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The paper gives a synopsis of new methods for solving algebraic problems with
high accuracy. Examples of such problems are the solving of linear systems,
elgenvalue/ eigenvector determination, computing zeros of polynomials, sparse matrix
- problems, computation of the value of an arbitrary arithmeétic expression (in particular

the value of a poiynomlal at a point), non-linear systems, linear, quadratic and convex

programming, etc. over the field of real or complex numbers as well as over the

- corresponding interval spaces. : _

We begin by demonstrating.the effect of roundoff errors in numerical computa-

tion. We use several examples to show that in fact the error of a numerical computa-.

tion may be arbitrarily large. Some of the examples can be performed on a pocket

calculator. As 2 first step for avoidance of these errors we develop the fundamentals
ofa computer arithmetic including the precise dot product (Kulisch/Miranker theory).

Next we develop the. fundamentals of our new methods. Every result given by
an algorithm based on one of the new methods is automatically verified to be correct
by the algorithm itself. A result includes an error bound.. We say that the result is of
high accuracy if the maximum relative error of each component is small. -For this
purpose we need a precise definition of the arithmetic of the computer in use.

All the algorithms based on our new methods have some key properties in
common: !

e every result is automatically venf:ed to be correct by the algorithm

e the results are of high accuracy; the error of every component of the result is of
the magnitude of the relative rounding error unit

o moreover the solution of the given problem is automatically shown to exist and to
be unique within the given error bounds

e the computing time is of the same order as comparable (purely) floating-point
algorlthm (the iatter of course, offers none of the new features)

~ The key property of the algonthms is that error control is performed automati-
cally by the computer without any requirement on the part of the user (such as
estimating spectral radii. The efficiency of the algorithms will be shown, for instance,
by inverting a Hilbert 15x 15 matrix in a 12 decimal digit floating-point system. This
(after muluplymg with a proper factor) the Hilbert matrix of largest dimension which
can be stored without rounding error in this floating-point system. The error bounds
for all components of the inverse of the Hilbert 15x 15 matrix are as small as possible,
i.e., left and right bounds differ only by onc in the 12% place of the mantissa of each
component. We call this least significant bit accuracy (isba). Our experience shows
that the results of the algorithms using our new methods very often have the Isba-
property for every component of the solution.

*Prosent address: IBM Deutschland, Entwicklung und Forschung, 7030 Boeblingen, West Germany

A NEW APPROACH - - . Copyright © {1983 by Academic Press, Inc.

TO SCIENTIFIC COMPUTATION 51 Al rights of mproducnon in any form reserved.
. 1SBN 0-12-428660-7




LSO L5 TR BB AR 230 L3N Ew M oW A A MMM A AT AP v AP L e AT/ I BL e 80 BE44 b B e n e e B S 0 e

52 : Siegfried M. Rump

CONTENTS ‘
0. Introduction

1. Computer Arithmetic :
Defmxtxons of operations in- spaces of numer1cal computauon
2 Linear Systems :
Fixed point theorems, bounds for the solutlon existence, uniqueness, residue,

finiteness of algorithm, algorithm, interval systems, complex. systems, complex.
interval systems, symmetric matrices, non-singularity of a matrix, positive defi-
niteness, eigenvalues w1th positive real part computmg time, -ill- condmoned

examples

and Undetermined Lmear Svstems
Bounds for the ‘solution, existence, uniqueness, computmg tlme least square
approximation, interpolation, interval systems complex systems complex mterval

systems, ill-conditioned examples

]
D
I'D
"

4, Linear Systems with’ Band Matnces :
Bounds for the solution, existence, umqueness computmg tzme, mterval systems

complex systems, complex interval systems, condition number

5. Sparse Lineaf Systems ' E _ _ . .
Different methods, bounds for the soliution, existence, uniqueness, computing

* time, memory, comparison of methods, interval matrices, complex matrices,
‘complex interval matrices, 1ll-condit10ned examples :

6. Matrix Inversion S o '
~Different methods, bounds for the solution, ex:stence uniqueness, computing

time, memory, companson of methods, interval matrices, complex matrlces
complex interval matrices, ﬂl—condmoned examples .

7. Non-linear Systems
‘General Theorem, spéctral radius, bounds for the solution, existence, umqueness _

complex mean-value theorem, residue, complex systems, interval systems, complex
interval systems, algorxthm fmlteness of the algorithm, computing time, examples

8. The Algebram Eigenvalue Problem -
Formulation of the problem, new method, bounds for the solution, ex1stence

uniqueness of eigenvalue/eigenvector pair, ‘individual uniqueness of eigenvalue,
individual uniqueness of eigenvector, mu1t1p1101ty, res;due interval matrices,
computmg time, examples :

9. Reai and Complex Zeros of Polynomials
Bounds for the solution, ‘existence, uniqueness, multiple Zeros, quadratlc factor, -

multiplicity, methods for simultaneous inclusion of all zeros, existence, unique-
ness, computing time, interval polynomials, ill-conditioned examples -

10. Linear, Quadratic and Convex Programming
Bounds for an optimal solution, existence, computing time, examples

11. Arithmetic Expressxons
' Formulation of the problem, bounds for the value, correctness, w1dth of bounds,

computmg time, complex arithmetic expressmns 1ll-cond1t10ned examples

12. Conclusion.

Bibliography '



Solving Algebraic Problems 53

INTRODUCTION

In this paper we deal with errors in numerical computations and discuss possibilities for
" their elimination. The probiem’s.we have m mind may consist of exactly ;epresent'able data on
a given -computer ("point probIems’") or may. be su-bject.;ed to a certain error'margin. ‘Qur aim
is to gwe a soiutlon with an error bound such that éxistence and emqueness of the solution
within these. bounds is automatlcally venfled If this venﬂcatm_n process fails a s;énalmg
message shall be given. .Fu'rther_ the aim is to achieve least significant bit accuracy for poiet
problems and smallest oblems with uncertainties in the coefficients. The
algor_itﬁms .pr'esented demenst.rate that even for 'extremely ill—conditioned probiems, such ' as
inverting the Hilbert 2.17x 21 matrix enra i4 hexadeci_mel digit computer, bounds with the least
significant bit aocuracyrl‘)i'operty can ..be found. _The .cen.d'i'tion nuelber of the 21x21 Hilbert
matrix is approximately 1'0_30," and is tile Hilbert rﬁatrbf of largest dimension exactly storable
on that 'comiJuter, |

To achieve this'accuracy and, especially, to give only true results a precisely defined

arithmetic is necessary. Ona UNIVAC 1108 we have for instance
- 134217728.0~134217727.0 = 2.0

thh exactly representable operands. Therefore we defme a corﬁputer anthmetlc in the first
chapter. The theoretlcal background and the requxred algorlthms for certain classes of |
.problems are given in the _succeedmg chapters. The algonthms have been implemented on a.
minicompufer based on Z80 with a 64k Byte memory. Tilere, a decimal aﬁthmetic with 12
digits ‘in the mantissa and a .PA.SCAL-SC-cempiIe; is implemented. .'I.'he minicomputer has
been developed at the Institute for Ai)_plied Mathematics at tﬁe University of Karlsruhe and
the Fachbereich Informatik of the University at .Ka_i'sel;slautem (Professors Kulisch and_
' Wippermann). Further, the’ aigorithms ere implemented .on a 'UNI'VAC" 1108 and IBM.
370/168. However we cannot meéntion every detaxl of the 1mp!ementatlon in the succeedmg

: descrlptlon of the algonthms.. We g:ve exphmt aigonthms for solvmg systems of linear

equanons and systems of nonlmear equatlons and the venfieatlon of the nonsmgulanty of a
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(real or complex) matrix. Algorithms for the other problems discussed in the succeeding
chapters can be derived éasily from the stated theorems and corollaries as well as from the

implementation hints for the explicitly given algorithms.

3

1. COMPUTER ARITHMETIC

Let T be one of the sets R (real Numbers), ¥R (real vectors with n componénts), MR

(feal nxn matrices), ¢ (complex numbérs)_, V¢ (complex vectors with n components) or M¢

~ length of' a vector or’the n‘um_ber of rows of a qﬁadratic matrix. If the length of a vector is
“other than » this will be displayed in the corresponding set by an index (e.g. : n ¢ If thé_
numbér of rows of a quadrati_é matrix. is_ othef thgn n we write, for ihStance, M, (R, if the
matrix is:nc_)t quadratic this is m_ade visible by two indicés .separate_d by a comma (e;g;
M ‘. mIR).

