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VERIFIED ERROR BOUNDS FOR SPARSE SYSTEMS PART I:
THE SPLITTING OF A MATRIX INTO TWO FACTORS*

SIEGFRIED M. RUMPT

Abstract. Verification methods provide mathematically correct error bounds for the solution of
a numerical problem. That includes the proof of solvability of the problem and often uniqueness of the
solution within the computed bounds. There are many verification methods for standard problems
in numerical analysis, including linear and nonlinear systems of equations, matrix decompositions,
eigenproblems, local and global optimization, ordinary and partial differential equations. Many of
those verification methods are included in INTLAB, the Matlab/Octave toolbox for reliable comput-
ing. Despite several efforts, the solution of general sparse linear systems was an open problem. There
are satisfactory algorithms for systems with symmetric positive definite input matrix. To that end
error bounds for the solution of Az = b with general matrix A could be computed using AT Az = ATb,
but that reduces the applicability in double precision to matrices with condition number up to 108.

We give in this note an algorithm to compute entrywise error bounds for the solution of general
real or complex sparse systems with condition number up to the limit 106, Our algorithm splits into
three subalgorithms for symmetric positive definite, symmetric indefinite and general input matrix
A. Tt is based on a mathematically correct lower bound on the smallest singular value opin(A). A
key point is a factorization Lj Lo such that L; and Lo have identical sets of singular values with the
smallest one close to omin(A)1/2. A mathematically correct lower bound on omin(L1) = omin(L2)
is then computed using LlTL1. Numerical evidence suggests that bounds for the solution of a linear
system are computed for condition numbers up to 1016, and that often the bounds for all entries are
close to maximal accuracy, i.e., the bounds differ by few bits.

Based on that an alternative approach will be presented in Part II of this note. Those methods
are simpler, but often slower. However, they are sometimes more stable, i.e., may produce verified
inclusions where the methods of this Part I fail.

Both approaches for square linear systems will be used in Part II of this note to compute verified
error bounds for the solution of least squares problems and for underdetermined linear systems.
Inclusions of the solution of general real or complex systems of nonlinear equations with sparse
Jacobi matrix are computed by transforming the problem into a linear system with point matrix and
interval right hand side.

Key words. sparse linear systems, verification methods, mathematically correct error bounds,
lower bound on the smallest singular value, accurate dot products, INTLAB

MSC codes. 65G20, 65F99

1. Introduction. Standard algorithms to solve numerical problems, e.g. as pro-
vided in Matlab [33], are mostly reliable, and usually they produce accurate results.
However, there are exceptions. To cite Vel Kahan, “Numerical problems with standard
numerical algorithms are rare; rare enough not to worry about all the time, but not
yet rare enough to ignore them”.

The purpose of verification methods is to provide rigorous error bounds for the
solution of numerical problems. The bounds are computed in pure floating-point
arithmetic and they are true with mathematical certainty. That includes the proof of
solvability of the problem and possibly uniqueness of the solution within the computed
bounds.

Verification algorithms are available for many standard numerical problems in-
cluding systems of linear and nonlinear equations, eigenproblems, local and global
optimization, ordinary and partial differential equations, and more. For overviews
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2 S. M. RUMP

cf. [37, 49, 41] and the literature cited over there. Many verification algorithms are
included in INTLAB [47], the Matlab/Octave toolbox for reliable computing.

For systems of linear equations with full matrix general purpose verification meth-
ods are available. They prove to be reliable, i.e., even for ill-conditioned matrices
narrow bounds for the solution are computed. For other numerical problems such
as ordinary or partial differential equations there is a vast literature, cf. for exam-
ple [30, 35, 2, 25, 31, 3, 4, 5], however, it seems difficult to provide general purpose
verification algorithms.

An open problem, which is part of the Grand challenges [38], are verification
methods for systems of linear equations with sparse matrix. There are only satisfac-
tory algorithms for systems with symmetric positive definite input matrix.

For given symmetric (positive definite) A it is proposed in [45] to compute an
approximation § of the smallest singular value opin(A) of A, set s := 0.98, factor
B:= A-sl into B~ GG” together with an upper bound e on |E|; for E := GGT - B.
Since GGT is positive semidefinite, it follows that | E|2 < | E|1 because E is symmetric
and

(1.1) Omin(A) = 0min(GGT + 51 = E) » 00in (GG +5I) = |Elz 2 5-¢ .

We put “positive definiteness” in quotes because it is not a prerequisite for the method
but follows a posteriori. Later (cf. [53]) that method used a priori estimates on | E|2
based on Demmel’s result [9], see also [14, Theorem 10.5]. If oymin(A) > @ >0, then A
is nonsingular, and for an approximate solution Z of a linear system Ax = b it follows

| A7~ 2o < [AT'0 - ]2 < @7 b~ AZ]2.

The method in (1.1) might be applied to AT A for general A, however, that squares
the condition number and limits applications to cond(A) < 10® in double precision
(binary64). That is the reason why [49, Challenge 10.15] asks for a verification method
for sparse linear systems of reasonable size with cond(A) > 10%°,

Most methods to solve full linear systems use an approximate inverse as precon-
ditioner which is prohibitive for sparse system matrix. The method [40] replaces an
approximate inverse by the approximate solution of n linear systems with the columns
of the identity matrix as right hand side.

For general symmetric sparse matrix a factorization A ~ quQT obtained by fac-
toring D = D1 D5 of an LDLT factorization and setting I~/1 := LDy and Eg = LDQT was
proposed in [45], and similarly A » LMT for general A with computing L and M by
an LU-decomposition. Lower bounds of opmin(A) follow by

Ulnin(A) > Umin(il)o—min(fQ) - ”A - iligHQ

and similarly for A » LMT, where the lower bounds on the smallest singular value
of the factors follow by applying (1.1) to LTL; — 5 and so forth. If the condition
numbers of a factor F is of the order cond(A)?, then cond(FTF) ~ cond(A) and
those methods work fine. However, not too many details were given in [45].

Next we proved the following theorem [46, Theorem 1.1]:

THEOREM 1.1. Let symmetric A e R™", 0 < A eR and Ly, Dy, Lo, Dy € R™™ be
given. If the inertia of D1 and Do are equal, then for any matriz norm

(1.2) Omin(A) > X —max{|A - X - LD, LT|,|A+ X - LoD, LT|}.
If all eigenvalues of Dy are positive, then

(1.3) Omin(A) > A= |A= A - LDy LT .
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VERIFIED ERROR BOUNDS FOR SPARSE SYSTEMS PART 1 3

This approach needs two LD L”-decompositions and is applicable for condition num-

bers of A close to u™ ~ 10®. In [48] it was proposed to apply Theorem 1.1 to the
T

augmented matrix B := El f; . That symmetric matrix has the same condition

number as A because its eigenvalues are +0;(A). For the time being the approaches

in [45, 46, 48] were not, further pursued because the symmetric pivoting of the LD LT -

decomposition was not stable enough.

Nowadays good scaling and equilibration routines are available [11, 12] making
those methods attractive. That was observed by Terao and Ozaki [57] and triggered
our note in two parts. They proposed to apply the idea in Theorem 1.1 to the
augmented matrix B. For an approximation § of the smallest singular value of B
they compute LDLT ~ B - sI with s := 0.55. Since for nonsingular A the inertia
of B is known to be (-n,0,n), the lower bound on omin(A) = omin(B) 2 §-|B -
LDL" |, follows if the inertia of D is (-n,0,n) as well. They use in particular the
preconditioning in [11] to ensure stability of the LDL"-decomposition. However,
only the factors L, D of the shifted matrix B — 51 are available, not of B itself. It
was proposed and analysed in [53] that nevertheless a residual iteration based on L,D
works, and that is used by Terao and Ozaki [57].

In this note we treat three cases separately, namely symmetric (positive definite),
symmetric indefinite and general matrices. For the first case we improve the bound
(1.1) in [53] utilizing sparsity and Perron-Frobenius Theory. For the second case
we factor a symmetric matrix A into A ~ F1Fy with Fy, F» having identical sets of
singular values, and numerical evidence suggesting cond(F;) ~ cond(A)Y2. Then we
apply (1.1) to Fy F{' to compute a lower bound a on oyin(Fy) = 0min(F2), such that
Omin(A) > o? — |A - F1F|,. For general matrices we use a similar scheme for the
augmented matrix B.

In all three cases the matrix A (or the augmented matrix B) is expressed as the
product of two matrices FyF,. In contrast to A = LDL” this bears the advantage
that the entries of the residual A- Fy F5 (or B—-F} F) are one dot product each. Thus
an inclusion of good quality can be computed using one of the many accurate dot
product algorithms [32, 36, 10, 39, 61, 60]. In contrast, an inclusion of A -~ LDLT is
computed in two steps with an interval factor in the second product.

We want to stress that there is hardly a general purpose algorithm to solve sparse
linear systems. Indeed we tried many examples from the Suite Sparse Matrix Collec-
tion [8] and found linear systems where our verification method is by two orders of
magnitude faster than the built-in backslash Matlab operator (but also vice versa).
That should not happen because our verification methods include an approximate
solution of the linear system.

As test matrices we took all real square matrices of the Suite Sparse Matrix
Collection with dimension n satisfying 10* < n < 10° and estimated condition number
& with 10'° < k < 10'6. That resulted in 306 test cases. In 300 cases we could compute
accurate verified inclusions of the solution, usually about a factor 3 to 10 slower than
Matlab’s backslash operator, but also sometimes faster. That is the price we pay for
mathematically rigorous bounds.

Our primary target is that our algorithm ends successfully, i.e., verifies non-
singularity of the input matrix and computes error bounds for the solution of the linear
system. Our algorithm is tuned to that goal accepting some penalty in computing
time. Besides the mathematically rigorous verification, the second focus is to compute
accurate bounds for the solution, in many cases with maximum relative error < 1071?,
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140
141
142
143
144
145
146
147
148
149
150

158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176

177

4 S. M. RUMP

i.e., close to maximally accurate bounds in double precision (binary64). That allowed
to compute the relative error of the approximation produced by Matlab’s backslash
operator. That was often of the order 1078, but also worse. In many cases our
algorithm was twice as fast and more accurate than the method proposed in [57].
We assume a set of floating-point numbers F with an arithmetic according to the
IEEE754 floating-point standard [18] to be given. We use double precision (binary64)
in a nearest rounding® with relative rounding error unit u = 275 ~ 10716, and we
use directed rounding downwards (towards —oo) and upwards (towards +oo0). We use
float(-) to indicate the result of an expression with all operations executed in floating-
point. If the order of execution is not unique, results are true for any order. The error
of a single operation o € {+,—, x, /} of floating-point numbers a, b is bounded by [14]

(1.4) [float(aob) —aob|<u-min( |aod|, |Hoat(aob)|).

For o € {+, -} this is also true for compatible vectors or matrices a,b with comparison
and absolute value to be understood entrywise. When using a directed rounding (1.4)
remains true when replacing u by 2u.

Our goal is to calculate mathematically correct but also accurate inclusions for the
solution of a sparse linear system Ax =b. To that end we use the following notations:

[expr]21 evaluation in extended precision, result rounded into F
(1.5)  (ewpr) inclusion computed using directed roudings in F

{expr)z1 inclusion computed in extended precision and rounded into F

We added the subscripts 2,1 to emphasize that the evaluation is performed in extended
precision but the result is rounded into working precision, i.e., into F.

The notations in (1.5) are used exclusively for expressions where each entry is
computable by a dot product. For the two latter notations for inclusions the expression
has to satisfy an additional property: When computing the expression in rounding
downwards, then the computed result is a mathematically correct lower bound of the
true result, and similarly for rounding upwards. Typical examples for [-]2,1 are Az—-b
or A- RTR. The second expression is not suitable for (-) or (-)21 because the result
computed in rounding downwards is not necessarily a correct lower bound of the true
result. It becomes suitable by rewriting it into RT R — A.

For the implementation of [-]2,1 and {-)2,1 any of the many accurate dot product
algorithms is suitable. There is a new, very fast Matlab implementation which will
be used in Part II of this note.

