2) = 0;482

Then the factors L,D are practically unchanged by the tiny diagonal entries realmin,483

but that trick helps the algorithm to produce nonsingular D with diagonal entries of484

size realmin. The second statement sets the diagonal of D to zero so that all 2 × 2485

blocks have zero diagonal - as it should be from the beginning. However, that may486

produce subnormal entries in L, and arithmetical operations including subnormal487

numbers are known to be slow. Thus we replace realmin by 10−50:488

(3.7)

[L,D,p] = ldl(A + 1e − 50 ∗ speye(n),thresh,′ vector′);
D(1 ∶ n + 1 ∶ n2) = 0;

∀i, j ∶ ∣Lij ∣ ⩽ 10−30 ⇒ Lij = 0

489

In our application it is safe to use the absolute shift by 10−50 because the input490

matrix has a norm close to 1. However, that trick may produce quite some fill-in, in491

particular with numbers very small in magnitude. Therefore we set in addition entries492

in L smaller than 10−30 in magnitude to zero. That reduces the fill-in significantly493

and still produces a factor L which is sufficiently accurate for our purposes.494

Those tricks are necessary to cure the behaviour of Matlab’s ldl. The reason is495

that MA57 [12] uses a “zero pivot tolerance” 10−20. Unfortunately that applies not496

only to the entries of L but also to D, eventually producing a singular factor D. When497

changing the tolerance to zero, no singular factor D appears any more. In Matlab498

the user cannot change that tolerance. After reporting that behaviour to mathworks499

that may be possible in a future release and simplify our algorithms.500

Beyond (3.5) a second possibility is an additional scaling using501

[L,D,p,S] = ldl(A,thresh,′ vector′);502

This manuscript is for review purposes only.



VERIFIED ERROR BOUNDS FOR SPARSE SYSTEMS PART I 15

In that case LDLT approximates S(p,:)*A*S(:,p). For our purposes the additional503

scaling was sometimes useful but often counterproductive. Therefore we compute504

throughout this note LDLT -decompositions by (3.5), and if necessary by (3.7).505

In our methods we need an approximation of the smallest singular value of some506

matrices. Since the matrices are large, svd is much too costly, and because they are507

sparse it should not be used anyway. One possibility is svds(A,1,’smallestnz’).508

That routine is fast, however, often pretty inaccurate.509

In our applications we need approximations on σmin(A) only for symmetric A. In510

that case we may use511

(3.8) s = abs(eigs(A,1,′ smallestabs′)) .512

Although the routine asks for the smallest absolute value of an eigenvalue, the result513

may be negative, therefore abs(.) is used as in [57]. That seems a stable and accurate514

method for symmetric input matrix, however, it is sometimes slow. Routine eigs is515

based on some iteration using some decomposition of A. In our applications we already516

have a decomposition, therefore we will compute s̃(A,L) ≲ σmin(A) by517

(3.9) few inverse power iterations based on the factor L of A .518

The result is multiplied by 0.9 to (hopefully) ensure that it is strictly less than519

σmin(A). That is working well in our applications because A is symmetric.520

Next we show how a lower bound for the smallest singular value of A is used to521

obtain entrywise and accurate error bounds for an approximation x̃ of A−1b.522

4. Error bounds for A−1b based on a lower bound for σmin(A). In the523

following sections we will derive individual methods to compute a lower bound of the524

smallest singular value of a symmetric positive definite, symmetric and general A.525

Those methods include a decomposition of A allowing for a fast computation of an526

approximate solution of Ay = c. We abbreviate this by y = solve(A, c).527

Entrywise error bounds for the solution A−1b are obtained by the approach in528

[59]. To further improve the accuracy we store an approximate solution as a pair529

(x̃, ỹ) interpreted as an unevaluated sum x̃+ ỹ. This technique was introduced in [44]530

and later called “staggered correction” [55]. Together with accurate dot products it531

often allows for almost maximally accurate error bounds.532

We sketch in Table 1 the rationale to compute accurate error bounds for A−1b.533

From lines 2 and 3 it follows x̃ ≈ A−1b and ỹ ≈ A−1(b −Ax̃). Since the residual in the534

second line is calculated in extended precision, the unevaluated sum x̃+ ỹ should be a535

good approximation to A−1b. The fourth line3 ensures that the bit patterns of x̃ and536

ỹ do not overlap. From line 5 the unevaluated sum x̃+ ỹ+ z̃ improves the approximate537

solution further. The correction z̃ should be very small correcting the last bits of ỹ.538

That is utilized in line 6. When computing539

%1 ∶= JAx̃ −Aỹ − bK2,1 in rounding downwards

%2 ∶= JAx̃ −Aỹ − bK2,1 in rounding upwards
540

it follows %1 ⩽ Ax̃ −Aỹ − b ⩽ %2 and the % in line 8 satisfies

∣Ax̃ −Aỹ − b∣ ⩽ % .

3The call [x,y] = TwoSum(a,b) computes x = float(a + b) for scalars, vectors and matrices a, b,
and in addition y such that x + y = a + b is mathematically correct [34].
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1 [x̃, δ] = ErrorBound(A, b, s,“solve“)
2 x̃ = solve(A, b) % A−1b ≈ x̃
3 ỹ = solve(A, Jb −Ax̃K2,1) % A−1b ≈ x̃ + ỹ
4 [x̃, ỹ] = TwoSum(x̃, ỹ)
5 z̃ = solve(A, Jb −Ax̃ −AỹK2,1) % A−1b ≈ x̃ + ỹ + z̃
6 [x̃, ỹ] = TwoSum(x̃, ỹ + z̃) % A−1b ≈ x̃ + ỹ
7 setround(-1); % = abs (JAx̃ +Aỹ − bK2,1)
8 setround(+1); % = max (% , abs (JAx̃ +Aỹ − bK2,1) )
9 δ = ∣ỹ∣ + vecnorm(%)/s

Table 1
Residual iteration and inclusion of the solution A−1b.

The function vecnorm in line 9 denotes ∥%∥2 for a column vector %, and the row541

vector of Euclidean norms of the columns of % for more than one column in %. Hence,542

proceeding as in [53] and abbreviating the vector of all 1′s by e we obtain543

(4.1)

∣A−1b − x̃∣ = ∣ỹ +A−1 (b −Ax̃ −Aỹ) ∣
⩽ ∣ỹ∣ + ∥A−1%∥∞e

⩽ ∣ỹ∣ + ∥A−1∥2∥%∥2e

= ∣ỹ∣ + σmin(A)−1∥%∥2e

⩽ δ

544

because s ⩽ σmin(A) and the computation of δ in the last line is in rounding upwards.545

The estimate is clear for one column b ∈ Rn, and for multiple right hand sides b ∈ Rn,k546

apply (4.1) successively to the columns of b.547

The residuals are computed using the extended precision package in [15] corre-548

sponding to a relative rounding error unit 2−113. Therefore splitting the approximate549

solution into three parts x̃ + ỹ + z̃ would not improve the accuracy of the result. To550

that end we need higher precision for the computation of the residual. We show how551

to do that in Part II of this note.552

Using accurate dot products is mandatory and ensures to obtain accurate entry-553

wise error estimates. To see that we display in Table 2 the intermediate results for554

the residual iteration in Table 1 for two representative examples. The examples are555

number 1210 and 438 of [8], the first one being symmetric, the second one general.556

As we will see later neither our new algorithm VerifySparselss to be presented in557

Table 6 nor the algorithm in [57] could compute verified bounds for the first exam-558

ple 1210. The reason is that due to the condition number 1.2 ⋅ 1015 both methods559

could not verify a lower bound for the smallest singular value.4 This does not affect560

the iteration. We computed the smallest singular value using the multiple precision561

package [15] for the final bound in line 14 of Table 2.562

The input is normed to ∥A∥∞ = 1 = ∥b∥∞. The smallest singular value in line 4 of563

Table 2 shows that both matrices are ill-conditioned. Therefore we can expect that564

∥x̃∥2 ≈ ∥A−1b∥ ≈ ∥b∥/σmin(A) ≈ σmin(A)−1 is large. That is certified in line 5, where565

4Our alternative method presented in Part II of this note succeeds to compute verified bounds.
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x̃ is Matlab’s A/b. It is a well known fact in numerical analysis that, although the566

matrices are ill-conditioned, the residual norm Ax̃ − b is small, and that is verified567

in line 6. The next line 7 displays the median and maximum of ∣A−1x − b∣. It is568

slightly better than expected by the well accepted rule of thumb that the error is of569

size u ⋅ cond(A). That may be due to the sparseness of the input matrices.