In the power set IP T, operations are defined by (with Well_-k'uown restrictions for /)

A+B:= {ash|acAAbcB} for A,BelPT, € +,—,,/}.

Other operations. such as «:PMExPVR»IPV( are défined similarly. The order

relation £ in }RI is extended to VIR and MIR by
VA,BeVIR: A<LB: <« A;<B; ‘for 1gi<n and
VA,BeMR: A<B: <> A;<B; for 1<ijsn.

ij—

- The order relation < in ¢ is defined by

~

Y a+ bi,c+ die¢: a+ bigc+ di ie> agc A bgd

and similarly extended to ¥'¢ and M ¢ {componentwise). -

The sets 4T b-f intervals over R, VTR,MR,¢,V¢ and M ¢ are defined by

[A,BJeH T 1< [A,B] = {xeT|A<x<B} for A,BeT.

Q'35?-8?'?-5?-f;5?53f'12'32"%&':Q'?2‘3??335352525?5(54535C?'28Ké3525?5?-2:.{8385.lt'iiKile’%ié5ER5'35.3%'.35?-5k535.?5%535ZSi’iZi?-f?-85&538535?5_285.&5@53535?5?5?:85ER53$3$?$§$§5§5?55888'53'338RRSER38’5}.RRS.38’85388?'38953$Z$§$¥5§5t$?>
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Therefore I TSP T. We consider (see [23], [24]) a rounding o: 8 T—I T with the pr_operties

| (R) VAecPT: od =.f_1l{.Be]ITIAEB}

R VAT 0d=4
(R2) VABeFT: .AEB —-—t‘—’ 0ASoB o R e
(R3) )VAQH’T;‘  dsod I
(R4) fo%AeE’T:_ T f-’(--A)é:r-'.(oA),. i

(R1), (R2) and (R3) are (together) equivalent to (R).__ Operutions | TxHIT—IT for

xef '.;- = /} are defined by (see [21} [24])

.‘.(RG) YA, BEET A@B = o(4+B)" (= n{CeITT{A*BCC})

By means of senumorphrsms it can be shown (cf {21], [24]) that the operatrons m H T

are weli—defmed (w1th weli—-known restnctrons for / )

The operatrons are to be executed from’ left to rlght respecrlng the prlorrrles and

7 considering the canonical 'embeddmgs rell TEE’_T. and IRE ¢:, V]RS V¢,- -MIREM(?.;, To be
perfectly clear we give the follewmg exar.nple Let ce¢' -Velf VIR AeMIRWeH V¢’. _'I'hen
OV + A@W is well-defined. Followmg the ruies of pnorrtres flrst X = c- V is computed wrth

¢ xH VIR-»E’ V¢ and then rounded. wrth o: E’ V¢—>II ve. Then Y A W 1s computed with.

. M]RxII V¢->E’ V¢ and then rounded wrth 0! IPV¢->H V¢ Fmally Z:= oX +0Y is

computed with + ¥4 V¢ xE V¢—)—£P V¢ 1' ' well-known .that 1n fact Zell V¢
(cf. [2], [24}) Moreover in thrs specrfic case o L .
eV AW = c®V+A We c@V+A©V c@V@A@W
For further detarls (cf [21} {24]) s o
- With S denotmg a subset of R (e g rhe set of smgle«precrslon ﬂoe.tmg-pomt numbers .
; on a computer) we consrder the set ¢S of parrs over S VS of n—tuples over S MS of
-tuples over S, the set V¢S of nutuples over ¢S and M ¢S of n -tuples over ¢S Agam, rf ‘.
the !ength of a vector or the number of rows of a quadratrc matrrx is- other than n, resp the e

_r’natrix is not . -quadrat:c, the correspondmg set has one re_sp two mdrces (e g. .
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V

ws 1S My m¢S). Let U/ denote one of the sets S,_VS,MS,¢S,V¢S or M¢S. Then intervals

over one of these sets U/ are defined by
[4,Blell U <= [4,B] = {xeT| A<x<B} for 4,Bel,

;Wtjxere T is the set corres‘ponding to 'U.. ‘The :ex_'der relation < is defined cancnically by

regarding U as a subset of T. We eonsidef a _fou;i_ding _Q:_H T—I U with the properties (R),
' (Rl); (Ri) and (R3), (cf.,[22]). If .U is - symmetric :(U = - U),:th_en (R4) is also satisfied.
-The o’pé_:ratio:is @:'EU:(HU_—»IT.Ufor'*e{ +',ﬁ,§,/}_'é:e defined by (cf. [211, [24D)

49 B=0 4@ B)yforaBeqU. . (1.1)
It can be shown that
. O is well-defined -
o & is well-defined for <€{ + ;—, ,/}

e @ is_'ef.fecti's'reiy implemeh'table ona computer and

« AQ B =0{ClU| A® B <C} for 4,BeI U.

These important propertieéarxjers!;own by meane ‘o‘f algebreic ,aed order isomorpl.lism

I VR« VIR, M¢S+—->MH¢S etc. _(the -operetiens m VHIR,MH¢S etc, are defined-cqmpo-

- nentwise) and by explicitly gi;'ieg 'elgoritﬁx.ns fer t_he Oéeratiohs @ in all sets S,. VS., MS, ES‘,
zvs, IMS, '¢S VEs, M¢S, I¢S, IVES and Wes (cf' [21}"{2:4i) For the latter ‘p:erpt)se
a precise arlthmetlc and Bohienders algonthm (cf [3]) are requlred If T is the set corre-

spondmg to U then II U CH T holds and therefore for 4, Beﬂ’ U we have
n{CeL U] A_@B ey ;_-n_{ceﬁU[AasBQC}.
' Thus_ we extend _the roun(ii'ing, O-t_o Q: E’T-»II U by defining

AeIPT () (A) O(oA)

(382 L3 Caa i r I CH PO DAL s L UL LU U A A P L O U Ol U A i W e M 2R A A LA W WA DTS W S M WM A BRI BB By

QPTOIPE L SR VRPN 4 1]
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- If T is the set corresponding to U, then the monotone downwardly and monotone

upwardly directed roundings V: T—U and AA: T—» U are defined by

AeT: O ((4,4]) = [VA,AdleT U,

Similarly ¥ and A are defined by (1.1). Finally we consider a rounding [J: T-»U with
- the properties (R1), (R2) and (R3). For the founding m and the corresponding dperations

: riUx.U—»U defined by a [@ b:= [J{a*h) it can be shown (cf. [21], [24]) that

e [ iswellrdefined

L1}
3]
&
i3
[¢)

o [H is effe.ctiveiy implementable on a compnuter and -
for any vell and a,belU -a [& bs_vsa*b or arb<v<a [ b implies v = ¢ b.‘
The final property holds for every set U and is called maximum accuracy. Let AI.,B be

- elements bf ¥/ o T, ITor TU. Then

A;B: <> ASB and A#£B, .

where the #£— sign is to be unde‘rstbod componentwise. A denotes the topological interior of
A and 34 denotes the topological boundary of 4. The absolute value of a vector, resp. matrix,
over R or ¢ is defined to be the vector, resp. matrix, of the absolute values of the compo-

nents. For A = [a,b)eH T with a,beT the diameter d(4)eT and the absolute value | 4| €T are

3 C

defined by
d(4):=1b - al and |A[:= max (lal,|b]),

where the maximum is to be understood componentwise.

For Xel U-with X = [A,B]; A,Bc¥ we have
inf(X) = 4 and sup(X) = B.

We define the "midpoint" of X by
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“m(X):= inf(X) (sup(X) B inf(X)) [A2 V. . (1.2)

It can be shown (cf. [33]) that with definition (1.2) inf(X) <m{X) <sup(X) (as far as no
over- or upnderflow occurs). In the following J : denotes the nxn identity matrix. If the
number of rows is other than n we write e..g.. I, 1 e denotes: the k™ unit vector and
Vi :é e,:- y the K™ component of a vector y. We consider a floating-point screen
S. S(b £’ el,e2) where b is the base, / 1s the length of the mant:ssa and el,e2 are the )
smallest and largest poss1ble exp_onent. in succeedmg examples we refer e.g. to

S(10,1.2, - 99.99) (this is the screen of our Z80-based minicomputer).