In [57] the toolbox Advanpix [15] was used, a multiple-precision Matlab package
emulating a large number of Matlab’s algorithms. In order to have a fair comparison
with [57] we used [15] in this note as well. The number d of decimal digits of precision
can be freely specified by mp.Digits(d). The package includes a particularly fast
implementation of extended precision arithmetic to be specified by mp.Digits(34)
with relative rounding error unit 2713, This precision is what we are using throughout
this note. Sample executable Matlab/INTLAB codes for the expressions in (1.5) for

LOur results in rounding to nearest are true for any rounding of ties.
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VERIFIED ERROR BOUNDS FOR SPARSE SYSTEMS PART 1 5

Az - b are
[expr]2,1 res =double(A *mp(x)—b);
(expr) setround(-1); resinf = A *x—b;
setround(+1); ressup=Ax*x—b;
(1.6) res = infsup(resinf,ressup);
(expr)s1 setround(-1); resinf = double(A * mp(x) —b);
setround(+1); ressup = double(A * mp(x) — b);
res = infsup(resinf,ressup);
Note that the type cast mp(x) ensures that A*mp(x) is computed in extended pre-

cision with extended precision result, and in turn that ensures that the difference
in A*mp(x)-b is computed in extended precision as well. Moreover, the typecast
double () in the implementation of {-)2 1 respects the rounding mode so that resinfg
Ax — b <ressup holds true.

It is common to use |P|2 < /|| P|l1]|P| e to bound the spectral norm of a matrix
P. However, Perron-Frobenius Theory and [7] imply for any positive vector x the
better bound

P"(|P|z)),

|
(L.7) [Pl < [1P1ll2 = omax ([P1) =V Amax (|PF1P]) < max (

for general P and

Tk

P
(1.8) HPWQ<HMX£L£QE
k T

for symmetric/Hermitan P. To that end we used in [52] the following algorithm:

function N = NormBnd(A, herm)
x = ones(size(A,1),1); M=[12]; iter = 0; A = mag(A);
while(abs(diff(M)/sum(M)) >.1) && (iter < 10)
iter = iter + 1;
y=Axx
if herm,y = A’ * y;end
x=y.[x;
M= [min(x)max(x)];
scale = max(y);
x =max(y/scale, le — 12);
end
setround(1)
if herm, N = max((A * x)./x); else N =max(sqrt((A’ * (A *x))./x)); end
end

That algorithm is used in [57] as well. Compared to sqrt(norm(A,1)*norm(A,inf))

numerical evidence suggests that few power iterations in (1.9) starting with the vector
z of all 1's is faster and improves the bound by a factor 2.
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6 S. M. RUMP

We use standard eigenvalue perturbation bounds [58] for symmetric or Hermitian
n x n matrices A, E, i.e.,

(1.10) A(A) +An(E) € M(A+ E) < 0 (A) + M (E) = [M(A+E) - A (A) < | Ell2

for A1 > ... > )\, denoting the eigenvalues and k € {1,...,n}. Moreover, for A, B ¢ R™"
we use [17, Theorem 3.3.16]

(1.11) Tmin(AB) 2 Omin(A)omin(B) -

A real or complex signature matrix S is diagonal with |Syg| =1 for all k. For vectors
(and similarly for matrices) we use |- | for the vector of absolute values, and z < y
denotes entrywise comparison.

We begin this note with some improved floating-point error estimates on matrix
products, on the 2-norm of residuals and an a priori error estimate of Cholesky decom-
position, improving on the mostly used vy := llfﬁ, cf. [14]. In particular we present
computable bounds on the error of matrix products and residuals when using directed
rounding. In the following sections we introduce our methods for linear systems with
symmetric (positive definite), with symmetric indefinite, and with general matrix.
All three methods are based on the computation of a lower bound of the smallest
singular value of some symmetric (Hermitian) matrix. We discuss how to obtain an
approximation of the smallest singular value, and we show how a true lower bound is
used to obtain rigorous and sharp error bounds for A™1b.

Extra sections discuss scaling and equilibration, as well as some factorization of
Hermitian 2x2 matrices. We show how to handle complex linear systems, data afflicted
with tolerances, and present Algorithm VerifySparselss to compute rigorous error
bounds for a linear system with real or complex sparse matrix and multiple right hand
sides. This is our main algorithm and it chooses between subalgorithms for symmetric
(positive definite), symmetric indefinite and general matrix, and real or complex data.
We compare our algorithm with that in [57] and close the paper with a compilation
of computational results.

2. Floating-point error estimates. The result c of a floating-point operation
is called faithful if there is no other floating-point number between ¢ and the true
real result. In IEEE754 operations with rounding to nearest, towards oo or towards
zero are faithful. We begin with error bounds for the computed approximation of dot
products and matrix products.

For x,y € F" with at most p nonzero products the linear estimate

(2.1) [float (¢ y) - 2" y| < pulz|"|y|

was shown in [23]. The bound is true for any order of evaluation of 27y and without
restriction on the dimension n. Hence, the error of the floating-point approximation
of AB for A e F™* B eF¥" is bounded by

(2.2) float(AB)i; - (AB);| < pu(|A[lBl)s;

for i denoting the maximum number of nonzero products to compute the entries of
AB. To obtain a computable bound using (2.2) the extra matrix product P := |A||B]
with error bound is necessary. That extra matrix product can be avoided by using
directed rounding. To that end we need an error estimate like (2.2) for floating-point
dot products with directed rounding. In that case a restriction of k is mandatory

This manuscript is for review purposes only.
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VERIFIED ERROR BOUNDS FOR SPARSE SYSTEMS PART 1 7

because in rounding upwards, for example, the result of 1+ e for tiny positive e is the
successor of 1, so that the error is about 2u.

The first bound for directed rounding was given by Ozaki [42], namely |float(AB)-
AB| < 2(p+4)uAB. Tt was designed for mixed-precision calculations. The bound
requires 4u < u but also that both A, B are nonnegative. For general A, B it was
shown in [27, Corollary 4] that

(2.3) float(AB)q; - (AB)i;| < 2pu(|A||Bl)s;

is true for computing float(AB) using a faithful rounding provided that u < (2u)~'/2.

The assumption z < (2u)™'/2 bounding the number of nonzero products seems
hardly an obstacle when using double precision (binary64), i.e. u <22 = 67,108,864
nonzero products per entry. But if so, the following Lemma 2.1 may be used up to
p < 2,251,799,813,685,248 ~ 2.2 - 10*® nonzero products per entry. Note that it is

mandatory to bound the number of nonzero products p, cf. [27].

LEMMA 2.1. Let A e F™%* and B € F**" be given, and let float( AB) be calculated
in a faithful-rounding. Denote by p the mazimum number of nonzero products to
compute the entries of AB. If 2(p—1)u< 1, then

(2.4) |float(AB)j - (AB)i;| < (2p + 1)u(|A[|B)i5 -

Proof. Let z € F™ be a vector of floating-point numbers, and let float(Y);_; z1) be
computed in some faithful rounding in any order. Then [26, Corollary 3.3] shows
(2.5) float( )] zi) = Y. zi| <2(p—1)u ) |2

k=1 k=1 k=1

provided that the vector z has not more than p nonzero elements. Let x,y € F" be
given, denote zj := float(zxyx) for k€ {1,...,n}, and let float(zTy) = float (T}, z1),
all computed in some faithful rounding. Then

[float(zryr) — Tryk| < 2ulzryr] and  |zx| = [loat(zryr)| < (1 + 2u)|zryk| -

Hence the definition of p and using 2(p — 1)u < 1 shows

float(a"y) —2Ty| < [foat(Xioy 2x) — ey 2kl + | Ziey (26 — zryr)|
< 2(p-DuXys [zl + 20Xy [Tyl
< [2(p - 1)u(l +2u) + 2u]jz"ly]
< 2(p+ Dulzly|

and the result follows by applying this estimate to each entry of AB. 0

We start with a mathematically correct a priori error bound for a matrix product AB
and for a residual AB — C without computing |A||B|.

LEMMA 2.2. Let A € F™¢ and B € F*™ be given, and let yu; and v; denote the
number of nonzero elements in the i-th row of A and the j-th column of B, respectively.
Furthermore, denote by g; and o; the Euclidean norm of the i-th row of A and the j-th
column of B, respectively. Then using a nearest-rounding and any order of evaluation

(2.6) |float( AB) — AB|2 < u )" min(p, vk ) preok
k=1

This manuscript is for review purposes only.
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8 S. M. RUMP

without limit on n. For C e F"™" and E := float(AB - C) it follows

(2.7) |float(AB-C) - (AB-C)|2<u (|E|2 + i min(uk,yk)pkak)

without limit on m. Denote by u the mazimum number of nonzero products in the
products (AB);;. If a faithful-rounding is used and p < (2u)™2, then (2.6) and (2.7)
remain true when replacing u by 2u. For faithful-rounding and 2(p - 1)u < 1, (2.6)
and (2.7) remain true when replacing u by 2u and min(py, vi) by min(py, ve) + 1.

Proof. The computation of the element (AB);; involves at most min(yu;,v;) non-
zero products. Hence (2.2) implies for a nearest-rounding

[float(AB);; — (AB);;| < min(pu,, v )u(|A||B|):; < min(p,, vj)uio; .

Let 9 and o denote the column vectors with elements 1;0; and o, respectively. Then
using the outer product po’ it follows

n
|[float(AB) ~ AB|2 < | [float(AB) ~ AB| |2 < [go” [2u=0"Pu =1y oppmpr.
k=1
Denoting similarly by & the column vector with elements v;o; gives
Hﬂoat(AB) - ABH2 < 3Tpu =u Z VEOk Pk

k=1

and implies (2.6). Using P := float(AB) and (1.4) gives

|[float(AB - C) - (AB-C)|2

[float (P - C) - (AB - O)]2
|float(P - C) = (P - C) + (P - AB)|»
ulEls + | P - AB)|,

N

and proves (2.7). For faithful rounding the estimates follow by (2.3) and (2.4). d

The application of Lemma 2.2 is as follows. We compute M1 = A*B in rounding
upwards with the estimate « := 2u}.;_; min(pg, vk ) prox as in (2.3). That is an a priori
bound for the error of |float(AB) — AB||. If not sufficiently accurate, we calculate
MO = A*B in rounding downwards. Hence My < AB < M, implies the improved a
posteriori bound |float(AB) - AB| 2 < | max(| Mo, |Mi])|2 -

COROLLARY 2.3. Let A € F™™ be given and denote by uy the number of nonzero
elements in the k-th row of A. Then for a nearest-rounding

(2.8) |float( AAT) = AAT |2 <u Y pu (AAT ),
k=1

is true without limit on n. If max uy, < (2u)"Y? and rounding upwards is used, then
(2.9) |float(AAT) = AAT |2 <u Y i (float(AAT)),, -
k=1

If max g, <ut/2, then (2.9) remains true when replacing py. by px + 1.

This manuscript is for review purposes only.
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Proof. Denote by gy the Euclidean norm of the k-th row of A. Then Lemma 2.2
implies

|foat(AAT) = AAT s <u Y ey =u Y pu(AAT ), -
k=1 k=1

In rounding upwards (AAT) g < (ﬂoat(AAT)) 4, and the results follows. 0

We often need estimates of a residual. For example, if C' ~ AB is a decomposition,
we need an upper bound for |C' - AB|2. We compute that bound in three stages.
First, we use the a priori estimate in (2.7). If not successful, then we compute a
better bound using an inclusion of C'— AB obtained by using rounding downwards
and upwards. If still not successful, accurate dot products are used.

Next we list executable Matlab code for the three stages to compute upper bounds
for the spectral norm of a general residual C—AB. That is sufficient for our verification
methods because we construct decompositions with two factors by transforming, e.g.,
M ~ LDLY into M ~ L1Ly. We assume that the maximum number sy of nonzero
products in the computation of the entries of AB is restricted by max p < (2u)~4/? =
67,108,864. If only max s, < u /2 ~ 4.5-10% is satisfied, then the code is adapted
following Corollary 2.3.