Table 2
Detailed results for verified inclusion A−1b ∈ x̃ ± δ by residual iteration

symmetric general

1 # in [8] 1210 438

2 n 20,360 1,633

3 nnz(A) 509,866 46,626

4 σmin(A) 1.2 ⋅ 10−15 8.1 ⋅ 10−12

5 ∥x̃∥∞ 4.0 ⋅ 1012 1.1 ⋅ 1010

6 ∥Ax̃ − b∥∞ 1.7 ⋅ 10−3 3.6 ⋅ 10−8

7 error x̃ 3.9 ⋅ 10−4 3.9 ⋅ 10−4 1.6 ⋅ 10−9 1.4 ⋅ 10−6

8 ∥Ax̃ +Aỹ − b∥∞ 1.4 ⋅ 10−6 6.5 ⋅ 10−16

9 error x̃ + ỹ 3.0 ⋅ 10−7 3.0 ⋅ 10−7 3.0 ⋅ 10−17 1.1 ⋅ 10−14

10 ∥Ax̃ +Aỹ − b∥∞ 2.4 ⋅ 10−10 1.6 ⋅ 10−23

11 error x̃ + ỹ 2.4 ⋅ 10−10 2.4 ⋅ 10−10 1.9 ⋅ 10−17 5.3 ⋅ 10−17

12 % = ∣Ax̃ +Aỹ − b∣ 7.3 ⋅ 10−14 1.1 ⋅ 10−9 8.4 ⋅ 10−26 1.7 ⋅ 10−23

13 δ = ∣ỹ∣ + ∥%∥2/s 5.8 ⋅ 106 5.8 ⋅ 106 4.3 ⋅ 10−8 8.9 ⋅ 10−7

14 entrywise accuracy of incl. 1.5 ⋅ 10−6 1.5 ⋅ 10−6 8.5 ⋅ 10−17 2.4 ⋅ 10−14

570
The next line in Algorithm ErrorBound in Table 1 improves x̃ by one step of571

residual iteration where the residual Ax̃ − b is computed in extended and stored in572

working precision. The correction ỹ is not added to x̃, the approximate solution is573

kept as an unevaluated sum x̃+ ỹ. Line 4 in Algorithm ErrorBound in Table 1 makes574

sure that the bit representations of x̃ and ỹ do not overlap.575

As shown in lines 8 and 9 of Table 2 the unevaluated sum x̃ + ỹ has a smaller576

residual and better accuracy. By the cited rule of thumb the improvement should be577

of the order u ⋅ cond(A), in the second example it seems better.578

Line 5 of Algorithm ErrorBound performs a second residual iteration based on579

the unevaluated sum x̃+ ỹ. The correction z̃ should be smaller than ỹ and is therefore580

added to ỹ. For the new approximation x̃ + ỹ line 6 ensures again that the bits don’t581

overlap.582

As by lines 10 and 11 in Table 2 this approximation has again smaller residual583

and improved accuracy. Correspondingly, the upper bound % on ∣Ax̃+Aỹ−b∣ is small,584

in the second example very small. Now the verified inclusion for A−1b consists of three585

parts, the approximation by the unevaluated sum x̃+ ỹ and the normwise error bound586

α ∶= ∥%∥2/σmin(A), i.e., ∣A−1b − (x̃ + ỹ)∣ ⩽ α.587

By combining the error bound into the vector δ = ∣ỹ∣ + ∥%∥2/s this becomes an588

entrywise error bound (A−1b)k ∈ x̃k±δk. Note that δ is computed in rounding upwards589

in the last line of Algorithm “ErrorBound”.590

The last line in Table 2 shows the median and maximum accuracy of the inclusion591

in terms of the relative error ∣δk/x̃k ∣. In the first example some 6 decimal figures of the592

left and right bounds coincide. In the second example at least 14 decimal figures are593
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guaranteed, and in the median the error bounds are maximally accurate. Repeating594

the residual iteration in steps 5 and 6 of Algorithm ErrorBound in Table 1 another 3595

times yields almost maximally accurate results for all entries of both examples.596

5. Input data with tolerances. If the matrix and/or the right hand side are597

afflicted with tolerances, verified error bounds based on our methods can be computed598

as well. We give the details for real linear systems, for complex interval data an almost599

identical ansatz is applicable.600

Consider A ∈ IFn×n and b ∈ IFn,k. The interval matrix A = [A,A] for A,A ∈ Fn×n601

consists of all real matrices A with A ⩽ A ⩽ A and similarly for b. Then602

(5.1) Σ(A,b) ∶= {x ∈ Rn×k ∶ ∃A ∈ A ∃b ∈ b with Ax = b}603

is sometimes called the “outer” solution set [37, 49]. In order to compute error bounds604

for Σ(A,b) we use a midpoint-radius representation for A. The INTLAB commands605

mA = mid(A) and rA = rad(A) compute matrices mA,rA ∈ Fn×n with mA−rA ⩽ A ⩽606

mA + rA for all A ∈ A, and similarly for b.607

For interval input, there is no need for an extra precise residual iteration as608

in Algorithm ErrorBound in Table 1. Denote by x̃ an approximate solution of the609

midpoint linear system mA ⋅x =mb after few residual iterations. Denote Ǎ ∶=mA and610

∆̂ ∶= rA, and let A ∈ A, b ∈ b fixed but arbitrary. For the moment assume that b is an611

interval vector, i.e., b ∈ IFn. Denote ∆ ∶= A − Ǎ. Then ∣∆∣ ⩽ ∣∆̂∣ and we adapt (4.1)612

into613

(5.2)

∣A−1b − x̃∣ = ∣(Ǎ +∆)−1 (b − Ǎx̃) ∣
= ∣(I + Ǎ−1∆)−1Ǎ−1 (b − Ǎx̃) ∣

⩽ ∥Ǎ−1(b − Ǎx̃)∥∞
1 − ∥Ǎ−1∆∥∞

e

⩽ σmin(Ǎ)−1∥b −Ax̃∥2

1 − σmin(Ǎ)−1∥∆̂∥2

e

614

which is true provided that σmin(Ǎ)−1∥∆̂∥2 < 1. For multiple right hand sides, i.e.,615

b ∈ Fn,k with k > 1, apply (5.2) successively to the columns of b.616

Note that successful computation of a lower bound of σmin(Ǎ) verifies the non-617

singularity of every Â ∈ A a posteriori. A larger diameter of b widens the bounds, a618

larger diameter of A reduces the range of applicability, i.e., verified bounds are only619

obtained for smaller condition number of Ǎ.620

6. Symmetric (positive definite) matrices. As has been mentioned before,621

“positive definite” is in parenthesis because this is no assumption on the input matrix622

but will be proved a posteriori by our algorithm. As a consequence, the subalgorithm623

“verifySparseSPD” necessarily fails if the symmetric input matrix has nonpositive624

eigenvalues. In that case subalgorithm “verifySparseSym” will be called.625

Theorem 6.1. Let symmetric A ∈ Fn×n and 0 < s ∈ F be given. For diagonal626

D ∈ Fn×n assume Dkk ⩾ s for all k ∈ {1, . . . , n}. Suppose that the floating-point627

Cholesky decomposition of B ∶= A−D runs to completion producing a Cholesky factor628

R̃. Define ∆B ∶= R̃T R̃ −B. Then629

(6.1) σmin(A) ⩾ s − ∥∆B∥2 ⩾ s − ∥∆B∥∞.630

Let µ ∈ Nn with µi denoting the number of nonzero elements in the i-th column of R̃631

and assume umaxµk < 1. Denote by M ∈ Rn×n the matrix with Mij ∶= min(µi, µj)+1632
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1 function [x, δ] = verifySparseSPD(A,b)

2 If any Akk ⩽ 0, [x, δ] = verifySparseSym(A,b), return

3 Equilibrate A by (3.1)

4 Compute Cholesky factorization R̃T R̃ ≈ A by (3.4)

5 If failed, [x, δ] = verifySparseSym(A,b), return

6 Compute s̃(A, R̃) by (3.9) and set s ∶= 0.9s̃

7 setround(−1); As = A − s ∗ speye(n);
8 setround(0); [Rs,FLAG,p] = chol(As);
9 If succeeded, goto step 13