2. LINEAR SYSTEMS

 Essential parts of this chapter have been introduced in [34]. Compared with the
original work some theorems have -been added and the proofs have been altered and/or
simplified.

Let a system of linear equations Ax = b with AeMR, ‘x,beVIR be given. For an

approximate inverse Re MR of A we have the residue iteration
. i
Ktz xk 4 R(b — 4x).

This iteration converges iff p(J - RA)<1. If XefPRR is some non-empty, convex,

~ compact subset of R then by Brouwer’s fixed point Theorem
X + R(b — AX)cX implies FxeX: R(b — Ax).= 0. : : (2.1)

As a special non—e‘mpty, convex, compact subset of R ‘we can choose e XeI VR.
However, in general diX + R(b - AX))>d(X ) and X + R(b — AX)2X. Moreover only if R
is non- smgular do "we have an xeX with 4x = b. The two problems are solved by the next

theorem (cf. [34]).

' Theorem 2.1: Let A,ReMR and beVR. If then for some Xell VIR

Rb + {I — RA}+X€<X, — : (2.2)
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th;n R and’A are nonnsinguiar and theré is one and only one Q.e;( with A% = b
Pr_oof:. Define the fun_ctidn [ V]R—)-V]R by
fG):= x + R(b 4% - | ey

T

, and let f(X):= {f(x){xeX}. Then by (2,'2) we have f(X)cX and Brouwer’s fixed pqint
" Théorem implies the existence of an J'}EX with f(%) =% Obviously LeX. By (2.3) we }iave
- R(b~ A%) = 0. For yeVIR with 4y = 0 and A¢R brief computation shows
fG+a)=%+r | | 2
If y#£0, then a A exists with 2+ AyedX. This contradicts (2.4) and {2.2). Thus 4 is
ndn—singula:_’. |

"For yeVR with Ry = 0 and AcRR brief computation shows
fE+ A7) =2 e aay | —— (2.5)

If y#0 then 47 "y#0 and there exits a A¢R with £ + A4~ 1 yedX. This contradicts (2.5)

and (2.2) hence R is non;singular. Therefore, b — A%eKer R = {Oj and by the non-

singularity of 4 the theorem is proved. ' 7 O

In practical computation better error bounds are obtained when computing an inclusion

of the difference of the exact solution and an approximate solution x instead of computing an

inclusion of the solution itself. This was observed in [34] and can be done using the following

corollary.

Corollary 2.2: L_et A,ReMIR aﬁd ;,_be VIR. If then for some XEE VIR

o

R(b = A%) + {I — RAJX<X, | | 2o

Q

then R and 4 are non-singular and there is one and only one £X + X with 4% = b.

59
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Proof: Obvious. ' . ' - a

A direct consequence of theorem 21 and 1ts proof is the extension to complex linear

systems. We give a version for computmg an inclusion of the difference between the exact

solution’and an approxima-te solution.
Theorem 2.3: Let 4,R eM¢ and x,beV¢. If then for some Xell V¢

,'o

' R(b — AX) + {1 - RA'}_.XQX, S o : 2.7

[=]

then R and A are non-si-ngnlar and tnere is one and -only one Xe% + X with 4% = b..
There are no assumptio_ns on A,R,; or b requirerl. The oniy provisions are (2.2'), (2.6),
@.7). |
Consider coroliar§ 2.2 whieh gives a suffi.cient condition for existence and uniqueness of
a solution of Ax = b inx + X If (2.6) does not hold one may initiate the following iteration

process Define f: FVIR—P VR and F: I VIR-> I VJR by

XeIVR: f(X):= R(b — A%) + (I = RA}-X, F(X):= o(f(X)). | (2.8)

(in this partic'nia_r ~ ‘case we have F (X) = f(XD). Let FoX):= X and

FELxy= FOFR(X)) for k20, If then for some XeZl PR and kewith Y:= FY(X)

fNEY

holds, then the assertions of Corollary 2.2 are vahd The question is, for which X, for whlch k

 and under whrch condmons th!S iteration will terminate. The answer is given by the following

v

: lemma.

Lemma 2.4: Let |I—RA| be a pnmltwe matrix and denote A:= o(|I - RA!) and

z:= R(b A%). Cons;der the mapping f defined by {(2.8). Then the followmg are equlvaient
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- (A) For all XeI VR with |z 4 Aem(X) —~ m(X) I- <'1;\ «d(X) there exists a ke
with f(Y)cY, where Y:= F¥(X).

“(B) o(11—RAI<L.

Proof: cf. [36]. S | S P

‘ -]

tric, i.e. X = — X. |I — RA| is primitive if, for instance, |J — RA| is positive. Moreover

m(X) = 0in this case, so the condition in A) of the preceding lemma Teduces to -

1-A

| The final inclusion for the solution % of Ax = b is X + X. S0 X rﬁay be chosen Symme-

dX)>—2—+ | R(b — 4D S ee

‘Therefore, p(|7 —.RA'] )<1 if and only if the iteration terminates for evegz. X satisfying (2.9).

If Xxisa good approximative solution of 4x = b the absolute value of the compone_nfs of -

_R(b — 4% are small. ' - : o
The essential advantage of corollary 2.2 is that it is applicable on computers.

Corollary 2.5: Let A,ReMS and %,be¥S. If then for some XeI S - +

R@(beA.}“)Q(IGR;A)QX;X, - N . (210

then R and A are non-singular and there is one and only one- fex <+> X with 4% = b.
Proof: Obvious by the definitions of (: IVR—~IVS and @: WSxIVS-IVS for

vl 4 e /1. B | - . . _ _D |

chording- to [22], [24] and [5] (2.10}) is t.axecut;ble:- on corﬁ;uters using tfhe. (effectively
'implementable) preci_ser'scalar | l.J.rod'uct e.'g.. I e RQA = <>'(o(jr — RA4)) -'= C'(I — R.4).
Thé corollafy re.maiﬁs true Whél"l .rgplacing A by‘¢;S‘. | - o |

Now w;a are‘ ready’ to give an algorithm for cOmp‘uting' axi -incluéion .of the _solutfon of a

system .of linear equations' which automatically verifies the correctness of the computed

b_ounds.

[
-
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1. Compute an approximate inverse-R of A using your favorite algorithm;

2. Biel O R-A;Z=R Q byzi=b © A%, 2= R @ 7 X:= z;

- k=0
3. ’ repeat Y:= X @ [l—é,_l +-€]: k:: .k:+ 1:X:= z @ B @ Y.

Q

until (X€Y) or (k = 10)

4. - i Xs Y then {It has been venfled that the solutmn Rof dx = b

exists and is umquely determmed and Rex @ X holds}

else  {It could not ‘be venfle_d whcther Ais smgular or not}.

Algbriﬂim 2.1 Lmear Systems

If the floating-point screen -being .embibyed is'S-(b ¢ -ei,eZ), then e:= b~ {+1 such that 1
and 1 + e are consecutive in S This e-mffatlon 1s mtroduoe.d in [34], where its 1mportance is
demonstrated too. The evaluatlons of B and z are executable on computers (cf. [4]) The

assertlon xex @ X instead of Xex @ Y follows dlrectly from (2.3) and (2 10). The mciudmg

region x @ X can be refined by -
repeat ¥i= X; X:= ¢ @ B © MaYuntilX =Y.

This .iferation terminates' because d(X )5d(Y) in each stei). - Obviously every x @ X
mcludes Q | ( |

In coroIlary 2.5 and aigonthm 2 1 A and b are supposed to be elements of
MS resp Vs, If th:s is not the case (for instance if A and b are the cutput of some measure-

~

ment) consuier the .;followmg theor_em.r,
Theorem 2.6 Let ALeIMR, R_e;\d_’_l[i, ;eVlR and dell VlR If then for some Xell VIR

RU=ud5) + I = RAleXSX, . o 2.11)
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then for every A€t and every bed the following is true: 4 and R are non-singular and there is

[+]
one and only one fex + X with A% = b.