LEMMA 2.4. Let A e F™* B e FF" and C € F™". Then executing the Matlab
code

setround(1); Q=A*B-C;
mu = sum(spones(4),2); nu = sum(spones(B));
(2.10)  rho = vecnorm(A,2,2); sigma = vecnorm(B,2);
errAB = (min(mu’,nu). * sigma) * rho;
alpha = NormBnd(Q, false) + pow2(-52) * (NormBnd(C,false) + errAB);

implies |C — AB|2 < a. Ezecuting after (2.10) the Matlab code

setround(-1); Q =max(Q,abs(A*B-C));

(2.11)
beta = NormBnd(Q, false);

implies |C — AB|2 < 8. Furthermore, after executing

setround(0); mp.Digits(34);

F=C-mp(A) *B; u=pow2(-53); v=pow2(-113);
setround(1); G = double(abs(F));

(2.12) mu = sum(spones(4),2); nu = sum(spones(B));
tho = vecnorm(4,2,2); sigma = vecnorm(B, 2);
normG2 = NormBnd(G, false);

errAB = (min(mu’,nu). * sigma) * rho;

gamma = normG2 + v * (normG2 + errAB);

it follows |C' — AB|2 < . Finally, let A e F*k B = SAT for a signature matriz

This manuscript is for review purposes only.
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10 S. M. RUMP
S e FF*k and C' e F™". Then executing

setround(0); mp.Digits(34);

F=C-mp(A) *B; v=pow2(-113);

setround(1); G = double(abs(F));

normG2 = NormBnd(G, false);

errAtA = sum(spones(4),2)’ * sqr(vecnorm(4,2,2));

(2.13)

alpha = normG2 + v * (normG2 + errAtA);

implies |C' — AB|2 < a.

Remark 2.5. In order to compute mathematically correct bounds directed round-
ings are used. Moreover, in the calls of NormBnd from (1.9) the second parameter can
be replaced by true for Hermitian input. In a practical implementation the three oc-
currences of the matrix G in (2.12) would be replaced by one matrix F to save memory,
in particular for large and sparse input A, B, C.

Remark 2.6. For the codes in (2.12) it is not necessary to compute upper bounds
for the Euclidean norms g¢; and o in extended precision because these computations
are perfectly well conditioned. Note that the computation of y and v is error-free.

Proof. For the first code (2.10) the rounding upwards implies that the computed
quantities mu, nu, rho, sigma are upper bounds of u,v, 0,0 in Lemma 2.2, so that
(2.7) proves |C - AB||2 < . Note that 2u = 2752 is used because of upward directed
rounding. For (2.11) let

setround(-1); Q1 =A*B-C;
setround(+1); Q2=A*B-C;

Note that Q2 is the matrix Q in (2.10) and Q1 is implicitly computed in (2.11). Then
the rounding modes imply? Q1 < AB — C < Q2 with entrywise comparison. Hence
|AB - C| < max (|Q1/,]Q2]) and |C — AB|2 < 8 follows.

The third code (2.12) uses the multiple precision toolbox [15] and computes the
residual F = C - mp(A)*B in extended precision and rounding to nearest with relative
rounding error v := 27113, The rounding upwards in the third line implies that the

quantities mu, nu, rho, sigma are upper bounds of p,v, 9,0 in Lemma 2.2. Denote
M :=mp(A) *B. Then F =fIl(C - M) and (2.6) implies

(2.14)  |[C-AB|2<|C-M+M - AB|2 < (1+V)|Fl2+v > min(ug, vk )pror -
k=1

The toolbox Advanpix [15] respects the rounding mode, in particular the type cast
double from mp-tpye to binary64. Hence the double precision matrix G satisfies |F| <
G by the third line, and therefore |F'||z < [|F||2 < |G]2 < normG2 and |C - AB|2 <.

The fourth code (2.13) uses again the multiple precision toolbox [15]. By assump-
tion the set of nonzero elements of A and B are identical, and rows and corresponding
columns of A and B have the same Euclidean length. When using the code (2.12) to
bound |C - AB]|2, then

mu = sum(spones(A),2) = sum(spones(B)) = nu’

2Note that this is true for using A*B-C, but would not necessarily be true when using C-A*B.
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d
o rho = vecnorm(A,2,2) = vecnorm(B,2)’ = sigma’

and the result follows. d
Note that (2.14) implies that |C'— AB||2 is very close to || F'||2 and therefore to |G|z, so
that the overestimation of the computed +y in (2.12) is basically |G < maxy o (|G]).

For the special case of Cholesky decomposition A ~ RTR there is an a priori

estimate [53, Lemma 2.2], [14, Theorem 10.5] of the residual |IRTR - Ay without
computing RT R. We improve this estimate by applying Perron-Frobenius Theory.

LEMMA 2.7. Let symmetric A € F™" be given and assume that the floating-point
Cholesky factorization of A runs to completion. Denote the computed factor by R,
and let the vector p € N™ consist of p; denoting the number of nonzero elements in
the i-th column ofR and assume umax g < 1. Denote by ® € R™"™ the matrix with

1/2
®,; = min(p;, ;) + 1 and by D e R™™ the diagonal matriz with Dy = ( Ark ) .

1—<I>kku

Then for a nearest-rounding in the absence of underflow and overflow AA:= RTR-A
satisfies

(2.15) |AA]s < u| DED].

If a faithful-rounding is used and max juy, < (2u)"Y2, then the estimate remains true
when replacing u by 2u.

Remark 2.8. The matrix ® is a full matrix. Hence computing (2.15) seems to be
costly, in particular for sparse A. However, ® has a special structure which is utilized
in Corollary 2.9 to compute an improved upper bound for |AA|s efficiently.

Proof. In [51] it was shown that
AAJ; < (i + Du(|RT[|R]):;

for 1< 4,j <m. The number of nonzero products in the computation of Rij does not
exceed min (g, p15), plus a square root in case ¢ = j. Using the improved error estimate
in Lemma 2.2 and carefully going through the proof of Theorem 4.4 in [51] gives

|AA|; < cpiju(|RT||R|)ij for @;; := min(p;, pj) + 1.
Following the proof of [14, Theorem 10.5] denote the i-th column of R by 7;. Then
I7il5 = 77 7 < Ass + |AAui| € As + piur] 7

and ||7;]3 < (1 - ¢;iu) ' A;;. Then Cauchy-Schwarz’s inequality implies

IAAl;; < piuli] [I75] < pigul 7275 ]2

(2.16) A \M2 A \Y?
(7“) ¢ij|——] u< (D®D);u
1- (vorrabt 1- @Yj;a J
and proves (2.15) and the lemma. d

By definition D®D is symmetric positive definite, so |[D®D||; is equal to the largest
eigenvalue, i.e., the Perron root of D®D. Hence D®D > 0 and Perron-Frobenius
Theory [7], [16, Theorem 8.1.26] imply
D®D
X( L)k
T,

(2.17) | D®D||5 < ma for every positive z € R™ .
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Moreover, a power iteration converges monotonically to |D®D|, for any positive
starting vector x. A problem is, however, that the matrix ® if full. Fortunately, the
product ®x for x € F™ can be computed efficiently as follows. My dearest thanks to
Marko Lange [28] who provided the ingenious piece of Matlab code in (2.18).

COROLLARY 2.9. Let 0 <v e R" be sorted in ascending order and define ® € R™"
by ®,; :=min(v;,v;). Then for x € R" the vector w computed by the code

rcx = cumsum(x, 1, reverse’);
(2.18) VX = V. % X;

w = cumsum(vx) — VX + V. * ICX;

is equal to Px.

It is not difficult to verify that indeed w = ®x. The requirement that v is sorted is
crucial, and that is no obstacle because of the definition of ®.

The previous estimate [53, Lemma 2.2], [14, Theorem 10.5] continues from (2.16)
by replacing the entries ¢;; of ® in (2.15) by \/@;;@;;. That implies |AA|;; < dd”

1/2
for d denoting the column vector with dj = (%) and the estimate |[AA[z <
|ddT |5 = d¥d. Therefore

& (pe+Du
1 A _WERT R .
(2.19) jadla < 3 (R

We later show numerical evidence that the new estimate (2.15) together with Corollary
2.9 improves upon the original one in [53, Lemma 2.2] by an order of magnitude and
more, and upon (2.19) by about a factor 1.5. Executing the code in (2.18) in rounding
upwards computes an upper bound for ®x because the quantities involved are positive.

3. Scaling, equilibration and approximation of smallest singular value.
Our verification method requires a Cholesky and/or LDL”-decomposition of a sym-
metric matrix A € F™". To that end it is important to scale the matrix. Denote
by k(A) the 2-norm condition number of A and by D,, the set of nonsingular diag-
onal n x n matrices. For Hermitian A an optimal diagonal scaling [6, Lemma 1] is
symmetric

inf  k(D1AD3) = inf k(DAD) .
D1,DseDy, DeDy,

If for positive definite A the diagonal is scaled to 1, then its condition number is at
least not far from the optimal scaling by [54, Theorem 4.3]

k(A) < qgngl x(D" AD)

where ¢ denotes the maximum number of nonzero elements per row of A. In order to
avoid rounding errors by scaling we use

d = pow2(round(log2(1./sqrt(diagh)))); A= (d.*A). xd’;

for symmetric positive definite A. Note that d is a vector. For D denoting the diagonal
matrix with diagonal d, the command (d.*A) .*d’ is an efficient computation of DAD.
No rounding errors occur because the elements of d are powers of 2. For a linear system
Ax = b we scale the right hand side by b = d.*b. If T is the solution of the scaled
linear system DADZT = Db, then DT is the solution of the original linear system.
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Practical experience suggests that an equilibration with |A| being close to a scalar
multiple of a doubly stochastic matrix is advisable [13, 1]. To that end the famous
Sinkhorn-Knopp algorithm is the algorithm of choice. For a good introduction and
historical remarks see [24]. For symmetric A a vector d is computed by the simple
iteration d = 1./(abs(A)*d). Starting with d = ones(n, 1) it converges to a vector
d if, and only if, A has total support with |[DAD| being a scalar multiple of a doubly
stochastic matrix for D = diag(d). In our case it is not necessary to compute ¢ with
high accuracy because its entries are rounded to the nearest power of 2 to avoid
rounding errors, and in our case a good starting vector for symmetric positive definite
Ais 1./sqrt(diag(A)). We use 2 iteration steps, each scaling columns and rows:

d =1./sqrt(diagh);
(3.1) for k=1:4, d=1./(abs(A) *d); end
A=(d. *+4).xd;

For symmetric but indefinite A diagonal elements may be zero, so the scaling (3.1)
is not applicable. Several scalings DAD are possible, for example using D := diag(d)
with dj, being the columnwise maximum, or Xy|Ays|. We use the Euclidean norm of
columns together with the Sinkhorn-Knopp algorithm, i.e.,

d =1./vecnorm(A,2)’;
(3.2) for k=1:4,d=1./(abs(A) xd); end
A=(d *A4).xd;

The scaling of the right hand side and transformation of the solution is as before.
For a general matrix we use Matlab’s equilibrate and add two Sinkhorn-Knopp
iterations [24]:

[p,row,col] = equilibrate(A, vector’);
for k=1:2
col =1./(abs(A(p,:)") * row); row=1./(abs(A(p,:)) * col);
(3.3) end
row = sign(row). * pow2(round(log2(abs(row))));
col = sign(row). * pow2(round(log2(abs(col))));
A =row. * A(p,:). * col’;

The outputs p, row, col of the function equilibrate are vectors. Denote the diago-
nal matrices with row, col in the diagonal by R, C, respectively, and the permutation
matrix mapping {1,...,n} into p by P. Then the equilibrated matrix is B :== RPAC
with entries close to +1 in the diagonal and all its off-diagonal entries limited by about
1 in absolute value. After transforming the right hand side into ¢ = row.*b(p,:), it
follows A'b = Cy for By = c. As in (3.2) we avoid rounding errors by replacing the
entries of the vectors row and col by the nearest power of 2.

As has been mentioned we need two kinds of decompositions, Cholesky and
LDL”T. Mathematically, pivoting is not necessary for symmetric positive input matrix
A, however, permuting A may reduce the fill-in significantly. Therefore we use

(3.4) [R,FLAG, p] = chol(A, vector’);
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14 S. M. RUMP

producing an error flag and permutation information. For the permutation matrix P
mapping {1,...,n} into p it follows RTR ~ PT AP. The latter matrix is A(p,p) in
Matlab notation.

Matlab offers two possibilities for scaling in the LDLT-decomposition of a real
symmetric matrix, both based on Duff’s multifrontal method "MA57% [12]. First, a
threshold for the pivot tolerance is introduced by the call

(3.5) [L,D,p] = 1d1(A, thresh, vector’);

such that LDLT approximates A(p,p). A larger threshold requires more computing
time but may produce a more stable result. The maximum threshold is thresh =
0.5, and we always use this value.