10 Set rounding downwards and As = As + (8s/10)I; s = s/5;

11 Compute Cholesky factor R̃T R̃ ≈ As in rounding to nearest by (3.4)

12 If failed, [x, δ] = verifySparseSym(A,b), return

13 Compute upper bound α ∶= r.h.s.(6.2) with ∥RsTRs −As∥2 ⩽ α
14 If α ⩾ s, compute α with ∥RsTRs −As∥2 ⩽ α using (2.11)

15 If α ⩾ s, compute α with ∥RsTRs −As∥2 ⩽ α using (2.13)

16 If α ⩾ s, verification failed, return

17 [x, δ] = ErrorBound(A, b, s − α,“solve“) using R̃ for solve

Table 3
Verified error bounds for A−1b for symmetric positive definite sparse input matrix A.

and by D ∈ Rn×n the diagonal matrix with Dkk = ( Bkk

1−Mkku
)

1/2
. Let633

(6.2) α ∶= u∥DMD∥2634

be as in Lemma 2.7 computed by Corollary 2.9. Assume s ⩾ α. Then ∥∆B∥2 ⩽ α and635

(6.3) σmin(A) ⩾ s − α636

if the decomposition was performed using nearest operations. If maxµk ⩽ (2u)−1/2,637

then (6.3) remains true for faithful operations when replacing u in (6.2) by 2u.638

Proof. We have R̃T R̃ = B +∆B with ∥∆B∥2 ⩽ α by Lemma 2.7. Moreover, ∆B639

being symmetric implies ∥∆B∥2 ⩽ ∥∆B∥∞. Hence (1.10) yields640

λmin(A) − s ⩾ λmin(A −D) = λmin(B) = λmin(R̃T R̃ −∆B) ⩾ −∥∆B∥2 ⩾ −α641

and proves λmin(A) ⩾ s − α ⩾ 0, and therefore (6.3). The assertion for faithful opera-642

tions follows as in Lemma 2.7.643

In Table 3 we sketch our subalgorithm “verifySparseSPD” for solving a sparse lin-644

ear system with symmetric positive definite matrix. More precisely, the algorithm645

assumes only that the input matrix A is symmetric. If A is indefinite and/or pos-646

itive definiteness cannot be verified, then our subalgorithm “verifySparseSym” for647

symmetric input matrix as given in the next section is called.648

The details of subalgorithm ”verifySparseSPD“ are as follows. If there are non-649

positive diagonal elements of A the matrix cannot be positive definite and we call650
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subalgorithm “verifySparseSym”. Otherwise, after equilibration in line 3 a numerical651

Cholesky decomposition [R,FLAG,p] = chol(A,’vector’) is computed in line 4.652

If FLAG ≠ 0, the factorization failed and subalgorithm “verifySparseSym” is called.653

Otherwise, an approximative lower bound s of the smallest singular value of A is654

computed in line 6.655

In line 7 a lower bound As of the shifted matrix A − sI is computed. Hence As656

= A−D with Dkk ⩾ s and Theorem 6.1 is applicable. Next, a floating-point Cholesky657

decomposition of As is tried in line 8. In case of failure we try again with a smaller658

value for s. In the actual implementation we avoid using two matrices but set As =659

As - s*speye(n) in line 10. It needs some care to use the correct matrix As with660

the updated s. Denote the matrix As in line 8 by Âs. From line 7 and rounding661

downwards we know Âs = A −D for diagonal D with Dkk ⩾ s. Denote s’ = 8*s/10662

in rounding downwards and the new s computed at the end of line 10 by s. Note that663

s ⩽ s/5. Then rounding downwards implies s′ ⩽ 0.8s and Âs is updated in line 10 into664

some As ∶= Âs + D̂ = A −D + D̂ for diagonal D̂ with D̂kk ⩽ s′ ⩽ 0.8s. Note that As is665

the matrix As after executing step 10. It follows Dkk − D̂kk ⩾ s− 0.8s = s/5 ⩾ s so that666

the new Âs in line 10 is equal to A − D̃ for diagonal D̃ with D̃kk ⩾ s. Thus Theorem667

6.1 and (6.2) are applicable for As, s.668

The decomposition in line 11 may fail because of ill-conditioned input matrix A669

or, if s is chosen too large. In that case we call subalgorithm “verifySparseSym”. In670

the next line 13 an upper α as in (6.2) in Theorem 6.1 is computed using the code in671

Corollary 2.9 such that (using rounding downwards) s−α is a lower bound of σmin(A).672

This first upper bound on α comes by (6.2) at practically no cost. If α is too large,673

i.e., α ⩾ s, we compute ∆B ∶= RsTRs −As in rounding downwards and upwards and674

improve α by initializing setround(1), Q = Rs’*Rs-As; and using (2.11) in Lemma675

2.4. If still α ⩾ s, we improve α again by computing ∆B in extended precision with676

rounding to nearest and using (2.13). Step 14 could be omitted, however, if successful677

it saves quite some computing time.678

This is our last resource. It still α ⩾ s, subalgorithm “verifySparseSPD” failed to679

compute verified error bounds. In that case our general Algorithm verifySparselss680

to be presented in Table 6 calls subalgorithm “verifySparseSym”. Otherwise, s − α681

rounded downwards is a correct lower bound for the smallest singular value of A, and682

an improved approximate solution x together with error bound δ satisfying A−1b ∈ x±δ683

is computed by Algorithm ”ErrorBound“ in Table 1. This algorithm requires to solve684

a linear system Ay = c for some right hand side c which is performed using R̃ in the685

fourth line.686

7. Factorization of 2×2 Hermitian matrix. Let L and D be factors of a real687

symmetric or Hermitian matrix A such that A = LDLH . Then D comprises of 1×1 or688

2× 2 real symmetric or Hermitian blocks, respectively. Let B be such a block matrix.689

We will factor B = MSPMH with symmetric or Hermitian M , possibly complex690

signature matrix S and permutation matrix P such that cond(M) ≈ cond(B)1/2.691

The purpose is as follows. Applying the factorization to the blocks of D results692

in a block factorization D = M̂ŜP̂ M̂H . Setting L1 ∶= LM̂ŜP̂ and L2 = LM̂ yields693

A = L1L
H
2 . Since S and P are unitary, the sets of singular values of L1 and L2 are694

identical. It follows cond(A) ⩽ cond(L1)2 = cond(L2)2. Although, in contrast to the695

Cholesky decomposition, the condition number of L1 (and L2) is, in general, not equal696

to cond(A)1/2, practical evidence suggests that they are often not too far apart.697

For the anticipated decomposition we distinguish three cases. If B is 1 × 1, then698

B = b for a real or complex number b, and M ∶=
√

∣b∣, S = sign(b) and P = 1 do the699

This manuscript is for review purposes only.



VERIFIED ERROR BOUNDS FOR SPARSE SYSTEMS PART I 21

job.700

The second case is a 2 × 2 matrix with zero diagonal, i.e., B ∶= ⎛⎝
0 b

b 0

⎞
⎠. In that701

case we choose702

M ∶=
⎛
⎝

√
∣b∣ 0

0
√

∣b∣
⎞
⎠
, S ∶=

⎛
⎝

sign(b) 0

0 sign(b)
⎞
⎠

and P ∶=
⎛
⎝

0 1

1 0

⎞
⎠
.703

For the third case let nonsingular Hermitian B = ⎛⎝
a b

b c

⎞
⎠ be given and define d ∶=704

√
(a − c)2 + 4bb. Its (real) eigenvalues are λ1,2 = 1

2
(a+ c±d), and for b ≠ 0 the unitary705

eigenvectors are v1,2 =
⎛
⎝
a − c ± d

2b

⎞
⎠

. It follows the eigendecomposition B = V DV H706

for unitary V ∶= ( v1/∥v1∥2 v2/∥v2∥2 ) and D ∶=
⎛
⎝
λ1 0

0 λ2

⎞
⎠

. Hence707

M ∶= V
⎛
⎝

√
∣λ1∣ 0

0
√

∣λ2∣
⎞
⎠
, S ∶=

⎛
⎝

sign(λ1) 0

0 sign(λ2)
⎞
⎠

and P = I708

is the desired decomposition.709

In the first two cases we just need
√

∣b∣. The third case looks also like a straight-710

forward approach, and in almost all cases it worked well. However, for b being small711

in absolute value compared to a and/or c numerical problems may occur. We come712

to that when discussing the test results in Section 12.713

Summarizing we showed that for an LDLT -decomposition of a real symmetric714

matrix A the block diagonal matrix D can be expressed as715

D = D̂SD̂T for symmetric A(7.1)716

D = D̂SPD̂T for symmetric A with zero diagonal(7.2)717

with block diagonal symmetric D̂, real signature matrix S and permutation matrix718