Prom.c ThlS foIIows because R{b — Ax) + {1 — RAYXCSR(é—dX) + {I Reed}e X for

‘every Aeut and bed permitting the apphcatlon of theorem 2.1. . I |

Agam IMR and H VIR may be replaced by P MR, and PVR resp. if X is assumed to be

A

non—empty, convex and compact Th:s remark is important when using a cu'cular arithmetic in

. R ¢ (Cf.[29])- R

Coroﬁar'y‘ 2.7 Lot AP ME, ReMC, xeV¢ and P V¢, If then for some non-empty,;’

convex and compact Xe2 V¢
R(é—utfx) + {I ~ Rat}-X<X, | | 212)

then for every e and every beé the following is true: 4 and R are non-singular and there is
. ) i : ) o ]
' one and only one %ex + X with A% = b.

With theo;'ein 2.6 and corollary 2.7 an algorithm can be derived for,computing' an

- inclusion of the solution of every linear system Ax = & with Aéo? and bed which automatical-

ly verifies the correctness of the computed bounds. This algorlthm can be obtamed by
- replacing 4 by m(.,e{) in step 1) and 4 by « resp. b by # in the computatlon of B and z in

step 2) of algomhm 2.1. However, if some matrix A in ..d is ill- condltloned then 7 e Rt

may contain matnces of spectral radxus
" For several im_provements of the algorithms see [34].

A'lgorithm 2.1 can be used to verify the non-singularity of a matrix automatically on a
computer. With Y= b:= 0 in corollary 27.2 we obtain
Corollary 2.8: Le’f A,ReMR. If then for some Xell VIR
- o _
(I — RA).X<X, - = o o C(213)

theén A and R are not singular.

2 O
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To verify whether or not a given matrix- is siogular .i_s.not ‘2 trivial pfoblem. In [34] a
3><37 linear syst:em is given which . is e_xactly storable in the single-precision fioating—point
screen-of the UNIVAC 1108 of the Uni':fers.ity of Karlsro_he. The system has been solved by
,Gat’lssiah eliminetion with partial pivoting in Single—pre_cision accuracy '.(';“8.5 decimal digits in
the mantissa). Tﬁen a residue iterati-ojn‘ wes applied with do.u'ble'-precision evaluation of the
residue (~19 decir_nal digits in the mantissa). The first and ali iterates coincides.with the

initial approximation. Nevertheless, ‘the matrix of the linear system is singular. If (2.13) does

not hold for the initial X, one may use an iteration:
_ , o L . |
k:= 0; repeat ki= k + 1; Yi= X; X1= (I — RA)+Y until X<¥; ' (2.14)
The question for which X (2.14) terminates is ansiver_ed by the following lemma:

Lemma 2.9: Let A,ReMIR. If no entry of I — RA is zero, ther,_l'the following are equiva-

lent:
a) For every initial Xéf VIR with X = ~ X and |X|[>0 the iéeratifon (2.14)
terminates.
b) p(|I — RAD<L.
Proof: cf. [36]. ' - 0

The assumption |J — R4 [>0 may..be fulfilled by 'replacing.a zero entry by_b“, if
3.(b,£,e1,e2) is '. the screen of the computer in use. Tﬁe- initial X .may consist of [ — 1,1] in
every component accordmg to the precedmg Iemma The agsertions of coroilary 2.8 and
lemma 2 9 remain valid when repIacmg IR by ¢ Moreover (I RA) Xs(J e R +4) @ X,
so replacing (2 13) by (I e R-A) @ X CX does not affect the assertion of corollary 2.8. So

it is applicable on com_puters. Next we present an algorlthm which ‘verifies automatlcally the

non-singularity of a matrix AeMIR.
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1. Compute an approximate inverse R of 4 using your favorite algorithm;
2. B:=1 © Red: X:= ([ - 1,1]); k:= 0;
3. repeat k:.= k+1;Y:=X @ (1+ s); X:=B'@ Y until
X<¥) or (k = 10);
4, if X< f’ n {It has been venfled 4 is not singular}
e_lsg {1t could not be verified, whether 4 is singular or not}.

65

It should be méntioned, that it is not.possibl'e to verify the singularity of a matrix

without computing exactly in the field of reals (for instance using an exact integer or rational

number package). This is because in any e;neighborhocc'i of a singular matrix there are regular

matrices. Afgbrithni 2.2 is diréétly applicable to-compléx matrices AeM ¢ when one replaces
the initial X by ([ ~1-= \i,l + i]). After repI_acihg A by AeIMR or ALcIME it ?:'an be
determined, whether every matrix de. is non—sihgular. (;

If the matrix of .the linear system -is symmetric, the presented algorithms can easily be
improved resulting in a computing time of ~n>, i.e., one half the compuiing time of systems
with genéral matrix.

Algorithm 2.2 may be uséd to ve;ify, that a symmétric matrix AeMIR is positiye definite
or, that a matrix AeMR or «ZclM¢ has only eigenvalues wi.th_ positive. real part. If
D=1~ JA} —I-A'_for some nor_m i}, then p(D)<1 implies

a) Ax=QA+ip)x = A>0 and

'b) A symmetric = Ais positive definite.
There are smular applications to eMR or M¢ in case a). Bounds. for the real résp

imaginary parts of the’ eigenvalues of AeMR may be obtained by est:maung the clgenvalues of

the symmetric resp. antisymmetric part —2—(A + A ) resp. E(A -4 ).

W
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All of the preceding theorems and corollaries in this chapter remain true when replacing

4]

cX by cX For a proof of this fact cf. [36].

- The computmg time of algorithm 2 1 when using the Gauss—]ordan algorlthm in step 1is
2> + 3n + 2kn?‘. If the matrix of the linear system has special propertzes like symmetry or
pos:twe definiteness the computing time of the presented algonthms can be reduced sxgmf}- :
“cantly. In general with k<10 the ratio of COmputmg times between algorlthm 2.1 and
Gaussian el'i::rﬁnati()ﬁ is <6 + 0(—}7) (cf. [34]). However, every result given by any algorithm

_‘“ _

_discussed in this chapter is verified to be coirect.

Next we discuss some computational results. As a small ill-conditioned example

consider

37639840 —~ 46099201 x ( 0 B |
29180474 -35738642/  \» -] i
For this system the standard built-in algorithm of a-very common computer with

mantissa length 16 decimal places computes the approximation

28869851.52297299
23572135.06039856
sa length 12 decimal digits the following inclusion were

whereas on our computer with mantis

computed:

[46099201.0, 46099201.0]

[37639840.0, 37639840.0]

The inclusion is a point and therefore exact. The correctness is verified by the comput-

er automatically.
We define the

Hilbert matrix H" by Hi= lem(1,2,.2n—1/G+j=1),



RIS TR I R I A b L L

T s

: so!utlon

» BCACv ri BrCad 2l b A LN A A A u.n, A s AT LA s b
SR {hadaihey, " NIV e
7 < : \

Solving Algebraic Problems. . : ' S | 67
Pascal matrix P* by P:-;-:= (H;/)

Pascai* matrix P by p; .o ( '+J-2)

) (,_‘)

) H-j— .

the matrix Q™ by Q;= (

‘The matnces with maxxmum number of - rows exactly storabie in 'the screen
S( 10, 12 - 99 99) of our mlmcomputer are H- 15 ,le P'22 Q16. Here are the computational

results for these matrices with right hand side ( 1, R 3 [

Evety imear system w:th the matrices H” P" P and Q ‘up to the maximurm
num-ber of rows. for wh:ch the matnces are exactly storabie in
S(lO 12, - 99 ,99) has been solved wtth automatic venflcatlon of the non-
smgulanty of the matnx and w1th least mgn:ﬁcant blt accuracy 1n every com-

ponent of the solunon The condmon number of the Hxlbert 15x15 matnx is

approx:mate_}y 1022 , the condltlon number of Ql‘S is 2 1024

'

The approx1mat10ns .for the components of the solution computed by a tpurely)
ﬂoatmg—pomt algorithm may be arbltranly false._ Usmg Gauss1an ehmmatron for mstance
ylelds for one component of the solutlon of the hnear system w1th Hﬂbert 15 x 15 matrix and
right hand side (1 1,. 1) an apprommation

3471.76599106

&

wheteas the inclusion computed bjr the new methods is ‘ -~
0.00099900099900},. - o
Least s1gn1f1cant bit accuracy for an inclusion of a- component means that the left and
"_nght bound of the mclusmn are’ consecutlve .numbers in ‘the floatmg ~point screen. Lmear
systems with dense matrix and up to 210 rows have been treated on the UNIVAC 1108 of the