There may be an obstacle when applying 1d1 to an augmented matrix B :=

T

( Z /i) . Here the blocks of D are all 2 x 2 with zero diagonal, see Lemma 9.1.
In that case D should contain totally 2n nonzero entries for A € F™™". However, it
happens that (3.5) computes D with less nonzero elements, i.e., D is singular, even
for moderate condition number. That happens when 1d1 is applied to the augmented
matrix B and occurred in 54 out of 211 test cases. In such a case the part of L cor-
responding to zero blocks in D are the rows of the identity matrix. So a remedy may
be to replace the zero blocks of D by the corresponding parts of A(p,p). However, in
that case the residual LDLT — A(p,p) is usually not small enough. Another remedy
in that case nnz(D) < n may be to use

. ,D,pl = +realmin * speye(n), thresh, vector ); :n+1:n%)=0;
3.6) [L,D,p]=1d1(A 1mi pey hresh,’ "); D1 1:0%)=0

Then the factors L, D are practically unchanged by the tiny diagonal entries realmin,
but that trick helps the algorithm to produce nonsingular D with diagonal entries of
size realmin. The second statement sets the diagonal of D to zero so that all 2 x 2
blocks have zero diagonal - as it should be from the beginning. However, that may
produce subnormal entries in L, and arithmetical operations including subnormal
numbers are known to be slow. Thus we replace realmin by 107°:

[L,D,p] =1d1(A + 1le — 50 * speye(n), thresh,’ vector’);
(3.7 D(1:n+1:1n%)=0;
Vi, j: |Lij| <1070 = L;;=0

In our application it is safe to use the absolute shift by 1075 because the input
matrix has a norm close to 1. However, that trick may produce quite some fill-in, in
particular with numbers very small in magnitude. Therefore we set in addition entries
in L smaller than 1073° in magnitude to zero. That reduces the fill-in significantly
and still produces a factor L which is sufficiently accurate for our purposes.

Those tricks are necessary to cure the behaviour of Matlab’s 1d1. The reason is
that M A57 [12] uses a “zero pivot tolerance” 1072°. Unfortunately that applies not
only to the entries of L but also to D, eventually producing a singular factor D. When
changing the tolerance to zero, no singular factor D appears any more. In Matlab
the user cannot change that tolerance. After reporting that behaviour to mathworks
that may be possible in a future release and simplify our algorithms.

Beyond (3.5) a second possibility is an additional scaling using

L,D,p,S] = 1d1(A, thresh,’ vector’);
K p? ) b )

This manuscript is for review purposes only.



[« R

e

Y Ot & W

3J

co

or ot v Ot Ot Ot Ot ot Ot

ot
—
Do

Y UL R W

—

t oU oot ot ot ot
— =
co ~

ot Ot Ot Ot
NN
= 3o ©

N

NN NN N NN
W NN = O © 0 O U keWw

ot

(=]

oo

ol Ot Ot Ot Ot Ol Ut Ot Ot Ot Ot ot Ot Ot ot Ot Gt

W W W W W w w w w w
1o
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In that case LDL” approximates S(p, :)*A*xS(:,p). For our purposes the additional
scaling was sometimes useful but often counterproductive. Therefore we compute
throughout this note LD L”-decompositions by (3.5), and if necessary by (3.7).

In our methods we need an approximation of the smallest singular value of some
matrices. Since the matrices are large, svd is much too costly, and because they are
sparse it should not be used anyway. One possibility is svds(A,1,’smallestnz’).
That routine is fast, however, often pretty inaccurate.

In our applications we need approximations on o, (A) only for symmetric A. In
that case we may use

(3.8) s = abs(eigs(A, 1, smallestabs’)) .

Although the routine asks for the smallest absolute value of an eigenvalue, the result
may be negative, therefore abs (.) is used as in [57]. That seems a stable and accurate
method for symmetric input matrix, however, it is sometimes slow. Routine eigs is
based on some iteration using some decomposition of A. In our applications we already
have a decomposition, therefore we will compute §(A, L) $ omin(A) by

(3.9 few inverse power iterations based on the factor L of A .

The result is multiplied by 0.9 to (hopefully) ensure that it is strictly less than
omin(A). That is working well in our applications because A is symmetric.

Next we show how a lower bound for the smallest singular value of A is used to
obtain entrywise and accurate error bounds for an approximation # of A~'b.

4. Error bounds for A™'b based on a lower bound for o.,;,(A). In the
following sections we will derive individual methods to compute a lower bound of the
smallest singular value of a symmetric positive definite, symmetric and general A.
Those methods include a decomposition of A allowing for a fast computation of an
approximate solution of Ay = c¢. We abbreviate this by y = solve(A,c).

Entrywise error bounds for the solution A™'b are obtained by the approach in
[59]. To further improve the accuracy we store an approximate solution as a pair
(Z,7) interpreted as an unevaluated sum Z +¢. This technique was introduced in [44]
and later called “staggered correction” [55]. Together with accurate dot products it
often allows for almost maximally accurate error bounds.

We sketch in Table 1 the rationale to compute accurate error bounds for A~'b.
From lines 2 and 3 it follows & ~ A™'b and § ~ A™*(b - A%). Since the residual in the
second line is calculated in extended precision, the unevaluated sum Z + g should be a
good approximation to A~'b. The fourth line® ensures that the bit patterns of # and
y do not overlap. From line 5 the unevaluated sum Z + ¢+ 2z improves the approximate
solution further. The correction Z should be very small correcting the last bits of §.
That is utilized in line 6. When computing

01:=[AZ - Aj-0]21 in rounding downwards
02 = [AZ - Ag-b]21 in rounding upwards

it follows 01 < AZ — A — b < o2 and the p in line 8 satisfies
|AZ - Ag-bl<o.

3The call [x,y] = TwoSum(a,b) computes x = float(a + b) for scalars, vectors and matrices a, b,
and in addition y such that z + y = a + b is mathematically correct [34].
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setround(-1); o = abs ([AZ + Ay — b]2.1)
setround(—|—1) o=max (g, abs ([AZ + A§ - b]2.1))

= |g| + vecnorm(p)/s

1 [z, 5] = ErrorBound(A, b, s, “solve*)

2 7 = solve(A,b) % A 'b~ E

3 g solve(A, [b— AZ]a.1) % A brF+g

4 [Z, 7] = TwoSum(Zz, 3)

5 Z =solve(A, [b - A% - Ag]a1) %A bnT+G+ 2
6 [Z,9] = TwoSum(Z, § + Z) %A brT+ g

7

8

9

TABLE 1
Residual iteration and inclusion of the solution A™1b.

The function vecnorm in line 9 denotes |g]2 for a column vector p, and the row
vector of Euclidean norms of the columns of ¢ for more than one column in 9. Hence,
proceeding as in [53] and abbreviating the vector of all 1’s by e we obtain

|A™1b - 7|

|7+ A (b- AZ - Ag)|
[+ A" o] e

[+ [A7 |2]e]2e

1]+ omin (A) 7 o]l2e

0

N IN

(4.1)

IN

because s € omin(A) and the computation of § in the last line is in rounding upwards.
The estimate is clear for one column b € R”, and for multiple right hand sides b e R™*
apply (4.1) successively to the columns of b.

The residuals are computed using the extended precision package in [15] corre-
sponding to a relative rounding error unit 2-''3. Therefore splitting the approximate
solution into three parts T + ¢ + Z would not improve the accuracy of the result. To
that end we need higher precision for the computation of the residual. We show how
to do that in Part II of this note.

Using accurate dot products is mandatory and ensures to obtain accurate entry-
wise error estimates. To see that we display in Table 2 the intermediate results for
the residual iteration in Table 1 for two representative examples. The examples are
number 1210 and 438 of [8], the first one being symmetric, the second one general.
As we will see later neither our new algorithm VerifySparselss to be presented in
Table 6 nor the algorithm in [57] could compute verified bounds for the first exam-
ple 1210. The reason is that due to the condition number 1.2-10*® both methods
could not verify a lower bound for the smallest singular value.* This does not affect
the iteration. We computed the smallest singular value using the multiple precision
package [15] for the final bound in line 14 of Table 2.

The input is normed to | Ao = 1 = ||b] . The smallest singular value in line 4 of
Table 2 shows that both matrices are ill-conditioned. Therefore we can expect that
|Z]2 ~ |A0] ~ ||b]|/omin (A) ¥ Omin(A)™! is large. That is certified in line 5, where

4Qur alternative method presented in Part IT of this note succeeds to compute verified bounds.
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566 & is Matlab’s A\b. It is a well known fact in numerical analysis that, although the

567 matrices are ill-conditioned, the residual norm AZ — b is small, and that is verified

565 in line 6. The next line 7 displays the median and maximum of |[A™'z - b|. Tt is

569 slightly better than expected by the well accepted rule of thumb that the error is of
size u-cond(A). That may be due to the sparseness of the input matrices.

TABLE 2
Detailed results for verified inclusion A™'b e & + 8 by residual iteration

symmetric general

1 # in [8] 1210 438

2 n 20,360 1,633

3 nnz(A) 509,866 46,626

4 Omin(A) 1.2-1071 8.1-10712

5 12 oo 4.0-10'2 1.1-10%°

6 |AZ ~ b] oo 1.7-1073 3.6-1078

7 error | 3.9-100*  3.9-107* | 1.6-10° 14-10°°

8 |AZ + Aj - b] oo 1.4-107° 6.5-10716

9 error +¢ | 3.0-1077  3.0-1077 | 3.0-107'7 1.1-107*
10 |AZ + Aj - b] oo 2.4-10710 1.6-107%
11 error T+ | 24-1071%  24.1071° | 1.9-10717 5.3.107%7
12 0=|AZ+Ajy-0b | 7.3-107%  1.1-107° | 84-107%¢ 1.7-107%
13 §=1g+ollz/s | 5.8-105  5.8-10° | 4.3-107® 89-1077
14 entrywise accuracy of incl. | 1.5-107%  1.5-107% | 8.5-10717 2.4.107

ot
=3

T W N

The next line in Algorithm ErrorBound in Table 1 improves & by one step of
residual iteration where the residual AZ — b is computed in extended and stored in
working precision. The correction y is not added to z, the approximate solution is
kept as an unevaluated sum Z +¢. Line 4 in Algorithm ErrorBound in Table 1 makes
sure that the bit representations of £ and § do not overlap.

As shown in lines 8 and 9 of Table 2 the unevaluated sum Z + § has a smaller
7 residual and better accuracy. By the cited rule of thumb the improvement should be
8 of the order u-cond(A), in the second example it seems better.

Line 5 of Algorithm ErrorBound performs a second residual iteration based on
80  the unevaluated sum Z +¢. The correction Z should be smaller than ¢ and is therefore
81 added to ¢. For the new approximation Z + ¢ line 6 ensures again that the bits don’t
overlap.

As by lines 10 and 11 in Table 2 this approximation has again smaller residual
and improved accuracy. Correspondingly, the upper bound g on |AZ + Ag -] is small,
in the second example very small. Now the verified inclusion for A~'b consists of three
parts, the approximation by the unevaluated sum  + ¢ and the normwise error bound
a = |ol2/Tminca), Le., [AT0 = (Z+ 7)<

By combining the error bound into the vector § = |§| + |o||2/s this becomes an
entrywise error bound (A7'b), € #,+6;. Note that § is computed in rounding upwards
in the last line of Algorithm “ErrorBound”.

The last line in Table 2 shows the median and maximum accuracy of the inclusion
in terms of the relative error |0 /Zx|. In the first example some 6 decimal figures of the
left and right bounds coincide. In the second example at least 14 decimal figures are
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guaranteed, and in the median the error bounds are maximally accurate. Repeating
the residual iteration in steps 5 and 6 of Algorithm ErrorBound in Table 1 another 3
times yields almost maximally accurate results for all entries of both examples.

5. Input data with tolerances. If the matrix and/or the right hand side are
afflicted with tolerances, verified error bounds based on our methods can be computed
as well. We give the details for real linear systems, for complex interval data an almost
identical ansatz is applicable.

Consider A € IF™™ and b € IF™*. The interval matrix A = [A, A] for A, A e F»>"
consists of all real matrices A with A < A < A and similarly for b. Then

(5.1) Y(A,b):={zeR™ :34¢ A Ibeb with Az = b}

is sometimes called the “outer” solution set [37, 49]. In order to compute error bounds
for X(A,b) we use a midpoint-radius representation for A. The INTLAB commands
mA = mid(A) and rA = rad(A) compute matrices mA,rA e F*" with mA-rA< A<
mA +rA for all Ae A, and similarly for b.