P . If A is complex, then D = D̂SPD̂H , D̂ is block diagonal Hermitian and S is a719

complex signature matrix.720

8. Symmetric matrices. We show in Table 4 a general outline of our subal-721

gorithm “verifySparseSym” to compute verified bounds for the solution of a sparse722

linear system with symmetric matrix.723

After equilibration in line 2 we decompose A in line 3. It occurs very rarely that724

D is singular; in that case we call5 the subalgorithm “verifySparseGen”. It happened725

during testing, but not in our test suite of 48 symmetric test cases. Otherwise L1, L2726

are computed in lines 5 − 6 with A ≈ L1L2. The factors are computed in floating-727

point, but because S is a signature matrix the multiplication L2 ∶= SLT
1 is error-free728

in floating-point. Thus, the factors L1, L2 have identical sets of singular values. Hence729

(1.11) gives730

(8.1) σmin(A) ≈ σmin(L1L2) ⩾ σmin(L1)σmin(L2) = σmin(L1)2 = σmin(L1L
T
1 ) .731

5Here the original data A, b before the equilibration in line 2 is to be used.
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1 function [x, δ] = verifySparseSym(A,b)

2 Equilibrate A by (3.2)

3 Compute LDLT (A) by (3.5)

4 If D is singular, verification failed, [x, δ] = verifySparseGen(A,b), return

5 Compute approximate splitting D ≈ D̂SD̂T according to (7.1)

6 Compute L1 ≈ LD̂ and L2 = SLT
1

7 Compute M ≈ L1L
T
1 in rounding upwards

8 Compute Compute s̃(M,L1) by (3.9) and set s ∶= 0.9s̃

9 Use (2.10) to compute α with ∥A −L1L2∥2 ⩽ α
10 If α ⩾ s, improve α as in (2.11)

11 If α < s,use (2.9) to compute β with ∥M −L1L
T
1 ∥2 ⩽ β, else β = ∞

12 If α < s and α + β ⩾ s, improve β as in (2.11)

13 If α + β ⩾ s, recompute M and improve α,β as in (2.13)

14 If α + β ⩾ s, verification failed, [x, δ] = verifySparseGen(A,b), return

15 Compute M̂ ∶=M − sI in rounding downwards

16 Compute Cholesky factor R̃T R̃ ≈ M̂ in rounding to nearest by (3.4)

17 If succeeded, goto step 20

18 Set rounding downwards and M̂ = M̂ + (8s/10)I; s = s/5;

19 Compute Cholesky factor R̃T R̃ ≈ M̂ in rounding to nearest by (3.4)

20 If failed, [x, δ] = verifySparseGen(A,b), return

21 Compute γ with ∥M̂ − R̃T R̃∥2 ⩽ γ by (6.2) in rounding upwards

22 If α + β + γ ⩾ s, improve γ as in (2.11)

23 If α + β + γ ⩾ s, improve γ as in (2.13)

24 If α + β + γ ⩾ s, verification failed, [x, δ] = verifySparseGen(A,b), return

25 [x, δ] = ErrorBound(A, b, s − α − β − γ,“solve“) using LDLT for solve

Table 4
Verified error bounds for A−1b for symmetric sparse input matrix A.

Next M = float(L1L
T
1 ) is computed in line 7 in rounding upwards, that is L1L

T
1 ⩽M ,732

and in line 8 we use an approximation of σmin(M) as an anticipated lower bound733

s̃ ≲ σmin(A) on the smallest singular value of A. We approximate σmin(M) because a734

Cholesky decomposition of M shifted by s is used in line 15 to compute a true lower735

bound on σmin(M) leading to a lower bound for σmin(A).736

For a correct lower bound on σmin(A) we compute an upper bound α on ∥A −737

L1L2∥2 in line 9. If α is not small enough, i.e., α ⩾ s, then α is improved by (2.11)738

in line 10. Next we use (2.9) to compute an upper bound β on ∥M − L1L
T
1 ∥2. Here739

u in (2.9) is to be replaced by 2u because M was computed in rounding upwards in740

line 7. Thus L1L
T
1 ⩽M . If β is too large, i.e., if α+ β ⩾ s, then one additional matrix741

multiplication suffices to improve β as in (2.11) by computing R = L1*L1’-M; beta742

= NormBnd(R,true) in rounding downwards. This is true because the computation743

of M and R ⩽ L1L
T
1 −M imply 0 ⩽M −L1L

T
1 ⩽ −R.744
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If still α + β ⩾ s, then we try in line 13 to further improve the error bounds.745

First we improve α by using (2.13). For β we use (2.13) as well, where this includes746

the recomputation of M in rounding to nearest. We refrain from recomputing s for747

the new M because numerical evidence suggests that, if any, a potential improve-748

ment is marginal. If still α + β ⩾ s, then the verification failed and subalgorithm749

“verifySparseGen” will be called.750

In line 15 the shifted matrix M̂ is computed in rounding downwards so that The-751

orem 6.1 is applicable. Next a floating-point Cholesky decomposition of M̂ is tried in752

line 16. If not successful, M̂ and s are updated as in lines 10−12 of “verifySparseSPD”,753

and for the smaller shift s a Cholesky decomposition is tried in line 19.754

If the second decomposition is still not successful, then the verification failed and755

subalgorithm “verifySparseGen” will be called. Otherwise, an upper bound γ from the756

right hand side in (6.2) is computed in line 21 satisfying ∥M̂ −R̃T R̃∥2 ⩽ γ. If necessary,757

γ is improved using (2.11) or (2.13). Now Theorem 6.1 implies σmin(M) ⩾ s − γ.758

If the sum α+β + γ of errors is too large, then the verification failed and we turn759

to subalgorithm “verifySparseGen”. Otherwise, i.e., α + β + γ < s, (1.10), (8.1) and760

Theorem 6.1 yield761

(8.2)

σmin(A) ⩾ σmin(L1L2) − ∥A −L1L2∥2 ⩾ σmin(L1L
T
1 ) − ∥A −L1L2∥2

⩾ σmin(M) − ∥L1L
T
1 −M∥2 − ∥A −L1L2∥2 ⩾ σmin(M) − β − α

⩾ s − α − β − γ .

762

Hence α + β + γ < s verifies that the matrix A is nonsingular, and entrywise bounds763

for the solution are computed by Algorithm ErrorBound in Table 1.764

9. General matrices. As in [48, 57] our method for linear systems with general765

matrix uses the augmented matrix766

(9.1) B ∶=
⎛
⎝

0 AT

A 0

⎞
⎠

767

the singular values of which are ± the eigenvalues of A. So in principle we could apply768

the methods for symmetric input matrix described in Section 8. However, due to the769

structure of the augmented matrix B the decomposition part is simpler as by the770

following lemma.771

Lemma 9.1. For nonsingular A ∈ Rn×n a block LDLT -decomposition of the aug-772

mented matrix B in (9.1) produces D with all diagonal elements being zero, i.e., D773

consists only of 2 × 2 pivot blocks with zero diagonal.774

Remark 9.2. There may exist LDLT -decompositions of B with D having nonzero775

diagonal entries. For the 1×1 matrix A = 1 the augmented matrix B is a permutation776

matrix, and a computation yields that all LDLT -decompositions satisfy L = ( 1 0

ϕ 1
)777

and D = ( 0 1

1 −2ϕ ) for some ϕ ∈ R. That includes the block LDLT -decomposition778

obtained by ϕ = 0.779

Proof. A block LDLT -decomposition is based on [14, Section 11.1]780

PBPT = ( E CT

C G
) = ( Is 0

CE−1 In−s
)( E 0

0 G −CE−1CT )( Is E−1CT

0 In−s
)781
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with Im denoting the m × m identity matrix and s ∈ {1,2}. The diagonal of the782

augmented matrix B remains zero under symmetric permutations, so that the first783

pivot must be 2 × 2 with E = ( 0 α

α 0
). Moreover, ( E CT ) comprises of the k-th784

and m-th row of B for some 1 ⩽ k ⩽ n and n + 1 ⩽m ⩽ 2n. Let P be the permutation785

matrix mapping (1, . . . ,2n) to (k,m,1, . . . , k−1, k+1 . . . ,m−1,m+1, . . . ,2n). Then G786

is square with 2n− 2 rows and columns and has the same structure as the augmented787

matrix in (9.1). Hence the structure of PBPT is described by788

( E CT

C G
) =

⎛
⎜⎜⎜⎜
⎝

0 α 01,n−1 vT

α 0 uT 01,n−1

0n−1,1 u 0n−1,n−1 HT

v 0n−1,1 H 0n−1,n−1

⎞
⎟⎟⎟⎟
⎠

789

with column vectors u, v ∈ Rn−1, a square matrix H with n−1 rows and columns, and790