'Umvers:ty of Ka-rlsruhe. Here the sme is only hmxted by the memory of the machme In

every case the least s:gmf:cant blt accuracy property hoIds for every component of the
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As a final example take_a linear system with Hilbert 21 x21 matrix with right haﬁd side
(1,0,0,...,0-). As in the previous example thé cémponents of the matrix are muitipiiedrby a
proper factor to obtain integer egtries. - The computer in uée is a IBM 370/"168, double
precision (i.e. 14 hexadecimal _digits in thé mantissa). The Hilbert 21 x21 fnatrix is the matrix

| of largest rumber of rows exactly storable in fhat floating-point screen. ﬂere arerthe results

of ordinary Gaussian elimination compared with the new algorithm:

Gaussian elimination new algorithm
0.7176601221737417D —15  0.2013145339298059D — 14
~0.5463879586639182D — 13 — 0.4428019746455663D — 12

0.1300043029451921D — 11~ 0.3225729882001875D — 10
—0.1384647901664727D —10  —0.1161262757520675D ~08
0.7307664917097330D — 10 0.246768335973 1433D — 07
0.1742770450134503D —09  —0.34218542588275%2D — 06
 0.4670356473353298D —10  0.3299645178155175D - 05
0.2755923072731661D —09  — 0.2309751624708622D — 04
0.193498124875740SD —08  0.120941161460437.D — 03
~0.1055453079740496D —07  — 0.4837646458417505D — 03
0.2015964106800396D —07  0.149967040210942{D — 02
_0.1947461412799036D 07  —0.363556461 117436,D _02
0.1797737164979233D —07  0.6921555702043507D — 02
—0.3066524812704846D ~07  —0.1034430302722985D — 01
0.2853218866898916D — 07 0.120683535317681.D — 01
0.1245274389638609D —07 ~ —0.1086151817859134D — 01
—0.3920468862403904D 07~ 0.7387429643527203D — 02
0.1 162_%63936934045b ~07  —0.366957289482397%D — 02
0.2062283997953500D — 07 0.1255380200860833D ~ 02
—0.1794039988466323D 07  —0.264290568602280%D — 03
0.4327580718388825D —08  0.257997936016511,D — 04
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3. OVER- AND UNDERDETERMIVNE.D LINEAR SYSTEMS

Let AeM 7 o and beV,R. For f>m, the linear system is overdetermined with, in
gneral, no solution and the vector i\:eVm]R is to compute such that |5 — AR I is minimal.T"

If f<m we have an underdetermined system. In general, there are infinitely many

:

>

_rank of A is maxirﬁal, the solution for both problemé is uniquely determined. It is well-known

(cf. [39]), that if

P and rold) = m then & is the sohrtion of 474y — 475 (3 1)

I>m and rg(4) then ¥ is the solution of 4" 4x = 475 (3.1)
Lo A . T T '

- f<m and rg(4) = £ then y = A" x, where 44" x = b. (3.2)

The .liriear systems .occﬁrring in.(3.1) and {3.2) may be solved with algorithm 2.1 of ther

preceding chapter. However, in general AT4 and 447 are real matrices and not elements of

MS. Thus the interval version usiﬁg some 2474 resp. AQAAT with welMS would have

to be used. This is out of the question because 474 and 447 are in genera¥ ill-conditioned.

Instead we use the following linear systems:

A — EN x by o '

_ ( ) . ( ) =( ) for />m, : - {3.3)
o AT y 0 _ ' ,
4T -E x 0
' ' . ( ) = ( ) for f<m. (3.4)
0 A y b/

Then a short computation demonstrates the following theorems.

t In this chapter | - | denotes the Euclidean norm.

solutions and the vector ﬁ_eVmIR is to compute for which A} = b and llj\zil is minimal. If the -

'
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Theorem 3.1: Let AGMf,mIR’ beV,R, ¢>m and define Cthm‘f,.{_mIR to be the square
matrix in- (3.3). Define b*eV ']R to- be the  vector (b, 0)tt and  let ?EV_'Hm]R,

ReM“_ “mIR If then for some ZeHV“m -

-]

RG* - c2)+ - RCYe ZeZ, - B - (35)

>

then there is.an xe; + X with the following propefty:

For any xe Vm]R' with xiéa? holds _11 b — A% l<lb = Ax{,

E R P

where x resp. X are the first m components of z resp. Z and [ is the {{ + m

matrix. Further the matrix 4 has maximum rank m.

‘Theorem 3.2: Let AeM, R, beV R, {<m and define CeMy,,, . R to bethe square
matrix in (3.4). Define b*eV, R to be the vector (0,b) and let ze Yy mBs ReMy oy +mIR

. If then for some ZellV, + R

L]

R(b* - C3) + {I — RC}eZEZ, o - | (3.6)

then there is an j"}e}' + Y with the .following properties:

a) Ap=b o |

bj if Ay = b for some ye¥,, R with y#5 then 1$1<tl,
'w'here y resp.'Y'- are the last n.n-componen.ts of z reso. Z and I is the (2 + m)x (¢ + m) unit
matrix. .Further the matrix A has maximum rank /.

. Both theorems are apphcable on computers. Here one replaces R by S, the ‘eonditions

(3.5) and (3.6) by R @ b* © C.2) @ (76 Rr.CY @ zcz resp. andx+Xresp Y+ Y
by X @ X resp. y @ Y Here, for instance, b* e Coz = O(o(b* Cz)) is effectlvely

computable (cf [21] 241, [3]) However, the computing t1me for these algonthms is

207 + m) compared with pqz for the orthogonahzatlon method (cf [39]) where

tt (5, 0) is the vector in V[ m R such that the first ¢ eomponents are those of b and the
remaining m components are zero. We use similar notations frequently
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p,lz max (£,m), ¢ = min (/,m). Utilizing symmetries and the fact that not every component

of R and I — RC has to be computed explicitly (this is an extended escalator zrtcthod) results

ina >

© computing time 3pq2_+ 2p2q +4/3

-5 ¢

(cf. [7]). Therefore the time f'orrco'rhputing guaranteed bounds for the solution with autohla_tic
verificatiou of 'both :correctn_ess and mar_nirnurn. rank ot A.is for P =m2q app_rox_ir_na_tely__ seu'en.: .
. times the_ cofputing time for. a usual floating-point. cornp_utati.on.. As is weillknougu, least
? sq"arc approximation ‘r,\rcblerns are in general ill-conditioned. Therefore gaara;rteed _L_" .rics.-' ’
'. garh in srgmﬁcance As weIl as for the least square approxunatmg polynormal bounds for the |
coefflcxents of the mterpolatwn polynonnal can be mcluded In the Iatter case the computmg
_ tlme can be reduced from 16n to Sn by utxhzmg the spec1al‘ structure of the matnx | |
As in thc case of linear systems with square matrices the algorlthm can be cxteuded to g
) matrrces MEM S and vectors ellV, ,S In thrs case w1th correspondmg condmons (3 5) _'
and (3. 6) every Ieast square. problem Ax = b with Ae.xrt and bel is solvable every matrrx |
| Aeed has maxunum rank and the umquely determxhed solutron is mcIuded in the correspondw
1ug mterval X @ X resp. y @ Y. Once agam automatrc venfrcatron of correctness 1er accom;- -
phshed by the algorithm without any additional effort_ on_the part of the user. |
As in the case .of linear systems with equalrnum:h.er of r'ows-and .un};n0wns: _'there _are

. A v
extensions in the ficld of complex numbers in the cases of underdetermined and overdeter-
mined _linear systems. The corresponding theorems can be extended to ¢§ in the same

. manner as in chapter 2.