For interval input, there is no need for an extra precise residual iteration as
in Algorithm ErrorBound in Table 1. Denote by Z an approximate solution of the
midpoint linear system mA-z = mb after few residual iterations. Denote A := mA and
A:=rA, and let Ae A,beb fixed but arbitrary. For the moment assume that b is an
interval vector, i.e., b € IF”. Denote A := A— A. Then |A| < |A| and we adapt (4.1)

into
A2 = |[(A+A)7(b- A)]
|(I+A7TA) AT (b- Az) |
JA1 (b= A2) oo
1- A1 Al
omin(A) "' [b - AZ|,
1_Jmin(A)_1”A”2

which is true provided that opin(A)™Y|A|2 < 1. For multiple right hand sides, i.e.,
b e F™* with k > 1, apply (5.2) successively to the columns of b.

Note that successful computation of a lower bound of oy, (A) verifies the non-
singularity of every A € A a posteriori. A larger diameter of b widens the bounds, a
larger diameter of A reduces the range of applicability, i.e., verified bounds are only
obtained for smaller condition number of A.

6. Symmetric (positive definite) matrices. As has been mentioned before,
“positive definite” is in parenthesis because this is no assumption on the input matrix
but will be proved a posteriori by our algorithm. As a consequence, the subalgorithm
“verifySparseSPD” mnecessarily fails if the symmetric input matrix has nonpositive
eigenvalues. In that case subalgorithm “verifySparseSym” will be called.

THEOREM 6.1. Let symmetric A € F™" and 0 < s € F be given. For diagonal
D e F™*" assume Dy 2 s for all k € {1,...,n}. Suppose that the floating-point
Cholesky decomposition of B := A—D runs to completion producing a Cholesky factor
R. Define AB:= R"R- B. Then

(6.1) Umin(A)ZS—HABHQ?S—HABH(X,.

Let pu e N™ with p; denoting the number of nonzero elements in the i-th column of R
and assume umax pi < 1. Denote by M e R™" the matriz with M;; := min(gu,, ;) +1
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1 function [z, d] = verifySparseSPD(A,b)
2 If any Ay <0, [x,d] = verifySparseSym(A,b), return
3 Equilibrate A by (3.1)
4 Compute Cholesky factorization RT R ~ A by (3.4)
5 If failed, [z, d] = verifySparseSym(A,b), return
6 Compute 5(A, R) by (3.9) and set s := 0.95
7 setround(-1); As = A - s * speye(n);
8 setround(0); [Rs,FLAG,p] = chol(As);
9 If succeeded, goto step 13
10 Set rounding downwards and As = As + (8s/10)I; s = s/5;
11 Compute Cholesky factor RT R ~ As in rounding to nearest by (3.4)
12 If failed, [z, 4] = verifySparseSym(A,b), return
13 Compute upper bound a :=1.h.s.(6.2) with |RsT Rs - As|2 < a
14 If o > s,compute a with |Rs? Rs — As|s < « using (2.11)
15 fa>
16 If o > s, verification failed, return
]

17 [x,0] = ErrorBound(A4, b, s — «, “solve®) using R for solve

TABLE 3
Verified error bounds for A™'b for symmetric positive definite sparse input matric A.

1/2
and by D e R™™ the diagonal matriz with Dy = (1_11?}[“&“) . Let

(6.2) a:=u|DMD|,
be as in Lemma 2.7 computed by Corollary 2.9. Assume s> a. Then |AB|2 <« and

(6.3) Omin(4) 2 s -«

if the decomposition was performed using nearest operations. If max g < (2u)’1/2,

then (6.3) remains true for faithful operations when replacing u in (6.2) by 2u.

Proof. We have RTR = B+ AB with |AB|2 < a by Lemma 2.7. Moreover, AB
being symmetric implies [AB|2 < |AB|le. Hence (1.10) yields

)\min(A) -Ss2 )\min(A_D) = )‘min(B) = )‘min(RTR_AB) 2 _HABHQ 2 -«

and proves Amin(A) > s —a > 0, and therefore (6.3). The assertion for faithful opera-
tions follows as in Lemma 2.7. a

In Table 3 we sketch our subalgorithm “verifySparseSPD” for solving a sparse lin-
ear system with symmetric positive definite matrix. More precisely, the algorithm
assumes only that the input matrix A is symmetric. If A is indefinite and/or pos-
itive definiteness cannot be verified, then our subalgorithm “verifySparseSym” for
symmetric input matrix as given in the next section is called.

The details of subalgorithm ”verifySparseSPD“ are as follows. If there are non-
positive diagonal elements of A the matrix cannot be positive definite and we call
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subalgorithm “verifySparseSym”. Otherwise, after equilibration in line 3 a numerical
Cholesky decomposition [R,FLAG,p] = chol(A,’vector’) is computed in line 4.
If FLAG # 0, the factorization failed and subalgorithm “verifySparseSym” is called.
Otherwise, an approximative lower bound s of the smallest singular value of A is
computed in line 6.

In line 7 a lower bound As of the shifted matrix A — sI is computed. Hence As
= A- D with Dy > s and Theorem 6.1 is applicable. Next, a floating-point Cholesky
decomposition of As is tried in line 8. In case of failure we try again with a smaller
value for s. In the actual implementation we avoid using two matrices but set As =
As - sx*speye(n) in line 10. It needs some care to use the correct matrix As with
the updated s. Denote the matrix As in line 8 by As. From line 7 and rounding
downwards we know As = A - D for diagonal D with Dy > s. Denote s’ = 8%s/10
in rounding downwards and the new s Computed at the end of line 10 by 5. Note that

< s/5. Then roundlng downwards implies s’ < 0.8s and 71\5 is updated in line 10 into
some As:=As+D=A-D+D for diagonal D with Dkk < 0.8s. Note that As is
the matrix As after executing step 10. It follows Dy — Dkk >5-0.85=s5/52>5 so that
the new As in line 10 is equal to A - D for diagonal D with Dy, > 5. Thus Theorem
6.1 and (6.2) are applicable for As,3.

The decomposition in line 11 may fail because of ill-conditioned input matrix A
or, if s is chosen too large. In that case we call subalgorithm “verifySparseSym”. In
the next line 13 an upper « as in (6.2) in Theorem 6.1 is computed using the code in
Corollary 2.9 such that (using rounding downwards) s—« is a lower bound of oy, (4).
This first upper bound on « comes by (6.2) at practically no cost. If « is too large,
ie., a>s, we compute AB := Rs’ Rs — As in rounding downwards and upwards and
improve « by initializing setround(1), Q = Rs’*Rs-As; and using (2.11) in Lemma
2.4. If still a > s, we improve « again by computing AB in extended precision with
rounding to nearest and using (2.13). Step 14 could be omitted, however, if successful
it saves quite some computing time.

This is our last resource. It still « > s, subalgorithm “verifySparseSPD” failed to
compute verified error bounds. In that case our general Algorithm verifySparselss
to be presented in Table 6 calls subalgorithm “verifySparseSym”. Otherwise, s — «
rounded downwards is a correct lower bound for the smallest singular value of A, and
an improved approximate solution z together with error bound ¢ satisfying A=*b € x+6
is computed by Algorithm ” ErrorBound“ in Table 1. This algorithm requires to solve
a linear system Ay = ¢ for some right hand side ¢ which is performed using R in the
fourth line.

7. Factorization of 2x2 Hermitian matrix. Let L and D be factors of a real
symmetric or Hermitian matrix A such that A = LDL*. Then D comprises of 1x 1 or
2 x 2 real symmetric or Hermitian blocks, respectively. Let B be such a block matrix.
We will factor B = MSPM* with symmetric or Hermitian M, possibly complex
signature matrix S and permutation matrix P such that cond(M) ~ cond(B)/2.

The purpose is as follows. Applying the factorization to the blocks of D results
in a block factorization D = MSPMY. Setting L, := LMSP and Ly = LM yields
A= LiLY¥. Since S and P are unitary, the sets of singular values of L; and Lo are
identical. Tt follows cond(A) < cond(L;)? = cond(L2)?. Although, in contrast to the
Cholesky decomposition, the condition number of Ly (and Ls) is, in general, not equal
to cond(A)l/ 2 practical evidence suggests that they are often not too far apart.

For the anticipated decomposition we distinguish three cases. If B is 1 x 1, then
B =0 for a real or complex number b, and M := \/m, S =sign(b) and P =1 do the
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job.

SO

. . . . . b
The second case is a 2 x 2 matrix with zero diagonal, i.e., B := ( 0 ) In that

case we choose

M::( o0 ),S::(Sjgn(b) 07 ) and P::(O 1).
0 |b] 0 sign(b) 10

b ) be given and define d :=

For the third case let nonsingular Hermitian B = ( %
C

\/ (a—c)? +4bb. Its (real) cigenvalues are A1 2 = 3(a+c=d), and for b # 0 the unitary

—-c+d
eigenvectors are vy 2 = ( “ 2% ) It follows the eigendecomposition B = VDV

M0

for unitary V' ::( Ul/HU1 ||2 1)2/HU2H2 ) and D ;:( 0

). Hence

My VD0 g [ sien(a) 0 and P=1
0 \/ |)\2| 0 Slgn(/\g)

is the desired decomposition.

In the first two cases we just need \/m . The third case looks also like a straight-
forward approach, and in almost all cases it worked well. However, for b being small
in absolute value compared to @ and/or ¢ numerical problems may occur. We come
to that when discussing the test results in Section 12.

Summarizing we showed that for an LDL”-decomposition of a real symmetric
matrix A the block diagonal matrix D can be expressed as

(7.1) D=DSDT for symmetric A
(7.2) D=DSPD" for symmetric A with zero diagonal

with block diagonal symmetric D, real signature matrix S and permutation matrix
P. If A is complex, then D = DSPD D is block diagonal Hermitian and S is a
complex signature matrix.

8. Symmetric matrices. We show in Table 4 a general outline of our subal-
gorithm “verifySparseSym” to compute verified bounds for the solution of a sparse
linear system with symmetric matrix.

After equilibration in line 2 we decompose A in line 3. It occurs very rarely that
D is singular; in that case we call® the subalgorithm “verifySparseGen”. It happened
during testing, but not in our test suite of 48 symmetric test cases. Otherwise Lq, Lo
are computed in lines 5 - 6 with A ~ LyLy,. The factors are computed in floating-
point, but because S is a signature matrix the multiplication Ly := SLT is error-free
in floating-point. Thus, the factors L, Ly have identical sets of singular values. Hence
(1.11) gives

(81) Umin(A) ~ Umin(LlL2) 2 Umin(Ll)amin(L2) = Umin(L1)2 = Umin(LlL{) .

5Here the original data A,b before the equilibration in line 2 is to be used.
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function [z, 0] = verifySparseSym(A,b)
Equilibrate A by (3.2)
Compute LDLT (A) by (3.5)
If D is singular, verification failed, [z, §] = verifySparseGen(A,b), return

Compute Ly ~ LD and Ly = SLT
Compute M ~ L; LT in rounding upwards
Compute Compute (M, Ly) by (3.9) and set s :=0.95

1
2
3
4
5 Compute approximate splitting D ~ DSD7T according to (7.1)
6
7
8
9 Use (2.10) to compute o with |A - LiLa|2 < @

10 If a > s, improve « as in (2.11)

11 If a < s,use (2.9) to compute 8 with |M — Ly LT |5 < B,else B = 0o
12 If a<sand a+f > s, improve 8 as in (2.11)

13 If a+ 8 > s, recompute M and improve «, § as in (2.13)

14 If o+ B > s, verification failed, [x,d] = verifySparseGen(A,b), return
15 Compute M := M - sI in rounding downwards

16 Compute Cholesky factor RT R ~ M in rounding to nearest by (3.4)
17 If succeeded, goto step 20

18 Set rounding downwards and M = M + (8s/10)I; s = s/5;

19 Compute Cholesky factor RT R ~ M in rounding to nearest by (3.4)
20 If failed, [z, §] = verifySparseGen(A,b), return

21 Compute v with |M — RT R|2 < by (6.2) in rounding upwards

22 If a+8+v2s, improve v as in (2.11)

23 If o+ B+~ 2s, improve 7 as in (2.13)

24 If a+ B+~ >s, verification failed, [z, §] = verifySparseGen(A,b), return
25 [z,0] = ErrorBound(A4,b,s - a — 3 -1, “solve*) using LDL™ for solve

TABLE 4
Verified error bounds for A™1b for symmetric sparse input matriz A.