0 denoting a matrix of zeros with dimension according to the subscripts. Then791

CE−1CT = α−1 ( 0n−1,1 u

v 0n−1,1
)( uT 01,n−1

01,n−1 vT
) = α−1 ( 0n−1,n−1 uvT

vuT 0n−1,n−1
)792

shows that G −CE−1CT has the same structure as the augmented matrix (9.1). The793

result follows.794

In contrast to [46, 48, 57] we proceed for general matrices as follows. After equili-795

brating the original matrix A we compute an LDLT -decomposition of the augmented796

matrix B by (3.5). The permutation information for pivoting is stored in the vector797

p such that B(p, p) ≈ LDLT . According to Lemma 9.1 the matrix D has exactly 2n798

nonzero entries for nonsingular A. If the decomposition fails, i.e., there are less than799

2n nonzero elements in D, we use LDLT -decomposition as in (3.7). As has been800

mentioned that happened in 54 out of 211 test cases.801

A splitting (7.2) of D is computed, and in lines 7 and 8 the factors L1, L2 such that802

L1L2 ≈ B(p, p). The factor L2 is L1 multiplied by some signature and permutation803

matrix. That computation is error-free, so that as in subalgorithm “verifySparseSym”804

the factors L1, L2 have identical sets of singular values. Hence (8.1) is true when805

replacing A by B or B(p, p).806

The first bound on α is computed in line 11 using (2.10). In line 5 of that code807

NormBnd(C,false) is used and C should be replaced by B. In fact, NormBnd(B,true)808

could be used. However, we use NormBnd(A,false) because the spectral norms of A809

and B coincide but A has half the size of B.810

The remaining of the subalgorithm until line 20 is identical to subalgorithm811

VerifySparseSym in Table 4, so that (1.10), (8.1) and Theorem 6.1 yield812

σmin(A) = σmin(B) ⩾ σmin(L1L2) − ∥B −L1L2∥2 ⩾ σmin(L1L
T
1 ) − ∥B −L1L2∥2

⩾ σmin(M) − ∥L1L
T
1 −M∥2 − ∥B −L1L2∥2 ⩾ σmin(M) − β − α

⩾ s − α − β − γ .

813

Error bounds for the solution of the original linear system Ax = b use that814

(9.2)
⎛
⎝

0 AT

A 0

⎞
⎠
⎛
⎝
x

y

⎞
⎠
=
⎛
⎝

0

b

⎞
⎠

815
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1 function [x, δ] = verifySparseGen(A,b)

2 Equilibrate A by (3.3)

3 Let B the augmented matrix (9.1)

4 Compute LDLT (B) by (3.5)

5 If nnz(D) < 2n, compute LDLT (B) by (3.7)

6 If nnz(D) < 2n,verification failed, return

7 Compute approximate splitting D ≈ D̂SPD̂T according to (7.2)

8 Compute L1 ≈ LD̂ and L2 = SPLT
1

9 Compute M ≈ L1L
T
1 in rounding upwards

10 Compute s̃(M,L1) by (3.9) and set s ∶= 0.9s̃

11 Use (2.10) to compute α with ∥B −L1L2∥2 ⩽ α
12 If α ⩾ s, improve α as in (2.11)

13 If α < s,use (2.9) to compute β with ∥M −L1L
T
1 ∥2 ⩽ β, else β = ∞

14 If α < s and α + β ⩾ s, improve β as in (2.11)

15 If α + β ⩾ s, recompute M and improve α,β as in (2.13)

16 If α + β ⩾ s, verification failed, return

17 Compute M̂ ∶=M − sI in rounding downwards

18 Compute Cholesky factor R̃T R̃ ≈ M̂ in rounding to nearest by (3.4)

19 If succeeded, goto step 23

20 Set rounding downwards and s = 8s/10; M̂ = M̂ + sI; s = s/5;

21 Compute Cholesky factor R̃T R̃ ≈ M̂ in rounding to nearest by (3.4)

22 If Cholesky decomposition ends premature, verification failed, return

23 Compute γ with ∥M̂ − R̃T R̃∥2 ⩽ γ by (6.2) in rounding upwards

24 If α + β + γ ⩾ s, improve γ as in (2.11)

25 If α + β + γ ⩾ s, improve γ as in (2.13)

26 If α + β + γ ⩾ s, verification failed, return

27 [x, δ] = ErrorBound(B, [0; b], s − α − β − γ,“solve“) using LDLT for solve

Table 5
Verified error bounds for A−1b for general sparse input matrix A.

implies x = A−1b. The residual iteration in Algorithm ErrorBound is adapted to the816

augmented system, and the lower bound s −α − β − γ for σmin(A) = σmin(B) and the817

LDLT -decomposition from line 4 or 5 is used for the residual iteration. The approxi-818

mation x with error bound δ refers to the first n entries of the result of “ErrorBound”.819

10. Complex sparse linear systems and the first sparse lss algorithm.820

Unfortunately, the LDLT -decomposition for sparse matrices in Matlab is restricted821

to real data. For a complex linear system (A+ iB)(x+ iy) = b+ ic a simple remedy is822

to use the augmented linear system823

(10.1)
⎛
⎝
A −B
B A

⎞
⎠
⎛
⎝
x

y

⎞
⎠
=
⎛
⎝
b

c

⎞
⎠

824
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function [xs,delta] = verifySparselss(A,b)

% Approximate solution xs of Ax=b with error bound delta

if isreal(A)

if isreal(b) % A and b real

symm = isequal(A’,A);

if symm % A symmetric

[xs,delta] = verifySparseSPD(A,b);

end

if ( ~symm ) || isnan(xs(1)) % A unsymm. or SPD failed

[xs,delta] = verifySparseGen(A,b);

end

else % A real, b complex

[xs,delta] = verifySparselss(A,[real(b) imag(b)]);

n = size(A,1);

m = size(b,2);

xs = complex(xs(:,1:m),xs(:,m+1:end));

delta = reshape(vecnorm(reshape(delta,[],2),2,2),n,[]);

end

else % A complex

n = size(A,1);

A = [real(A) -imag(A);imag(A) real(A)];

b = [real(b);imag(b)];

[xs,delta] = verifySparselss(A,b);

xs = complex(xs(1:n,:),xs(n+1:end,:));

delta = reshape(delta,n,[])’; % take care of multiple r.h.s.

delta = reshape(vecnorm(reshape(delta,2,[]),2),size(b,2),[])’;

end

end % function verifySparselss

Table 6
Algorithm to compute verified error bounds for the solution of a sparse linear system.

of doubled size. Then for positive definite Hermitian, for Hermitian and for general825

matrix A+ iB the augmented matrix C ∶= ⎛⎝
A −B
B A

⎞
⎠ is symmetric positive definite,826

symmetric, and general, respectively. In each case the singular values of C are those827

of A + iB doubled, so that the condition number does not change. A drawback is828

that for general matrices we use the augmented matrix (9.1) resulting in a linear829

system of four times the dimension of the original complex system. If a complex830

LDLT -decomposition will be included in Matlab, then that drawback disappears.831

In the previous sections we described subalgorithms to compute error bounds for832

the solution of linear systems with symmetric positive definite matrix, with symmet-833

ric and with general matrix. For a given linear system we may check symmetry, but834

positive definiteness may not be known beforehand. Therefore, we present in Ta-835

ble 6 the self-contained Algorithm verifySparselss as executable Matlab/INTLAB836

code to solve a general real or complex sparse linear systems. The final and also a837

second version of Algorithm verifySparselss including least squares problems and838

underdetermined linear systems will be given in Table 8 in Part II of this note.839

The algorithm proceeds as follows. First it is checked for real or complex data.840
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If the matrix is complex, error bounds are computed according to (10.1), if only b is841

complex it suffices to solve a linear systems with 2 right hand sides. In either case the842

error bound is the entrywise Euclidean norm of the bounds for the real and complex843

part.844

If the input matrix A is symmetric, subalgorithm “verifySparseSPD” is tried. If845

the check of positivity of all diagonal elements of A or some Cholesky decomposition846

fails, then “verifySparseSPD” calls subalgorithm “verifySparseSym”. If it fails as well,847

then as a final resource subalgorithm “verifySparseGen” is called. If the input matrix848

is not symmetric, then subalgorithm “verifySparseGen” is called immediately.849

The subalgorithms cover multiple right hand sides for real and complex input850

data. For complex b and/or A some care is necessary to collect the data for the851

complex inclusion.852

We refrain from giving an explicit algorithm for data afflicted with tolerances853

because it is clear how to proceed along the lines given in Section 5.854

11. Comparison of the new algorithm and [57]. For a linear system Ax = b855

the algorithm proposed by Terao and Ozaki [57] is based on Theorem 1.1 to compute856

a lower bound for σmin(A), basically as in Table 7.857

If successful, i.e., θ > %, then σmin(B) = σmin(A) > θ − %. The Matlab code is858

published in [57] and some missing code was kindly provided by the authors. In [57]859

the quality of an inclusion was improved by a residual iteration based on860

(11.1)
⎛
⎝

0 AT

A 0

⎞
⎠
⎛
⎝
x

y

⎞
⎠
=
⎛
⎝
AT b

b

⎞
⎠

861

with solution y = b and x = A−1b. The advantage of their method compared to

1 Apply (3.8) to B as in (9.1) and set θ ∶= 0.5s

2 Compute LDLT (B + θI) by (3.5)

3 If the inertia of D is not (n,0, n), decrease θ and go to step 2

4 Compute % with ∥B + θI −LDLT ∥2 ⩽ %
5 If θ ⩽ %, restart from step 2 with larger θ > % or verification fails

Table 7
Computation of a lower bound θ − σ for σmin(A).