The methods and algorlthms descrlbed in thls chapter can be used to mclude the
pscudomverse of a matr:x with automatlcal verlﬁcanon of correctness
Numerrcal examples for least square approxnmatxon are taken from [39] Belsplel 3. 6

o The problem is to find a polynomral P of degree n through N+1 gwen pomts (xny,)

i= I(I)N +1 which minimizes E(P(x) ) —: We choose the abzissas - x; = 1 The -
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“elements A ;; of the matrix A are given by 4;; = #=1 i = (DN + 1, j=1{1)n + 1. Accord-
‘ing to (3.19) in {39] the ratio « between the largest and smallest eigenvalue of ATA can be
estimated by

K_>_ méix Akk/ mil‘l Akk'
Y £ . k

3

. Therefore, in our particular case

N+1

3 z ")/ 4 ).
In the follo_wing we give a table for the minimal value of « for different n,N.. -

N 10 11 12 3 14 15

10| 7.1,419 38,020 18,21 7.7,421 2.9,422

| 541622 o« e E -

The maxunal component of Ais (N + 1) An-asterisk in the table aBove indicates that :

- some components of the specmc matrix A are not exactly storable in our computer thh the

ﬂoating~point screen $(10,12, — 99,99). Computat_ional resul_ts: '
Every least-square problem for the values of n N thhout entry + in the table
above has been solved by thé new aigonthm to least SIgmflcant b1t accuracy
This means that the left and nght bound of every component are consecutlve

numbers in the floating-'point screen. of t_he eomputer. -The -correc__tne_ss_-of

O

every result is verified by the computer automatically.’

~ As seen from the. table the exompies are i[!-aﬁon&it_io_ne_d, but 'oeverthele'se soiired with

automatic error control on a computer with a 12 decimal digit floating-peint '_sc_reeh.'

As a small ill-conditioned example consider _ L
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- (665857  —941664 ) 1

| | N
470832 ~ 665857 |» ( ) = 0
y

470833 — 665857 : 665858
The computed'in.clusion of the vector with smallest sum of .t_hé norms of the residues is

[665858.000000, 665858.0000011
[470832.707107, 470832.707108]
whereas the floating-point approximation is

665700.0\ B
470900.0 / I T

4. LINEAR SYSTEMS WITH BAND MATRICES

The inverse of a band matrix is, in .gene_ral',‘densg. Thus the _algbrithms presented in

chépter 2 are too time consuming inr this case Theré is _aﬁbﬁ_)et ppssibiiit_y ff)r compﬁting an
approXiﬁlate'inversé ReMR of a matrix Ad‘JIR.. in'st-gad of R _;-ifself _a.L-U-.dcco'mpdsition of A
is  computed with lower and _upper' t;'ianguiar: .._i:na'tric,es L,‘Ueﬁm, Théx_l _
R = (LU),—I = ULV = 471, Of course, hé-ithér L,U nor R is detemﬁned exactly by the
computer; they are merély approximated. _ |

Ali .tﬁeofemg and corolléries of cﬁapief 2 rémain -'vaii.d'whén one replacesr R by

U~1eL=1. Let us consider the typical condition

R - 45 + T — RAYV-XX. @1

L™ Vec and U~ lec for ceVR can always be cdmputed by backward substitution provided that

the diagonal éieﬁxents of L and U are not zero. We denote this process by L~ s resp.

' U"l*c._ Thus (4.1) may be replaced by .

UL A+ 1 - U@ bexsx, @.2)

w
-
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‘where in L™ 14 and U _i*(LPI*A) backward substitution is applied columnwise.
Next we describe backward substitution over § with the rounding <> Suppose

= (L; ) with L .= O for i<j, L;,-#O; Then 'for ceV}R

L~ lsc = v with v = (v)eVR and v, 2 Liv)/ Ly ' (4.3)
3 ! J—

"iﬁ is computed for { =' 1(V)n. If LeMS and ceVs, t_hen

. . i—1 :
L7V cim v with v = (v)eVS and vz 9 S L) 0 Ly (4.4)
i=1

The defiﬁition for U™ L @ c is similar. The _operatlons in (4.4) are executable on
computers (cf. [21], [24], [3]). It is easy to see that
L lecel"1 @ c. o o - 4.5)
For AeMS we define L™V @ A to be the matrix cohsisting of columns L™} @ A
\#here Aj;-are the columns of A. :

Therefore the theorems and_corollaries of chapter 2 can be reformulated using a

LU-decomposition instead of R. As a_ﬁ exaxhp!e we give such a version for corollary 2.5.

~ Theorem 4.1: Let A,L.UeMS and ;,beVS ‘where L resp. U are lower resp. upper triangular

with non-zero diagonai elements. If then for some XellVS

Ut @ o v A-x)) @ {I—U"‘ ¢« 1o @ x<xX, (4.6)

then L,U and A are non—smgular and there is one and only one Xex + X with AX = b.

Remark: The subtraction of U™! @ (L“1 @ A) from the unit matrix is integrated in

U"l_ @ B, where B:= L1 @ A. Therefore the minus-sign in the braces is written without a
rounding. B

For apphcatlons to band matrices theorem 4.1 has the advantage that the band

" structure is not destroyed Therefore the computmg tm}e is significantly reduced. If for the

band matnx A havmg A; i = 0 for [i — ji >m then computation of a LU-decomposition of 4
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costs about mm?. Therefore the total computing time for (4.6) is ~4nm2. If the matrix has
special properties like symmetry or positive dcfinitehess the time can agaiﬁ be reduced
_significan_tly. In general there is a factor 4 in cost compared with a usual float1ng~pomt
o algorlthm In return one gams the automatrc verification of the non-singularity of the given

matrix. ‘Therefore the solvability of the system is demonstrated by the algorithm without any

- | , effort o_n_rthe_ part of the user.
- o ) Similar to chapter 2 the presented methods are apphcable in the field of complex
. i

numbers -as well as for «f eEMS bellVS resp. ZelMES, bellVE¢S. In the two Iatter cases the -

| ponksi_ngularity of every A<« is automatically verified, and in this case for every Aeoa_’! , bed

_th_e're is .aﬁge; @ X with A% = b. |

A dlsadvantage of (4.6) is that U] @ L1 @ cand I — U} @ (L~ @ A} with

c:= b 6 AX is computed with more than one rounding. Therefore extremely ill-conditioned

systems are not solvable. The author’s experience showed that in a floating-point screen

‘ 510,12, — 99,99) linear systems with matrices ﬁp to condition numbers 5+10% are solvable

with least sigﬁificant bit ac_cu-facy for cach component of the. solutidn.
5.- SPARS’E LINEAR SYSTEMS
Let AeMlR, bg VIR. We consider an iteration scheme (cf, [41D
xitt= o 4 B‘I-(bfof) | (S.i)
for sbme_ initial x%»R and an iteration matrix BeMIR. (5.1) converges iff p(I — B—IA)<1.

Let A:= L + D + U, where L,U,DEMIR are lower, upper and diagonal matrices. Then we get
‘for B:= D the

| ' 7 " Jacobi method: xi¥h= o o D;I-(b — Axi), (5.2)
for B:= D + L the

Gauss — Seidel method: = X 4 (D + L)—l-(b - Axi) (5.3)

8 %
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and for B:= m"l(b + wL)‘—I,'r._oeIRVthe
relaxation method: B J:Ci+11= f' + we(D + wl) -(b - Ax) (5.4)
‘ Tﬁe _rﬁethods. are v{rell-de.fine'd if the diagonal elements of 4 do not vamsh We dxstmgunsh the
t_hfée @ethods by | | |

B,:= D; Byi= D . L; 33';:\@',‘-(1)? + ¢.,L_)_f.cuf'f_ixed_'ogf_smel_liT e 5.5
Eaeh of the three methods can be used to compute mclusmns Of the selution of a lineai'
l-: . system as-one sees by replacmg R by B, 32 or }33 in Theorem 2 1 However the computmg
- time would be apprommately n3/ 3 whxch is out of the question Next we present methods :
: : -:_.based on (5 2), (5. 3} (5 4), resp for computmg bounds for the solutxon of a lmear system in
e 'eomputmg time n / 2 per step |
-I_-.__Theorem 5.1: Let deM]R beVIR w1th A L + D + U for lower upper and d1agonal
; '_‘_matnces L,U, DeMlR Suppose the dlagona! elements of A do not vamsh If then for some '
o _- XeIIV]R one of the foIlowmg condltlons is satisfted | |
1) Db~ Ax—(L+ U)X}CX
2) (D+L) {b Ax — UX}CX
3) '( Tp+L)” -{b Ax—-(U+D— "1D)X}CX for some 0%weR,

then the matnx ‘A is not smgular and there ex1sts an xex +X such that Ax = b.

| P.roof:' Defme the three functlons fi VIR-;-V]R i .— 1(1)3 by
| xeVR: f,.(x) B—I.b+ {I B; .4}_.x o o ST (56)

for fixed O;éwelR in case z = 3 |

(Bi = 1(1)3 is given m (5 S))‘ Then a bnef eomputatxon shows ehat if assumptloe Fy "

is sausﬁed i 1(1)3 then with ¥:= ¥ + X, YellVR we have | |

f(Y)CY

Whence applymg theorem 2. I we have the non-smgularity of A and the assertion ‘

xeY_x-:-quhAx,_btf D, 2)0:3)1ssatlsf1ed B R ""'D el



B L e T

Solving Algebraic Problems

The preceding theorem is appliea"ble on computers as is shown in the following corol-

' lary.