Next M = float(L; LT) is computed in line 7 in rounding upwards, that is L LT < M,
and in line 8 we use an approximation of omi,(M) as an anticipated lower bound
5 $ omin(A) on the smallest singular value of A. We approximate o, (M) because a
Cholesky decomposition of M shifted by s is used in line 15 to compute a true lower
bound on oy (M) leading to a lower bound for oy (A).

For a correct lower bound on opin(A) we compute an upper bound « on |4 -
LiLs|o in line 9. If « is not small enough, i.e., @ > s, then « is improved by (2.11)
in line 10. Next we use (2.9) to compute an upper bound 3 on |M — Ly LT|,. Here
u in (2.9) is to be replaced by 2u because M was computed in rounding upwards in
line 7. Thus L; LT < M. If B is too large, i.e., if @+ 3 > s, then one additional matrix
multiplication suffices to improve § as in (2.11) by computing R = L1*L1’-M; beta
= NormBnd(R,true) in rounding downwards. This is true because the computation
of M and R< Ly LT -~ M imply 0< M - L, LT < -R.
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If still @+ 3 > s, then we try in line 13 to further improve the error bounds.
First we improve « by using (2.13). For 8 we use (2.13) as well, where this includes
the recomputation of M in rounding to nearest. We refrain from recomputing s for
the new M because numerical evidence suggests that, if any, a potential improve-
ment is marginal. If still o + 8 > s, then the verification failed and subalgorithm
“verifySparseGen” will be called.

In line 15 the shifted matrix M is computed in rounding downwards so that The-
orem 6.1 is applicable. Next a floating-point Cholesky decomposition of M is tried in
line 16. If not successful, M and s are updated as in lines 10-12 of “verifySparseSPD”,
and for the smaller shift s a Cholesky decomposition is tried in line 19.

If the second decomposition is still not successful, then the verification failed and
subalgorithm “verifySparseGen” will be called. Otherwise, an upper bound ~ from the
right hand side in (6.2) is computed in line 21 satisfying HH— RTR||y <. If necessary,
~ is improved using (2.11) or (2.13). Now Theorem 6.1 implies omin (M) > s — 7.

If the sum «a + 8+ of errors is too large, then the verification failed and we turn
to subalgorithm “verifySparseGen”. Otherwise, i.e., a + 5+ < s, (1.10), (8.1) and
Theorem 6.1 yield

Omin(A) > omin(L1L2) = |A = LiLa|2 > omin(L1LT) = |A - L1 La| 2
(8.2) > omin(M) = |Li LT = M2 = |A= LiLs|2 > omin (M) - 8-
> s-—a-0-7.

Hence o + 3 + v < s verifies that the matrix A is nonsingular, and entrywise bounds
for the solution are computed by Algorithm ErrorBound in Table 1.

9. General matrices. Asin [48, 57] our method for linear systems with general
matrix uses the augmented matrix

0 AT
(9.1 B::(A 0 )

the singular values of which are + the eigenvalues of A. So in principle we could apply
the methods for symmetric input matrix described in Section 8. However, due to the
structure of the augmented matrix B the decomposition part is simpler as by the
following lemma.

LEMMA 9.1. For nonsingular A € R™™ a block LDLT -decomposition of the aug-
mented matriz B in (9.1) produces D with all diagonal elements being zero, i.e., D
consists only of 2 x 2 pivot blocks with zero diagonal.

Remark 9.2. There may exist LDLT-decompositions of B with D having nonzero
diagonal entries. For the 1 x1 matrix A =1 the augmented matrix B is a permutation

1 0
matrix, and a computation yields that all LD L”-decompositions satisfy L = ( . )
14

0

1 -2¢
obtained by ¢ = 0.

Proof. A block LDL”-decomposition is based on [14, Section 11.1]

pppT - c\ (L 0 E 0 I, B'C"
- - -1 _ -1 T
c G CE™ I 0 G-CE'C 0 Ins

and D = ( ) for some ¢ € R. That includes the block LDLT-decomposition
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with I, denoting the m x m identity matrix and s € {1,2}. The diagonal of the
augmented matrix B remains zero under symmetric permutations, so that the first

0
pivot must be 2 x 2 with E = ( (g ) Moreover, ( E CT ) comprises of the k-th
«

and m-th row of B for some 1 < k<n and n+1<m <2n. Let P be the permutation
matrix mapping (1,...,2n) to (k,m,1,...,k-1,k+1..., m-1,m+1,...,2n). Then G
is square with 2n — 2 rows and columns and has the same structure as the augmented
matrix in (9.1). Hence the structure of PBPT is described by

0 [0} 017»,171 ”UT
E Cc7T B « 0 u” 01,n-1
c G N On-1,1 U On-1,n-1 HT

v On—l,l H On—l,n—l

with column vectors u,v € R*™!, a square matrix H with n—1 rows and columns, and
0 denoting a matrix of zeros with dimension according to the subscripts. Then

_ _ Orn— U u” 01, _ 0n-1,n— wv?
CE 1CT:a 1 1,1 1,T1 - 1 1,T1
v On-1,1 01,n-1 v vu On-1,n-1

shows that G — CE~*CT has the same structure as the augmented matrix (9.1). The
result follows. ad

In contrast to [46, 48, 57] we proceed for general matrices as follows. After equili-
brating the original matrix A we compute an LDL”-decomposition of the augmented
matrix B by (3.5). The permutation information for pivoting is stored in the vector
p such that B(p,p) ~ LDLY. According to Lemma 9.1 the matrix D has exactly 2n
nonzero entries for nonsingular A. If the decomposition fails, i.e., there are less than
2n nonzero elements in D, we use LDL”-decomposition as in (3.7). As has been
mentioned that happened in 54 out of 211 test cases.

A splitting (7.2) of D is computed, and in lines 7 and 8 the factors Ly, Lo such that
LiLs ~ B(p,p). The factor Ly is L; multiplied by some signature and permutation
matrix. That computation is error-free, so that as in subalgorithm “verifySparseSym”
the factors L, Ly have identical sets of singular values. Hence (8.1) is true when
replacing A by B or B(p,p).

The first bound on « is computed in line 11 using (2.10). In line 5 of that code
NormBnd (C,false) is used and C should be replaced by B. In fact, NormBnd (B, true)
could be used. However, we use NormBnd (A,false) because the spectral norms of A
and B coincide but A has half the size of B.

The remaining of the subalgorithm until line 20 is identical to subalgorithm
VerifySparseSym in Table 4, so that (1.10), (8.1) and Theorem 6.1 yield

Omin(B) 2 omin(L1L2) = | B = Ly Lal2 > omin (L1 LT) = | B = L1 La||2
Omin(M) = | L1 LT = M|z = | B = L1 Lz |2 > omin (M) - 8- a

> s—-a-fb-7.

Umin(A)

Vv

Error bounds for the solution of the original linear system Az = b use that

)G
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1 function [z,d] = verifySparseGen(A,b)

2 Equilibrate A by (3.3)

3 Let B the augmented matrix (9.1)

4 Compute LDLY (B) by (3.5)

5 If nnz(D) < 2n,compute LDLT (B) by (3.7)

6 If nnz(D) < 2n, verification failed, return

7 Compute approximate splitting D ~ DSPDT according to (7.2)

8 Compute Ly » LD and Ly = SPL%F

9 Compute M ~ L LT in rounding upwards
10 Compute 5(M, Ly) by (3.9) and set s:=0.95
11 Use (2.10) to compute o with |B - LiLa|2 < &

12 If a > 5, improve « as in (2.11)

13 If a < s,use (2.9) to compute B with |M — L; LT[> < B,else 8 = oo
14 If a <sand a+ 82 s, improve 8 as in (2.11)

15 If o+ B > s, recompute M and improve «, 5 as in (2.13)

16 If o+ B > s, verification failed, return

17 Compute M := M — sI in rounding downwards

18 Compute Cholesky factor RT R ~ M in rounding to nearest by (3.4)
19 If succeeded, goto step 23

20 Set rounding downwards and s = 8s/10; M=M+ sl; s =s/5;

21 Compute Cholesky factor RT R ~ M in rounding to nearest by (3.4)
22 If Cholesky decomposition ends premature, verification failed, return
23 Compute v with |[M - RT Ry < by (6.2) in rounding upwards

24 If a+ B+~ 2s, improve 7 as in (2.11)

25 If o+ B+~ 2s, improve 7 as in (2.13)

26 If a+ B+~ > s, verification failed, return

27 [x,0] = ErrorBound(B, [0;b],s — a — 3 -7, “solve) using LDLY for solve

TABLE 5
Verified error bounds for A~'b for general sparse input matriz A.

implies © = A™'b. The residual iteration in Algorithm ErrorBound is adapted to the
augmented system, and the lower bound s — a - 8 - for opmin(A) = omin(B) and the
LDLT-decomposition from line 4 or 5 is used for the residual iteration. The approxi-
mation x with error bound § refers to the first n entries of the result of “ErrorBound”.

10. Complex sparse linear systems and the first sparse Iss algorithm.
Unfortunately, the LDL”-decomposition for sparse matrices in Matlab is restricted
to real data. For a complex linear system (A +4iB)(x +iy) = b+ ic a simple remedy is
to use the augmented linear system

(10.1) (g f)(i)(b)
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function [xs,delta] = verifySparselss(A,b)
% Approximate solution xs of Ax=b with error bound delta
if isreal(A)

if isreal(b) % A and b real
symm = isequal(A’,A);
if symm % A symmetric
[xs,delta] = verifySparseSPD(A,b);
end

if ( “symm ) || isnan(xs(1)) % A unsymm. or SPD failed
[xs,delta] = verifySparseGen(A,b);
end
else % A real, b complex
[xs,delta] = verifySparselss(A, [real(b) imag(b)]);
n = size(A,1);
m = size(b,2);
xs = complex(xs(:,1:m),xs(:,m+1l:end));
delta = reshape(vecnorm(reshape(delta,[],2),2,2),n,[1);
end
else % A complex
n = size(A,1);
A [real(A) -imag(A);imag(A) real(A)];
b = [real(b);imag(b)];
[xs,delta] = verifySparselss(A,b);
xs = complex(xs(l:n,:),xs(nt+l:end,:));

delta = reshape(delta,n,[])’; ¥ take care of multiple r.h.s.
delta = reshape(vecnorm(reshape(delta,2,[]),2),size(b,2),[1)’;
end

end Y function verifySparselss

TABLE 6
Algorithm to compute verified error bounds for the solution of a sparse linear system.

of doubled size. Then for positive definite Hermitian, for Hermitian and for general
A
B A
symmetric, and general, respectively. In each case the singular values of C' are those
of A +iB doubled, so that the condition number does not change. A drawback is
that for general matrices we use the augmented matrix (9.1) resulting in a linear
system of four times the dimension of the original complex system. If a complex
LDLT-decomposition will be included in Matlab, then that drawback disappears.

In the previous sections we described subalgorithms to compute error bounds for
the solution of linear systems with symmetric positive definite matrix, with symmet-
ric and with general matrix. For a given linear system we may check symmetry, but
positive definiteness may not be known beforehand. Therefore, we present in Ta-
ble 6 the self-contained Algorithm verifySparselss as executable Matlab/INTLAB
code to solve a general real or complex sparse linear systems. The final and also a
second version of Algorithm verifySparselss including least squares problems and
underdetermined linear systems will be given in Table 8 in Part II of this note.

The algorithm proceeds as follows. First it is checked for real or complex data.

matrix A +iB the augmented matrix C := is symmetric positive definite,
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If the matrix is complex, error bounds are computed according to (10.1), if only b is
complex it suffices to solve a linear systems with 2 right hand sides. In either case the
error bound is the entrywise Euclidean norm of the bounds for the real and complex
part.

If the input matrix A is symmetric, subalgorithm “verifySparseSPD” is tried. If
the check of positivity of all diagonal elements of A or some Cholesky decomposition
fails, then “verifySparseSPD” calls subalgorithm “verifySparseSym”. If it fails as well,
then as a final resource subalgorithm “verifySparseGen” is called. If the input matrix
is not symmetric, then subalgorithm “verifySparseGen” is called immediately.