862

Theorem 1.1 in [46] is that only one decomposition, namely of B + θI is necessary863

because for nonsingular A the inertia (n,0, n) of B is known beforehand. The trade-864

off is that only a decomposition of the shifted matrix B + θI is available, not of B.865

It was analysed in [53] that nevertheless a residual iteration with this decomposition866

converges, i.e., improves the solution of (11.1), and this is used in [57]. Suppose867

LDLT = B + θI and L̂D̂L̂T = B. If A is well-conditioned, then θ is large introducing868

a significant difference between L,D and L̂, D̂. If A is ill-conditioned, then θ is small869

but the factors are sensitive to perturbations of B. Nevertheless a residual iteration870

using the factors L,D converges [53], but more iterations are necessary compared to871

using the original factors L̂, D̂ of B.872

A second difficulty is that an inclusion of the product of three matrices is needed873

in step 4. In [57] the code874

[L,D,p] = ldl(mid(G),′ vector′); rho = NormBnd(G(p,p) − L ∗ intval(D) ∗ L′,true);875
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computes % with ∥B + θI − LDLT ∥2 ⩽ % and uses NormBnd from (1.9). The first876

product M := L*intval(D) is an inclusion of LD, so that the product MLT of an877

interval matrix times point matrix causes additional overestimation. That reduces878

the maximal possible condition number until which a verification is possible.879

A third problem slowing down [57] is that the decomposition of the shifted matrix880

B causes significantly more fill-in than the decomposition of the original augmented881

matrix B. We come to that in Part II of this note.882

The algorithm in [57] is called by883

(11.2) X = verifylinsys(A,b,precond,acc)884

with additional parameters precond and acc. The output X is an interval vector,885

and if successful, A−1b ∈ X. The meaning of acc is as follows. When multiplying two886

interval matrices, there is a choice in INTLAB [47] between using midpoint-radius887

arithmetic and rank-1 updates. The former produces bounds which are slightly wider888

for small radii of the factors, but for very large radii up to a factor 1.5 wider than889

those of the latter. However, interval matrix multiplication using the midpoint-radius890

representation is much faster than using rank-1 updates [50]. To choose either method891

the commands intvalinit(’FastIVmult’) and intvalinit(’SharpIVmult’) are892

used. If acc is true, then the slower method eventually producing better bounds is893

activated.894

However, the two approaches differ only if both factors comprise of intervals with895

nonzero diameter. The most important product in the code of [57] in Table 7 is896

L*intval(D)*L’, but here always one factor is a point matrix. Therefore there is no897

difference between the two methods in INTLAB for multiplication. Consequently, we898

observed a marginal difference between the quality of the bounds using false or true899

for acc, which is confirmed by the test results in [57]. Therefore, the computational900

results in the next section use acc = false.901

If the extra parameter precond is true, then before executing the code in Table902

7 the equilibration as in (3.3) is applied. Switching precond on or off has signifi-903

cant influence on the performance and accuracy of the algorithm in [57]. In many904

cases precond = true both reduces the computing time and increases the accuracy905

significantly, and often verification fails without preconditioning. Rarely we observed906

failure of verification with and success without preconditioning. In our computational907

results we found 3 such cases and appended the computing time by an “*”.908

Another reason to use precond = true for the algorithm in [57] is that when909

using precond = false the inclusion may be wide. For instance, in example 1404 the910

verified inclusion by [57] with precond = false ends successfully, but all entries of911

the inclusion are equal to [−4.45 ⋅ 1017,4.45 ⋅ 1017].912

12. Test results. Our computing environment is a Panasonic laptop CF-SV913

with Intel(R) Core(TM) i7-10810U CPU with 1.10/1.61 GHz and 16 GB RAM. We914

use Matlab version 2023b [33] under Windows 10.915

As for test matrices we used the Suite Sparse Matrix Collection [8] with the916

interface [21]. More precisely, we took all real and complex square matrices with917

dimension918

(12.1) 103 ⩽ n ⩽ 105 and 1010 ⩽ condest(A) ⩽ 1016 and nnz(A) ⩽ 106 .919

That resulted in totally 306 tests displayed in Table 8. The first column indicates the920

structure indicated by [8], namely symmetric positive definite, symmetric indefinite,921

This manuscript is for review purposes only.



VERIFIED ERROR BOUNDS FOR SPARSE SYSTEMS PART I 29

general real, all test matrices out of [57], complex Hermitian positive definite and922

general complex. Our Algorithm verifySparselss computed verified bounds in 301923

out of the 306 real and complex test cases. In the 302 real test cases satisfying (12.1)924

were 26 examples where [57] failed to compute verified bounds in all four combinations925

of options precond and acc. In all those 26 examples verifySparselss succeeded.926

We found no example vice versa, i.e., verifySparselss failed but [57] succeeds in927

some combination. However, there are surely such cases.

Table 8
Test sets and success rate.

structure success new success [57]

spd 22 out of 22 14 out of 22

sym 45 out of 48 42 out of 48

gen 210 out of 211 199 out of 211

[57] 20 out of 20 20 out of 20

complex spd 1 out of 1

complex gen 3 out of 4

928

We compare our algorithm to that in [57], and also against Matlab’s “backslash”929

operator, henceforth depicted by lu. The latter provides an approximate solution930

whereas our Algorithm verifySparselss and [57] deliver error bounds which are,931

although computed in floating-point, correct with mathematical certainty. Moreover,932

we try to provide close to maximally accurate bounds, i.e., the left and right bound933

of all entries should differ by few bits. Nevertheless, in some 37 out of the 306 test934

cases our Algorithm verifySparselss is faster than lu. That should never happen935

because the verified bounds are an approximation with error bound. That confirms936

once again that there is hardly a panacea, i.e., a general purpose algorithm to solve937

sparse linear systems. In the median lu is 4.9 times faster than verifySparselss.938

The dimension, number of nonzero elements and condition number of all test cases939

is shown in Figure 1. The dimensions vary between 1019 and 682,862 and the number940

of nonzero elements between 3562 and 5,778,545. For given matrix of dimension n941

we generate a right hand side A*(2*rand(n,1)-1)) so that the solution has, up to942

rounding errors, uniformly distributed entries between −1 and 1. In [57] the right943

hand side A*ones(n,1) was used.944

In [57] computational results are listed for the four options acc and precond true945

and false, but no clear recommendation was given which combination to use. In order946

to display a fair comparison we proceed as follows. As noted above there is practically947

no difference in choosing true or false for acc. It remains the choice for precond.948

As true is mostly superior, we first try to compute verified bounds by (11.2) with949

precond = true and acc = false. If successful, the computing time and accuracy950

for this setting is reported. If not successful, we try again with both precond and951

acc set to false. If now successful, the computing time and accuracy for this setting952

is reported. That is indicated in our listings by an “*” after the computing time of953

[57]. There are 3 such cases in the test suite satisfying (12.1), namely numbers 430,46954

and 1395 in [8]. If still not successful, the minimum of the computing time (to realize955

failure) for the two settings is reported together with NaN for the accuracy indicating956

that the verification failed.957

In Figure 2 we show for all tests the ratio of computing times of lu divided by that958

for our new Algorithm verifySparselss (henceforth abbreviated by “new”), and for959

the algorithm in [57] divided by “new”. The ratios in the left graph are displayed if960
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Fig. 1. Dimension, number of nonzero elements and condition number of all test matrices.