Corollary 5.2: Let AeMS, beMS. with 4 .= L+D4+ U for. lower, upper and.diagonal_
matrices L .U, DeMS. Soppose the elements of the diagonal of A -do not vanish. If then for
some XedlVS one of 'the following conditions is satisfied:
A) D! '@ O w- A-Sc‘-gL; U)eXIcX
B W+L)! @ O fb - A% — UeXieX
" : : :
¢ b+ O O 1 - 5-(U+D - w™'D)exjcx

for fixed O;éwE]R in case 1 = 3,

, . . . ; o, ~ s A
then the matrix 4 is non-singular and there exists an Xex @ X with 4x = b.

Here ) {b — AZ—(L + U)sX}emS, { {b - A% — UsX}elVS and

. 0 ib— A;——(U +D - m;lD)-X}EHVS are effectively comoutable using one of the algor-

ithms in {3] (cf. [41, too). The symbol @ is definéd in the preﬁous chapter
As demonstrated in chapter 2 the above methods are apphcable in the field of complex_
numbers as well as for ZecIMS, JeﬂVS resp JelIM ¢S, JeIIV¢S in the two latter cases the

non~smgular1ty of every deud is vertfled automatlcally and for every Aeed, bed there is an

Fex @ X with A% = b.

Research on sparée linear systems: is in progress. U_p: to. now we have little.expetience
on the range applicability of the algorit}tms. ' As a numerical exaxrtpie consider lineat system
(8.4.5) on page 246, [41]. The matrix denves from a dlscretxzatlon of the Dirichlet boundary
value problem —u - 1, = f(x,y) for 0<x,p<l and u(x,y) =0 for (x,y)eaﬂ vnth
£:= {(x,p) |0<x,y<1}. Let N = 32 which corresponds to a linear system with 1024 un-

knowns approxnmately 11 steps were needed using (5.4) with opt:mal relaxation factor to

.reduce the reiatlve error of an approxima-te solution to 1/10 (this corresponds to (8.4.9) in

[41]). Using the extended relaxation method C) in ooroilary '5.2 with optimal relaxation

factor we achieved least signifieant bit accuracy for every component'.of the solution with

77
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auto.matic verification of correcthess. Of céurs‘e; the jteration could be terminated earlier if
a this high accuracy is not required.
6. MATRIX INVERSION
For AeMIR Qe consider the_ problém of finding a matrix 6‘ witﬁ A-_é' = I -Given aﬁ
| initial appro_kimation ROeM]R, a NeWton—like iteration can bc ca-rried t.:mt’ (Schulz-procedure,
Cff [2D: |
R*1:= RI 4 RYI - 4R, i20. T | ) ; (6.1)
By methods analogous to':those deﬁved m chapter__z an inclusion of t.he invérse é’ can bg
computed. | . |
Theoreﬁ 6.1: Let AReMR, If t_hen for some X eﬂﬂR

R(I — A«R) + {I — ReA}+ XX, _ S : . (6.2)
then the matrices A and R are non-singular and there is a CeR + X with 4.C = 1.
Proof: The non-singularity of 4 and R follows as in the proof of theorem 2 1. 'Further for

I MR-»M]R with f(D):= D + R(I AD), DeMIR we conclude after a brief computatlon.

(6.2) that

f(Y)<_=Y where ¥Y:= R + X,

Therefore by Brouwer’s fixed pomt theorem there is a CeY R+X w1th f(C)

'Thxs unphes R(I AC) = 0 and by the non- smgulanty of R we have AC’ I. O

The precediﬁg tﬁeorem'can be extended to all of ‘t.he .cascs 4 in 4M.§,7 WS, Mg, M¢S
and ZM ¢S in a manner simila.r to that demoﬁstrated in chapter .2 |

An inclusion of C can be obtamed columnwuse by applymg the theorems and corollanes
of chapter 2 to the lmear systems AX = e,, where e; are the columns of I. The computmg'
t;mc for both processes is .the same name[y ~4n The iteration (6 I} has the advantage that |

in every iteration step a new improved inverse is used. This is not the case when using (2. 1)



Solving Algebraic Problems 79

If, on the other hand, only a fevc; elements, of the inverse are to be’ computed, the second
method is preferable, because it is faster and needs less memory.
As an ex:imple consider
941664 665857
A= ' .
. 665857 470832
Inverting A using the Gauss-Jordan procedure in §(10,12, — 99,99) yields an approxi-
mate inve;se-, ,
- [ — 166666.666667 235702.260396 \
R = o J.
' k235702.260396 - - 33_3333.333333)
The new algorithm computeéan inclusion of 4~} to least sighificant bit accuracy with

automatic verification of both correctness and non-singularity of A:

. [—470832.0,— 470832.0] | -[665857.0,665857.0]
A e T L
{665857.0,665857.0] [—-941664.0,— 941664.0}

In this Special case the resulting left and right bounds coincide, i.e. the inclusion of A~

is a point matrix. Consider

| ((941664,941664.000001] 665857
A= : ] eMS.
665857 | 470832

In this case only the first component of A has been replaced by to an interval of -

smallest pos'sibie diameter in the screen S(1.0,12,~—99,99). The computed inclusion is

: : f [=8.9,55,—4.7,,5] [1.2,45,6.6,45]
At = A7le ' . 1.
: [1.2,4,5,6.6,45] [—9.5,45,—1.7,,5]

-~

These bounds are as small as possible and display the fact that 4 is iiI-cbn‘ditioned.
" For every matrix H”, P",P™ and Q" defined in chapter 2 up to the highest number of

rows for which the matrix is exactly stora_ble in §(10,12, — 99,99) the inverse is included by
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the new algorithm; All bounds for every corhponent are of least si_gnifi(:ant bit accuracy. The
condition number of H 15 i approximately 10%2. Matrices with up to 210 rows were inverted
on the UNIVAC 1108. In ecvery case the correctness and non-singularity of the given matrix

is verified automatically by the computer.

H

7. NON-LINEAR SYSTEMS

Consider a function f: VR—VR with continuous first derivative. We desire to find

small bounds for regions containing a zero of f. The existence and uniqueness of a zero

T thi 1
For this purpose consider

within the bounds should be verified automaticaily by ihe computer.

%

the following theorem.
Theorerﬁ _'1’.1:_ Let f: VR>VR be a function with continuous first derivative and let
ReMR xeVR. Denote the Jacobian matrix of f by ffeMR and for XelVIR define F(X):=

n{YeMR | f'(x)eY for all xeX}. If then for some XelVRR

¥ = Ref() + 1 — Rof Gub (X - DX, | (7.1)

. N L]
then there exists an ReX with f(g) = (.
P;oo’f:; In évery e-neighborﬁood of a matrix CeMR there is a non-singular matrix CeMR
* (this can be f;foved by regarding the determinant of C as a polynomial in n? variables which is
continuous and not identiéally vanishing, since all coefficients are x1). Therefore according
to (7.1} a non-singular matrix ReMIR exists with
- - - _ N N‘ o ,-

X=Ref(x) + {I — Ref (xuX)}s(X — x)EX. (7.2)
Define the function g: VR—>VR by

xeVR: g(x):= x — R f(x). : . § (7.3)

gisa functibn with continuous first derivative. A brief computation using the n-dimensional

- mean-value theorem yields:
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VxeX: g(x) € x=Rof(X) + {1 — Ref GuX)}e(X - %)

(however, for xeX there is, in general, no se; + X with

g(x) = x—R+f(X) + {I — Ref(§)}+(X ~X)). Therefore by (7.2) and g(X):= {g(x) | xeX}

g0k | G

Now by Brouwer’s fixed point theorem there is an ReX with g()"é) =3'E By the definition -

(7.3) of g and the non-singularity of R this implies f(}) = 0. 0

According to the preceding proof one cannot ‘replace f (;Q_X) by {f (x)]xe;c'y_X} in

theorem 7.1. It is ‘not possible to replace f’ (xuX) by f(X) as can be deinonstrated_by

'cbunt-erexamples. ‘Again it is preferable not to include a zero % of f itself but the differenc¢

. . ~ A . ., . : A A~ . :
between an approximaté zero x and X. Calculating an inclusion of X or X—x requires the same

_compnuting time.