The subalgorithms cover multiple right hand sides for real and complex input
data. For complex b and/or A some care is necessary to collect the data for the
complex inclusion.

We refrain from giving an explicit algorithm for data afflicted with tolerances
because it is clear how to proceed along the lines given in Section 5.

11. Comparison of the new algorithm and [57]. For a linear system Az =b
the algorithm proposed by Terao and Ozaki [57] is based on Theorem 1.1 to compute
a lower bound for oy, (A), basically as in Table 7.

If successful, i.e., 8 > g, then opin(B) = omin(A) > 6 — p. The Matlab code is
published in [57] and some missing code was kindly provided by the authors. In [57]
the quality of an inclusion was improved by a residual iteration based on

()

with solution y = b and = = A7'b. The advantage of their method compared to

Apply (3.8) to B as in (9.1) and set 0 :=0.5s

Compute LDLT (B +6I) by (3.5)

If the inertia of D is not (n,0,n), decrease 6 and go to step 2
Compute ¢ with |B+60I - LDLT|5< o

If 6 < o, restart from step 2 with larger 6 > p or verification fails

T W N

TABLE 7
Computation of a lower bound 6 — o for omin(A).

Theorem 1.1 in [46] is that only one decomposition, namely of B + I is necessary
because for nonsingular A the inertia (n,0,n) of B is known beforehand. The trade-
off is that only a decomposition of the shifted matrix B + 61 is available, not of B.
It was analysed in [53] that nevertheless a residual iteration with this decomposition
converges, i.e., improves the solution of (11.1), and this is used in [57]. Suppose
LDLT = B+6I and LDL” = B. If A is well-conditioned, then 6 is large introducing
a significant difference between L, D and L, D. If A is ill-conditioned, then 6 is small
but the factors are sensitive to perturbations of B. Nevertheless a residual iteration
using the factors L, D converges [53], but more iterations are necessary compared to
using the original factors L, D of B.

A second difficulty is that an inclusion of the product of three matrices is needed
in step 4. In [57] the code

[L,D,p] = 1d1(mid(G), vector’); rho = NormBnd(G(p,p) - L * intval(D) * L', true);
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computes ¢ with |B + 0I — LDLT |, < ¢ and uses NormBnd from (1.9). The first
product M := Lxintval(D) is an inclusion of LD, so that the product M LT of an
interval matrix times point matrix causes additional overestimation. That reduces
the maximal possible condition number until which a verification is possible.

A third problem slowing down [57] is that the decomposition of the shifted matrix
B causes significantly more fill-in than the decomposition of the original augmented
matrix B. We come to that in Part IT of this note.

The algorithm in [57] is called by

(11.2) X =verifylinsys(A,b,precond,acc)

with additional parameters precond and acc. The output X is an interval vector,
and if successful, A~'b € X. The meaning of acc is as follows. When multiplying two
interval matrices, there is a choice in INTLAB [47] between using midpoint-radius
arithmetic and rank-1 updates. The former produces bounds which are slightly wider
for small radii of the factors, but for very large radii up to a factor 1.5 wider than
those of the latter. However, interval matrix multiplication using the midpoint-radius
representation is much faster than using rank-1 updates [50]. To choose either method
the commands intvalinit(’FastIVmult’) and intvalinit(’SharpIVmult’) are
used. If acc is true, then the slower method eventually producing better bounds is
activated.

However, the two approaches differ only if both factors comprise of intervals with
nonzero diameter. The most important product in the code of [57] in Table 7 is
Lxintval(D)*L’, but here always one factor is a point matrix. Therefore there is no
difference between the two methods in INTLAB for multiplication. Consequently, we
observed a marginal difference between the quality of the bounds using false or true
for acc, which is confirmed by the test results in [57]. Therefore, the computational
results in the next section use acc = false.

If the extra parameter precond is true, then before executing the code in Table
7 the equilibration as in (3.3) is applied. Switching precond on or off has signifi-
cant influence on the performance and accuracy of the algorithm in [57]. In many
cases precond = true both reduces the computing time and increases the accuracy
significantly, and often verification fails without preconditioning. Rarely we observed
failure of verification with and success without preconditioning. In our computational
results we found 3 such cases and appended the computing time by an “*”.

Another reason to use precond = true for the algorithm in [57] is that when
using precond = false the inclusion may be wide. For instance, in example 1404 the
verified inclusion by [57] with precond = false ends successfully, but all entries of
the inclusion are equal to [-4.45-10'7,4.45-10'7].

12. Test results. Our computing environment is a Panasonic laptop CF-SV
with Intel(R) Core(TM) i7-10810U CPU with 1.10/1.61 GHz and 16 GB RAM. We
use Matlab version 2023b [33] under Windows 10.

As for test matrices we used the Suite Sparse Matrix Collection [8] with the
interface [21]. More precisely, we took all real and complex square matrices with
dimension

(12.1) 10°<n<10° and 10 < condest(A) <10'® and nnz(A) <10°.

That resulted in totally 306 tests displayed in Table 8. The first column indicates the
structure indicated by [8], namely symmetric positive definite, symmetric indefinite,
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general real, all test matrices out of [57], complex Hermitian positive definite and
general complex. Our Algorithm verifySparselss computed verified bounds in 301
out of the 306 real and complex test cases. In the 302 real test cases satisfying (12.1)
were 26 examples where [57] failed to compute verified bounds in all four combinations
of options precond and acc. In all those 26 examples verifySparselss succeeded.
We found no example vice versa, i.e., verifySparselss failed but [57] succeeds in
some combination. However, there are surely such cases.

TABLE 8
Test sets and success rate.

structure success new success [57]
spd 22 out of 22 14 out of 22
sym 45  out of 48 42 out of 48
gen | 210 out of 211 | 199 out of 211
[57] 20 outof 20 20 outof = 20
complex spd 1 out of 1

complex gen 3 out of

We compare our algorithm to that in [57], and also against Matlab’s “backslash”
operator, henceforth depicted by 1lu. The latter provides an approximate solution
whereas our Algorithm verifySparselss and [57] deliver error bounds which are,
although computed in floating-point, correct with mathematical certainty. Moreover,
we try to provide close to maximally accurate bounds, i.e., the left and right bound
of all entries should differ by few bits. Nevertheless, in some 37 out of the 306 test
cases our Algorithm verifySparselss is faster than 1u. That should never happen
because the verified bounds are an approximation with error bound. That confirms
once again that there is hardly a panacea, i.e., a general purpose algorithm to solve
sparse linear systems. In the median 1lu is 4.9 times faster than verifySparselss.

The dimension, number of nonzero elements and condition number of all test cases
is shown in Figure 1. The dimensions vary between 1019 and 682,862 and the number
of nonzero elements between 3562 and 5,778,545. For given matrix of dimension n
we generate a right hand side A*(2*rand(n,1)-1)) so that the solution has, up to
rounding errors, uniformly distributed entries between —1 and 1. In [57] the right
hand side A*ones(n,1) was used.

In [57] computational results are listed for the four options acc and precond ¢rue
and false, but no clear recommendation was given which combination to use. In order
to display a fair comparison we proceed as follows. As noted above there is practically
no difference in choosing true or false for acc. It remains the choice for precond.
As true is mostly superior, we first try to compute verified bounds by (11.2) with
precond = true and acc = false. If successful, the computing time and accuracy
for this setting is reported. If not successful, we try again with both precond and
acc set to false. If now successful, the computing time and accuracy for this setting
is reported. That is indicated in our listings by an “*” after the computing time of
[567]. There are 3 such cases in the test suite satisfying (12.1), namely numbers 430, 46
and 1395 in [8]. If still not successful, the minimum of the computing time (to realize
failure) for the two settings is reported together with NaN for the accuracy indicating
that the verification failed.

In Figure 2 we show for all tests the ratio of computing times of 1u divided by that
for our new Algorithm verifySparselss (henceforth abbreviated by “new”), and for
the algorithm in [57] divided by “new”. The ratios in the left graph are displayed if
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1020 dim(A), nnz(A) and cond(A) for all test cases
T T T

f[——dim(A)

L|——nnz(A)

| |[——cond(A)
1015 o
1010 ]

A
[ | ( i
| 1 | | | |
0 50 100 150 200 250 300

Fic. 1. Dimension, number of nonzero elements and condition number of all test matrices.

961  “new” is successful, i.e., computes verified error bounds, and the ratios in the right
962 graph are displayed if both “new” and [57] are successful. That explains some gaps.

ratio computing time LU / new ratio computing time [57] / new

——spd ——spd
102 ¢ —*—sym 102 F ——sym E|
gen ——gen
——[57] —[57]
10" 10" I
10° 10°
107" 107" F g
1072 1072} E
10-3 ' L L L L 10—3 L L L L ' h
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Fic. 2. Ratios of computing times tiu/tnew and t[57] [tnew-
963 A number less than 1 in the left graph means that 1u is faster than “new”, and a

964 mnumber larger than 1 in the right graph means that “new” is faster than [57]. In the
965 median over all examples 1u is faster than “new” by a factor 6.0. But in 10 out of the
966 306 cases 1lu is slower than “new” by 2 orders of magnitude, e.g. in number 2214 in [8]
967 by a factor 259, in example 2231 “new” is 260 times faster than 1u. In the first case the
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number of nonzero elements of the factor L in our algorithm is 430,688, whereas 1u
produces factors L,U with 16,300,793 and 47,932,779 elements, respectively. That
may explain the large computing time. Neither reverse Cuthill-McKee nor minimum
degree reordering changes the situation for 1lu.

In some 6 cases the maximum relative error of the approximation by lu exceeds
0.01, i.e., at most 2 figures of some entries of the approximation are correct. Depending
on the right hand side, the maximal relative error to the true solution A~*b may exceed
1, i.e., some entries of the approximation computed by lu have a wrong sign.

TABLE 9
The 5 best and worst time ratios t[57]/tnew out of the 301 real test cases

matrix times [sec] relerr new relerr [57]

# n tnew t[57] median max | median max t[57] [tnew
1346 1157 0.108 0.058 | 3.2e-17 1.3e-12 | 1.4e-15 8.6e-9 0.53
1306 62500 | 587.783  348.504 | 3.9e-17 2.8e-14 | 2.8e-14 2.8e-6 0.59
2229 28216 53.659 36.739 | 3.7e-17 1l.1e-16 | 2.0e-13 5.2e-9 0.68

450 1089 0.088 0.061 | 3.9e-17 1l.1e-16 | 3.6e-15 2.4e-10 0.69
1414 49702 12.245 10.052 | 3.7e-17 1l.1e-13 | 8.2e-15 1.4e-8 0.82
2221 10798 6.856  187.222 | 3.7e-17 3.3e-16 | 4.0e-13 3.6e-7 27.31

39 10974 0.644 18.409 | 3.6e-17 1.1e-16 | 3.4e-15 6.Te-12 28.60
1374 87190 8.355  265.699 | 3.7e-17 2.4e-15 | 6.2e-15 1.7e-9 31.80

35 2003 0.159 5.230 | 3.7e-17 1l.1le-16 | 1.9e-15 2.3e-12 32.92

45 3134 0.108 14.632 | 3.7e-17 1.1e-16 | 2.5e-15 2.6e-10 135.15

In the median our new method is faster than [57] by a factor 2.7. In all but 5 of the
test cases “new” was faster than [57]. In Table 9 we list the 5 test cases with smallest
ratio t57] [tnew Of computing times and the 5 test cases with the largest ratio.

The worst case of t[57] [tnew is the matrix number 1346. However, the ratio is
less meaningful due to the small dimension n = 1,157. In the second worst case
“new” is 1.7 times slower than [57]. That is number 1306 in [8], where the matrix has
dimension 62,500 with 424,966 nonzero elements and an estimated condition number
2.3-10*. The computing time for 1u is 1304 seconds, the new algorithm needs 588
seconds to compute verified bounds with maximal entrywise relative error 2.8- 10714,
For that example [57] computes verified bounds with maximal relative error 2.8-107°
in 349 seconds.

Next we show in Figure 3 a rough image of the median relative error of the
approximation by lu and of the verified bounds of “new” and [57]. The relative error
of “new” is often not far from maximal accuracy so that we can use the bounds to
compute the relative error of the approximation by 1u. As can be seen lu computes
usually approximations with some 13 correct figures, but sometimes only few figures
are correct. In the median the inclusions by [57] are usually accurate to about 15
correct figures.