“new” is successful, i.e., computes verified error bounds, and the ratios in the right961

graph are displayed if both “new” and [57] are successful. That explains some gaps.962

Fig. 2. Ratios of computing times tlu/tnew and t
[57]

/tnew.

A number less than 1 in the left graph means that lu is faster than “new”, and a963

number larger than 1 in the right graph means that “new” is faster than [57]. In the964

median over all examples lu is faster than “new” by a factor 6.0. But in 10 out of the965

306 cases lu is slower than “new” by 2 orders of magnitude, e.g. in number 2214 in [8]966

by a factor 259, in example 2231 “new” is 260 times faster than lu. In the first case the967
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number of nonzero elements of the factor L in our algorithm is 430,688, whereas lu968

produces factors L,U with 16,300,793 and 47,932,779 elements, respectively. That969

may explain the large computing time. Neither reverse Cuthill-McKee nor minimum970

degree reordering changes the situation for lu.971

In some 6 cases the maximum relative error of the approximation by lu exceeds972

0.01, i.e., at most 2 figures of some entries of the approximation are correct. Depending973

on the right hand side, the maximal relative error to the true solution A−1b may exceed974

1, i.e., some entries of the approximation computed by lu have a wrong sign.

Table 9
The 5 best and worst time ratios t

[57]
/tnew out of the 301 real test cases

matrix times [sec] relerr new relerr [57]

# n tnew t
[57] median max median max t

[57]/tnew

1346 1157 0.108 0.058 3.2e -17 1.3e -12 1.4e -15 8.6e -9 0.53

1306 62500 587.783 348.504 3.9e -17 2.8e -14 2.8e -14 2.8e -6 0.59

2229 28216 53.659 36.739 3.7e -17 1.1e -16 2.0e -13 5.2e -9 0.68

450 1089 0.088 0.061 3.9e -17 1.1e -16 3.6e -15 2.4e -10 0.69

1414 49702 12.245 10.052 3.7e -17 1.1e -13 8.2e -15 1.4e -8 0.82

2221 10798 6.856 187.222 3.7e -17 3.3e -16 4.0e -13 3.6e -7 27.31

39 10974 0.644 18.409 3.6e -17 1.1e -16 3.4e -15 6.7e -12 28.60

1374 87190 8.355 265.699 3.7e -17 2.4e -15 6.2e -15 1.7e -9 31.80

35 2003 0.159 5.230 3.7e -17 1.1e -16 1.9e -15 2.3e -12 32.92

45 3134 0.108 14.632 3.7e -17 1.1e -16 2.5e -15 2.6e -10 135.15

975

In the median our new method is faster than [57] by a factor 2.7. In all but 5 of the976

test cases “new” was faster than [57]. In Table 9 we list the 5 test cases with smallest977

ratio t[57]/tnew of computing times and the 5 test cases with the largest ratio.978

The worst case of t[57]/tnew is the matrix number 1346. However, the ratio is979

less meaningful due to the small dimension n = 1,157. In the second worst case980

“new” is 1.7 times slower than [57]. That is number 1306 in [8], where the matrix has981

dimension 62,500 with 424,966 nonzero elements and an estimated condition number982

2.3 ⋅ 1015. The computing time for lu is 1304 seconds, the new algorithm needs 588983

seconds to compute verified bounds with maximal entrywise relative error 2.8 ⋅ 10−14.984

For that example [57] computes verified bounds with maximal relative error 2.8 ⋅ 10−6985

in 349 seconds.986

Next we show in Figure 3 a rough image of the median relative error of the987

approximation by lu and of the verified bounds of “new” and [57]. The relative error988

of “new” is often not far from maximal accuracy so that we can use the bounds to989

compute the relative error of the approximation by lu. As can be seen lu computes990

usually approximations with some 13 correct figures, but sometimes only few figures991

are correct. In the median the inclusions by [57] are usually accurate to about 15992

correct figures.993

We discuss some details of our Algorithm verifySparselss in Table 6 on the sev-994

eral improvement steps in the subalgorithms “verifySparseSPD”, “verifySparseSym”995

and “verifySparseGen”. As has been mentioned our first priority is the successful996

computation of verified bounds, and to that end there are several measures in the997

subalgorithms to avoid failure. Secondly, we aim to compute highly accurate bounds.998

One might introduce options to change these priorities.999

We start with “verifySparseSPD” which is called if the input matrix is symmetric.1000

If this subalgorithm fails, then “verifySparseSym” is called. Therefore, “verifySpars-1001
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Fig. 3. Median of relative errors of lu, by the new algorithm and [57].

eSPD” can only fail in step 16 if α ⩾ s. That was not the case in all 22 examples1002

in spd in Table 8. Hence, the Cholesky factorizations in steps 4 of A and in step1003

11 of the shifted matrix where all successful. The upper bound α on the residual1004

of the Cholesky factors in step 13 was improved as in (3.9) using Perron-Frobenius1005

Theory. In the median some 6 power iterations were used for the spd examples. The1006

first improvement of α in step 14 was used in 3 out of the 22 examples, the second1007

improvement in line 15 was never necessary.1008

Next we discuss subalgorithm “verifySparseSym”. The security measure on singu-1009

lar D in step 4 occurred occasionally while developing Algorithm verifySparselss,1010

in the sym tests with (12.1) it did not happen. The improvement of α in line 10 was1011

used in 8 out of the 48 tests in sym, i.e., in the remaing 40 the a priori bound (2.10)1012

was sufficient. The improvement of β in line 12 was used in 5 out of the 48 tests in1013

sym, and the improvement of α and β in step 13 was used in 6 cases. Failure in line 141014

occurred in 4 out of the 48 sym tests and Algorithm verifySparselss called subal-1015

gorithm “verifySparseGen”. The reason seems that subalgorithm “verifySparseGen”1016

performs an unsymmetric equilibration by (3.3). The Cholesky decomposition in line1017

16 failed in 2 cases implying the computation of a new value of s in steps 18−19, and1018

“verifySparseSym” ended successfully with the new s. The bound γ required in the1019

median some 7 iterations (3.9) in line 21. The improvement of γ in line 22 was used1020

in 7 cases which were, with one exception, the same as for the improvement of α in1021

line 10, the second improvement of γ in line 23 was used once in the 48 sym tests.1022

Subalgorithm “verifySparseSym” failed in 4 out of 48 cases and Subalgorithm1023

“verifySparseGen” was called. In two of those cases, namely matrix 1210 and 1451 in1024

[8], numerical difficulties in the splitting of D in Step 5 according to (7.1) occurred.1025

In both cases the initial α in Step 7 was 1.4 ⋅ 10−3 with no improvement in step 12.1026

This is far too large for the anticipated lower bound s̃ = 3.9 ⋅ 10−13 of σmin(M). The1027

reason is the poor splitting of D implying that ∥A(p, p) −L1L2∥1 = 1.4 ⋅ 10−3 is much1028

larger than ∥A(p, p) −LDLT ∥1 = 1.3 ⋅ 10−10 for the LDLT -decomposition in (3.5).1029

This manuscript is for review purposes only.
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A remedy is to compute the splitting of D according to (7.1) in some higher preci-1030

sion. Since these are few operations it would not take much computing time. Then1031

∥A(p, p)−L1L2∥1 = 1.6 ⋅ 10−10 if not far from ∥A(p, p)−LDLT ∥1 as expected, the first1032

approximation of α is 1.0 ⋅ 10−8 in Step 9, with a final improvement in Step 13 into1033

α = 1.8 ⋅ 10−10. This is not enough for a successful verification but shows that in the1034

two examples 1210 and 1451 the poor splitting of D was part of the problem.1035

The computation of the splitting of D in some higher precision would not require1036

not much computing time, however, those problems seem rare, and in the two cases1037

where they occurred the more precise splitting ofD was still not enough for a successful1038

verification. Therefore we refrained from changing our algorithm in that regard.1039

Finally, some details on the performance of subalgorithm “verifySparseGen” for1040

the 211 “gen” test cases plus the 20 tests from [57]. The second LDLT -decomposition1041

in step 5 was necessary in 54 out of 231 cases due to singularity of the factor D. There1042

seems room for improvement for the Matlab routine ldl for an augmented matrix1043

of type (9.1) with zero diagonal. With the trick in (3.7) the LDLT -decomposition1044

produced always nonsingular D.1045

The improvement of β in Step 13 of subalgorithm “verifySparseGen” was called1046

in 61 cases, and the improvement in Step 15 was used in 3 of the 231 tests. With1047

two exceptions β was already improved in line 14 before, so one might skip step 141048

and go immediately to step 15. We did not do that because the extended precision1049

calculations in step 15 need significantly more computing time than line 14. The1050

shift s for the Cholesky decomposition in lines 17 − 18 was improved 15 times out of1051

the 211 tests. In all cases the succeeding decomposition did not fail in line 22 and1052