We discuss some details of our Algorithm verifySparselss in Table 6 on the sev-
eral improvement steps in the subalgorithms “verifySparseSPD”, “verifySparseSym”
and “verifySparseGen”. As has been mentioned our first priority is the successful
computation of verified bounds, and to that end there are several measures in the
subalgorithms to avoid failure. Secondly, we aim to compute highly accurate bounds.
One might introduce options to change these priorities.

We start with “verifySparseSPD” which is called if the input matrix is symmetric.
If this subalgorithm fails, then “verifySparseSym” is called. Therefore, “verifySpars-
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F1a. 3. Median of relative errors of lu, by the new algorithm and [57].

eSPD” can only fail in step 16 if a > s. That was not the case in all 22 examples
in spd in Table 8. Hence, the Cholesky factorizations in steps 4 of A and in step
11 of the shifted matrix where all successful. The upper bound « on the residual
of the Cholesky factors in step 13 was improved as in (3.9) using Perron-Frobenius
Theory. In the median some 6 power iterations were used for the spd examples. The
first improvement of a in step 14 was used in 3 out of the 22 examples, the second
improvement in line 15 was never necessary.

Next we discuss subalgorithm “verifySparseSym”. The security measure on singu-
lar D in step 4 occurred occasionally while developing Algorithm verifySparselss,
in the sym tests with (12.1) it did not happen. The improvement of « in line 10 was
used in 8 out of the 48 tests in sym, i.e., in the remaing 40 the a priori bound (2.10)
was sufficient. The improvement of 3 in line 12 was used in 5 out of the 48 tests in
sym, and the improvement of a and § in step 13 was used in 6 cases. Failure in line 14
occurred in 4 out of the 48 sym tests and Algorithm verifySparselss called subal-
gorithm “verifySparseGen”. The reason seems that subalgorithm “verifySparseGen”
performs an unsymmetric equilibration by (3.3). The Cholesky decomposition in line
16 failed in 2 cases implying the computation of a new value of s in steps 18 - 19, and
“verifySparseSym” ended successfully with the new s. The bound ~ required in the
median some 7 iterations (3.9) in line 21. The improvement of « in line 22 was used
in 7 cases which were, with one exception, the same as for the improvement of « in
line 10, the second improvement of v in line 23 was used once in the 48 sym tests.

Subalgorithm “verifySparseSym” failed in 4 out of 48 cases and Subalgorithm
“verifySparseGen” was called. In two of those cases, namely matrix 1210 and 1451 in
[8], numerical difficulties in the splitting of D in Step 5 according to (7.1) occurred.
In both cases the initial a in Step 7 was 1.4-1072 with no improvement in step 12.
This is far too large for the anticipated lower bound 5 = 3.9- 107! of oy, (M). The
reason is the poor splitting of D implying that |A(p,p) — L1La|; = 1.4-1073 is much
larger than ||A(p,p) - LDLT|; =1.3-1071° for the LDLT-decomposition in (3.5).
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A remedy is to compute the splitting of D according to (7.1) in some higher preci-
sion. Since these are few operations it would not take much computing time. Then
|A(p,p) = L1La|1 = 1.6-10719 if not far from | A(p,p) - LDLT |, as expected, the first
approximation of o is 1.0-107® in Step 9, with a final improvement in Step 13 into
a =1.8-1071%. This is not enough for a successful verification but shows that in the
two examples 1210 and 1451 the poor splitting of D was part of the problem.

The computation of the splitting of D in some higher precision would not require
not much computing time, however, those problems seem rare, and in the two cases
where they occurred the more precise splitting of D was still not enough for a successful
verification. Therefore we refrained from changing our algorithm in that regard.

Finally, some details on the performance of subalgorithm “verifySparseGen” for
the 211 “gen” test cases plus the 20 tests from [57]. The second LDL”-decomposition
in step 5 was necessary in 54 out of 231 cases due to singularity of the factor D. There
seems room for improvement for the Matlab routine 1d1 for an augmented matrix
of type (9.1) with zero diagonal. With the trick in (3.7) the LDL”-decomposition
produced always nonsingular D.

The improvement of 3 in Step 13 of subalgorithm “verifySparseGen” was called
in 61 cases, and the improvement in Step 15 was used in 3 of the 231 tests. With
two exceptions [ was already improved in line 14 before, so one might skip step 14
and go immediately to step 15. We did not do that because the extended precision
calculations in step 15 need significantly more computing time than line 14. The
shift s for the Cholesky decomposition in lines 17 — 18 was improved 15 times out of
the 211 tests. In all cases the succeeding decomposition did not fail in line 22 and
“verifySparseGen” ended successfully. In the median number some 8 power iterations
(3.9) were used in line 22. Finally v was improved 32 times out of the 231 tests in
Step 24 of “verifySparseGen”, and again improved 2 times in Step 25.

We present some detailed data in Tables 10 - 12. To show all data is too much
for this note, so we put the results for all 306 test cases at the url in (12.2).

(12.2) https: //www.tuhh.de/ti3/rump/sparselssAllResultsI.pdf

Here NaN in the columns for the relative error indicate failure of verification, and
otherwise, the columns are self-explaining. The median and maximum relative error
of the approximation by lu is computed by the error bounds provided by “new”.
Consequently, there is a “?” for the 5 cases where “new” failed. The ratio of computing
times ¢57, [tnew is only displayed when [57] ended successfully.

In order to reduce space for the results to be displayed in this note, we considered
the 20 tests in [57] together with the 306 examples in (12.1) satisfying all properties
listed in Table 13. That resulted in 137 test cases filling some 5 pages. Therefore we
reduced the number of tests further by moving tests with adjacent numbers in [8] and
the same dimension to the url in (12.2). Presumably they come from the same source.
That resulted in 84 test cases listed in Tables 10 - 12 filling just 3 pages. That means
in particular that if a test is not listed here but only in the url in (12.2), then both
“new” and [57] succeeded and “new” is at least 1.84 times faster than [57]. The curios
ratio 1.72 of computing time t57) /tnew is tuned to fill 3 pages of results. In two cases
we observed failure of Matlab’s 1u. In example 1417 from [8] the backslash operator
stopped with memory error, and example 1419 caused a crash ending Matlab. That
may be due to the limited memory in our laptop.

Numerical evidence suggests that Algorithm verifySparselss succeeds to com-

pute verified error bounds for condition numbers close to u™'. The complete list of
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TABLE 13
Displayed tests extracted from the 306 tests in Table 8.

- condest(A) <10%

- [57] failed with precond=1 and was recomputed with precond=0

- all tests where “new” failed

- all tests where the median relative error by “new” is larger than 1071°
- all tests where the maximal relative error by “new” is larger than 10~'°
- all tests where [57] failed

- all tests where the median relative error by [57] is larger than 1072

- all tests where the maximal relative error by [57] is larger than 1072

- all tests where the computing time ratio t[57] /tnew 1s less than 1.72

results in (12.2) shows 5 failures out of the 306 test cases in Table 8, and one of them
had an estimated condition number significantly less than 10'°. That is for matrix
number 934 with condest(A)=1.7-10'? in [8]. We take a closer look at that case to
explain the reason.

For the matrix A of example 934 with dimension n = 7055 and 30,082 nonzero
elements we obtain cond(full(A))= 2.5-10' based on the full singular value de-
composition of the sparse matrix. That is a very stable algorithm producing a more
reliable estimate, and that is confirmed using the multiple precision package [15].
Moreover, cond (full(B))=1.2-10' for the augmented matrix (9.1) shows that there
are numerical instabilities because in theory the condition numbers of A and B co-
incide. And indeed for some right hand sides Matlab’s backslash operator produces
an approximation with some entries having the wrong sign. Hence, it seems that the
problem is more difficult than one might expect by the condition number = 2.5-10%3.

We give some additional test results for randomly generated ill-conditioned sparse
matrices using A = sprand(n,n,dens,1/cnd) with dimension n = 1047 density 0.001
and cnd=1e15. The resulting matrices have some 100,000 nonzero elements each, and
the median estimated condition number over the 100 tests was 3.7 - 1015,

Sometimes generally valid rule of thumbs are only partially satisfied for randomly
generated matrices. For example, well conditioned matrix factors are sensitive to
perturbations of the input data, while ill-conditioned are not. That is known in
the literature [56, 22] but not so much in numerical analysis. It is not clear where
this different behaviour stems from; a reason might be that the graph of application
matrices is usually structured but that of random matrices is not. Having said this
we report the results of our randomly generated tests in Table 14.

TABLE 14
Results for 100 randomly generated ill-conditioned test cases.

“new” [57]
inclusions | failed in 3 out of 100 tests  failed in 33 out of 100 tests
median relative error 3.7-10717 1.6-10714
maximal relative error 6.6-10711 1253.8
bounds containing 0 in some entries 0 out of 97 successful 26 out of 67 successful

The median condition number 3.6 - 10'® of our samples is boarder line in the sense
that a verification algorithm might just succeed to compute verified bounds. Still,
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“new” succeeds in 97 cases to compute bounds with at least 10 coinciding figures in
each entry. In the median inclusions are close to maximally accurate.

The algorithm in [57] succeeds in 67 out of 100 cases, however, in 26 out of the 67
successful cases some bounds contain zero, i.e., the sign of some entries could not be
verified. There was no case were [57] succeeded to compute an inclusion but Algorithm
VerifySparselss failed.

For the randomly generated ill-conditioned matrices the algorithm in [57] is in
the median 0.92 times slower and at most 1.13 times faster than “new”. Conversely,
“new” is up to 3.1 times faster than [57] and fails in significantly less cases than [57].

In 11 out of the 100 test cases 1u produced an approximation with some entries
having only 1 correct figure, in 1 case no figure of some entry is correct. In the median
“new” is 6.0 times slower than 1u. The complete set of results can be found at the
url in (12.2).

We tested Algorithm verifySparselss for complex data as well. Some data is
shown in the url in (12.2). As there were no surprises we refrain from extending our
already shown computational data in this note.

We close this note with an example arising from the verification of an eigenproblem
of a three dimensional Navier-Stokes equation using mixed finite elements on a cube
domain. The problem was communicated by Xuefeng Liu [29]. The resulting sparse
linear system had 30,424 unknowns with 3,056,247 nonzero elements, and in a finer
discretization 247,956 unknowns with 28,167,243 nonzero elements, see Table 15.
The method in [57] failed for both problems.

For the smaller problem Matlab’s “backslash” operator needed 94 seconds to
compute an approximation with some 14 correct digits, our verification algorithm
produced verified bounds in 11 seconds with, in the median, maximal accuracy. For
some entries Matlab’s approximation has incorrect sign, however, the size of those
entries is below 1071, The maximal relative error of all entries of the inclusion is
3-10713, however, again only for those entries very small in absolute value.

For the large problem our verifySparselss needed 310 seconds to compute
inclusions with median relative error 3.9-10717. The built-in “backslash” operator in
Matlab finished after 12 hours with “out of memory”.

TABLE 15
Results for sparse linear systems arising in the verification of Navier-Stokes equation.

“backslash” inclusion
n nnz(A) ‘ time [sec] median rel. error ‘ time [sec] median rel. error
30,424 3,056,247 94 1.9-10714 11 4.0-10717
247,956 28,167,243 | out of memory after 12 hours 310 3.9-10717

13. Conclusion. We presented Algorithm verifySparselss in Table 6 for com-
puting verified error bounds for a linear system with sparse input matrix. The bounds
are correct with mathematical certainty including the proof of nonsingularity of the
input matrix. The method is applicable to real and complex data including data af-
flicted with tolerances. Computational evidence suggests that there seems no general
purpose method for sparse systems per se as our verification method is sometimes by
two orders of magnitude faster than the built-in solver 1u in Matlab.

The primary goal of our algorithm is to be successful, accepting some penalty in
computing time. The second goal is to compute narrow error bounds. In many exam-
ples out of the Suite Sparse Matrix Collection [8] our Algorithm verifySparselss
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succeeds to compute accurate error bounds, often with close to maximal accuracy,
i.e., all bounds differ by few bits. That applies to randomly generated ill-conditioned
sparse systems and a problem related to verification of some Navier-Stokes equation
as well.

Acknowledgement. Many thanks to Takeshi Terao and Katsuhisa Ozaki for
reading an earlier version of this manuscript and useful comments.
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