“verifySparseGen” ended successfully. In the median number some 8 power iterations1053

(3.9) were used in line 22. Finally γ was improved 32 times out of the 231 tests in1054

Step 24 of “verifySparseGen”, and again improved 2 times in Step 25.1055

We present some detailed data in Tables 10 - 12. To show all data is too much1056

for this note, so we put the results for all 306 test cases at the url in (12.2).1057

(12.2) https ∶ //www.tuhh.de/ti3/rump/sparselssAllResultsI.pdf1058

Here NaN in the columns for the relative error indicate failure of verification, and1059

otherwise, the columns are self-explaining. The median and maximum relative error1060

of the approximation by lu is computed by the error bounds provided by “new”.1061

Consequently, there is a “?” for the 5 cases where “new” failed. The ratio of computing1062

times t[57]/tnew is only displayed when [57] ended successfully.1063

In order to reduce space for the results to be displayed in this note, we considered1064

the 20 tests in [57] together with the 306 examples in (12.1) satisfying all properties1065

listed in Table 13. That resulted in 137 test cases filling some 5 pages. Therefore we1066

reduced the number of tests further by moving tests with adjacent numbers in [8] and1067

the same dimension to the url in (12.2). Presumably they come from the same source.1068

That resulted in 84 test cases listed in Tables 10 - 12 filling just 3 pages. That means1069

in particular that if a test is not listed here but only in the url in (12.2), then both1070

“new” and [57] succeeded and “new” is at least 1.84 times faster than [57]. The curios1071

ratio 1.72 of computing time t[57]/tnew is tuned to fill 3 pages of results. In two cases1072

we observed failure of Matlab’s lu. In example 1417 from [8] the backslash operator1073

stopped with memory error, and example 1419 caused a crash ending Matlab. That1074

may be due to the limited memory in our laptop.1075

Numerical evidence suggests that Algorithm verifySparselss succeeds to com-1076

pute verified error bounds for condition numbers close to u−1. The complete list of1077
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Table 13
Displayed tests extracted from the 306 tests in Table 8.

- condest(A) ⩽ 1025

- [57] failed with precond=1 and was recomputed with precond=0

- all tests where “new” failed

- all tests where the median relative error by “new” is larger than 10−15

- all tests where the maximal relative error by “new” is larger than 10−10

- all tests where [57] failed

- all tests where the median relative error by [57] is larger than 10−2

- all tests where the maximal relative error by [57] is larger than 10−2

- all tests where the computing time ratio t[57]/tnew is less than 1.72

results in (12.2) shows 5 failures out of the 306 test cases in Table 8, and one of them1078

had an estimated condition number significantly less than 1015. That is for matrix1079

number 934 with condest(A)= 1.7 ⋅ 1012 in [8]. We take a closer look at that case to1080

explain the reason.1081

For the matrix A of example 934 with dimension n = 7055 and 30,082 nonzero1082

elements we obtain cond(full(A))= 2.5 ⋅ 1013 based on the full singular value de-1083

composition of the sparse matrix. That is a very stable algorithm producing a more1084

reliable estimate, and that is confirmed using the multiple precision package [15].1085

Moreover, cond(full(B))= 1.2 ⋅1015 for the augmented matrix (9.1) shows that there1086

are numerical instabilities because in theory the condition numbers of A and B co-1087

incide. And indeed for some right hand sides Matlab’s backslash operator produces1088

an approximation with some entries having the wrong sign. Hence, it seems that the1089

problem is more difficult than one might expect by the condition number = 2.5 ⋅ 1013.1090

We give some additional test results for randomly generated ill-conditioned sparse1091

matrices using A = sprand(n,n,dens,1/cnd) with dimension n = 104, density 0.0011092

and cnd=1e15. The resulting matrices have some 100,000 nonzero elements each, and1093

the median estimated condition number over the 100 tests was 3.7 ⋅ 1015.1094

Sometimes generally valid rule of thumbs are only partially satisfied for randomly1095

generated matrices. For example, well conditioned matrix factors are sensitive to1096

perturbations of the input data, while ill-conditioned are not. That is known in1097

the literature [56, 22] but not so much in numerical analysis. It is not clear where1098

this different behaviour stems from; a reason might be that the graph of application1099

matrices is usually structured but that of random matrices is not. Having said this1100

we report the results of our randomly generated tests in Table 14.

Table 14
Results for 100 randomly generated ill-conditioned test cases.

“new” [57]

inclusions failed in 3 out of 100 tests failed in 33 out of 100 tests

median relative error 3.7 ⋅ 10−17 1.6 ⋅ 10−14

maximal relative error 6.6 ⋅ 10−11 1253.8

bounds containing 0 in some entries 0 out of 97 successful 26 out of 67 successful

1101

The median condition number 3.6 ⋅ 1015 of our samples is boarder line in the sense1102

that a verification algorithm might just succeed to compute verified bounds. Still,1103
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“new” succeeds in 97 cases to compute bounds with at least 10 coinciding figures in1104

each entry. In the median inclusions are close to maximally accurate.1105

The algorithm in [57] succeeds in 67 out of 100 cases, however, in 26 out of the 671106

successful cases some bounds contain zero, i.e., the sign of some entries could not be1107

verified. There was no case were [57] succeeded to compute an inclusion but Algorithm1108

VerifySparselss failed.1109

For the randomly generated ill-conditioned matrices the algorithm in [57] is in1110

the median 0.92 times slower and at most 1.13 times faster than “new”. Conversely,1111

“new” is up to 3.1 times faster than [57] and fails in significantly less cases than [57].1112

In 11 out of the 100 test cases lu produced an approximation with some entries1113

having only 1 correct figure, in 1 case no figure of some entry is correct. In the median1114

“new” is 6.0 times slower than lu. The complete set of results can be found at the1115

url in (12.2).1116

We tested Algorithm verifySparselss for complex data as well. Some data is1117

shown in the url in (12.2). As there were no surprises we refrain from extending our1118

already shown computational data in this note.1119

We close this note with an example arising from the verification of an eigenproblem1120

of a three dimensional Navier-Stokes equation using mixed finite elements on a cube1121

domain. The problem was communicated by Xuefeng Liu [29]. The resulting sparse1122

linear system had 30,424 unknowns with 3,056,247 nonzero elements, and in a finer1123

discretization 247,956 unknowns with 28,167,243 nonzero elements, see Table 15.1124

The method in [57] failed for both problems.1125

For the smaller problem Matlab’s “backslash” operator needed 94 seconds to1126

compute an approximation with some 14 correct digits, our verification algorithm1127

produced verified bounds in 11 seconds with, in the median, maximal accuracy. For1128

some entries Matlab’s approximation has incorrect sign, however, the size of those1129

entries is below 10−19. The maximal relative error of all entries of the inclusion is1130

3 ⋅ 10−13, however, again only for those entries very small in absolute value.1131

For the large problem our verifySparselss needed 310 seconds to compute1132

inclusions with median relative error 3.9 ⋅ 10−17. The built-in “backslash” operator in1133

Matlab finished after 12 hours with “out of memory”.

Table 15
Results for sparse linear systems arising in the verification of Navier-Stokes equation.

“backslash” inclusion

n nnz(A) time [sec] median rel. error time [sec] median rel. error

30,424 3,056,247 94 1.9 ⋅ 10−14 11 4.0 ⋅ 10−17

247,956 28,167,243 out of memory after 12 hours 310 3.9 ⋅ 10−17

1134

13. Conclusion. We presented Algorithm verifySparselss in Table 6 for com-1135

puting verified error bounds for a linear system with sparse input matrix. The bounds1136

are correct with mathematical certainty including the proof of nonsingularity of the1137

input matrix. The method is applicable to real and complex data including data af-1138

flicted with tolerances. Computational evidence suggests that there seems no general1139

purpose method for sparse systems per se as our verification method is sometimes by1140

two orders of magnitude faster than the built-in solver lu in Matlab.1141

The primary goal of our algorithm is to be successful, accepting some penalty in1142

computing time. The second goal is to compute narrow error bounds. In many exam-1143

ples out of the Suite Sparse Matrix Collection [8] our Algorithm verifySparselss1144
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succeeds to compute accurate error bounds, often with close to maximal accuracy,1145

i.e., all bounds differ by few bits. That applies to randomly generated ill-conditioned1146

sparse systems and a problem related to verification of some Navier-Stokes equation1147

as well.1148
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