Corollary 7.2: Let f: VR->»VR be a function with continuous first derivative and let ReMR,

_ xeVIR. Define f and f/(X) for XeIVR as in theorem 7.1. If then for some ){EHVIR with OeX '

— Ref(X) + {I — Ref' (% + X)}+X<X, (1.5)
then there exists an Xex + X with f(Q) = 0.

_ The assertions of this corollary can be sharpened under slightly weaker assumptioxis. To

prove the stronger result we need the folloiying lemma.
Lemma 7.3: Let ZeIVR, f<LMR and XelVR. - If then

Z_J’“{'XQX’ , - | | ' . (7.6.)
then for every matrix Aeb;{ hoids p({d)<p(l A4 I )<1.

Proof: Using (7.6) and (18), p. 153 in [2] we obtain’

C e | o d (X)) <d(A s X)<d(X).

o
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Therefore by corollary 3, p.18 in [42] we have p([f|)<1 and by Perron«»Frobemus

Theory for every Aes: p(A)<p(|A|)<p(f..es(|)<1 : . ' O

A proof for this lemma is given in [34]; the presented proof is due to Alefeld. Next we

give a theorem improving Corollary 7.2.

El

Theorem 7.4: Let f: VR—VR be a function with-continuous first derivative and let ReMIR,

‘%eVR. Define f and f'(X) for X<V as in theorem 7.1. If then for some XellVR with OcX
C R+ T —RefF+X1eX c X, | o am -

then the matrix R and each BeMR with Bef (x + X} is non- smgular and the.re 1s one and

only one Rex + X with f(x)

Proof: Applyihg lemma 7.3 to (7.7) yields the norr-s-ingularity' of R and the matrices Be MR

with Bef'(x + X). Define the function g: VIR-»VR by _ s

xeVR: g(x):= x — Ref(% + x). | N ' (1.8)

Then g is continuous and differentiable. As in the proof of _jtheorem 7.1 brief computa-

tion using the n-dimensional mean-value theorem yields:

VxeX: g(x)e — Rof(X) + {I — R.f’(SE + X)}-X.

Then with g(X ):= {g(x) | xeX} we have g(X )cX and by Brouwer s flxed pomt theorem
there is an xeX with g(x) = 5? ‘This Imphes by (7 8) and the non—smgulanty of R that
f(x + J;-) = 0. ,Suppose t-here is a yeX “with f(x, + y) = 0. T_hen-applymg the n-dimensional

mean-value theorem there is' a matrix B ef G+ X ) with

fE+P) =G+ D + B X + P—x-%).

This implies B(‘i}-—fc\) = 0 and by the non-singularity of B the theorem is proﬁed. 0O
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The preceding theorem gives under fewer assumptions. than in corollary 7.2, in addition

the non~singulé'rity of R and every Bef’ x+X ). For the generalization to complex function

we need a complex version of the mean-valae theorem. This is given in the next lemma, which

is due to'BEi'hni (see [6}).'

. Lemma ' 7.5: Let GePV¢ be convex and non-empty. Then for a holomorphic function

f: G>¢ and 22¢G there are #,,eR with 0<t,t,<1 such that with {,:= z, + £,(z — 25),

i=12

'y

@) = fz) + Re ('€ ))+(z = 2} + joImif (6 )+ 2 - z0)}. 7.9)

Remark f’ dcnotes the gradient of f, Re resp. Im of a vector denotes the vector of real

resp nnagmary parts of the components J is the imaginary unit.

- Proof of 'Lemr'na 7.5: For z:= x + jy, x0 =2 +J}’o w1th nyOJOEVR we have

f(z)_ u(x,y) + j-v(x,y) with u, v: VIR-»IR By the (real) mean-value theorem there are

. tl,tze]R Wlth 0<Lf1 t2<1 such that with {;:= %o + t Ax — x4} and p;:= Yo+t (y Yo) i =1, 2

we have

1) = U Ceg.00) + Uy () (6 = X0) o+ (€ 1ott)(7 — )

() = V00u20) + ¥lEin) (% = Xo) + 9, () = o).

Now -short computation using the Cauchy-Riemann differential equations proves the
Iemma. , : ' : A

In the following for a function f: V¢->V¢ we denote the Jacobian matrix of fby f.
Theorem 7.6 (Bshm): Let z],z26V¢ and define Z:= - {zeV¢ |z,<2<2,}. Let GelV¢ with

-zUZCG and ~let f: G—>V¢ be a holomorphic function. Define f(Z):=

n{YelM¢ |inf(Y)<f(z)< sup(Y) for zeZ3}. Then for all zeZ

f@f@) + fGuzyz~H. | | (7.10)

W
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.Proof: TFhis is a'c0n5equenée of the preceding lemma. |

According t_o [36} t‘he_a.sserltions of lemma 7.3 femain valid after _feplacing ;X by g)o( or

| fép}acing R by ¢. Combining this with t.he preceding corollary yields |
.Theorem_ ?.7:' et GeVC an& let f: G>V¢ be a holomorphic function. Let ReM ¢ and
7e V¢;. | ‘Define f° to be the Jacobian . matrix of f . and define f (2):=
n‘{YeW¢|iﬁf(Y)$f’(z)_<_sup(Y) for all zeZ} for ZellV¢. If thep for some ZellV¢ with

7 + Z<G and 0eZ

o~
=X
'
(ST
ot
S’

o R-f('z'—’) + {f = R-f'G + Zyjezez,
then the matrix R and each matrix BeM ¢. with Bef’ G+ 2Z)is nqn-singular and there is_ one
.an;_i- only one %z + Z with f(?) =0 | | :

.P.roof: ~ Similar to the proof of theorem 7.4.
| Both theorem 7.4 and the preceding.th.eorem are applicable on computgfs as sta.ted. in
thﬁ_; following two corollaries. |
Corollary '7..8: Let [ VR>VIR be 2 functioh iwvith= continuous first cierivative and lc;t R-eMS’, :
- XeVS. Lf:.’,.f. &: PRIVS be a function satisfying xeVR=f(x)e { (x). Define f to be the
Jacobian matrix of- f and for XellV'S define f/(X):= n{YelVS I- f(x)eY for ail xeX}. If then

- for some XeIIVS with OeX
—ROO® P O{I~Rf(x®xn<>xc - (7.12),

.theﬁ the matrix R and each matrix BeMIR with Bef’ (x @X) is _non-singular and there is one’ _
and only one Xex @ X with f(&) = 0. |

Corollary 7.9: Let GeV¢ and let f: G—»V¢ be a holomorphic function.l LeAt. ReM¢S and |
;.:EV¢S. Let @ VeIV ES be a fuﬁction satistying zeV¢=>f(z)e @{z). Define f' to ber the
Jacoblan matrix of f and define f(Z):= n{YeBV¢S {inf(Y) < f' (2) <sup(¥) for all zeZ} for

_ ZellVgS. I then for some ZEIIVS withz + Z<G and QeZ

RO OB O uU-RSCPDY @ 227, | 1.13)
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then R and each matrix BeM¢ with Bef' (z @Z) is non-singular and there is one and only

one Zez @ Z with f(z)

Remark: A close reading of the proof of theorem 7.4 yields the non—sing_ularity of each
matrix BeMIR with Be_f' x @X) resp. each matrix BeM ¢ with Bef (z @Z). Moreover, the
same proof for the uniqueness of % resp. 2 in x @ X resp. 2 @ A inste_ad in x4+ X resp.

A

; + Z can be applied.for the preceding two lemmata. o o S 0

(7.12) ?hd (7.13) are. (effectively)‘ ‘executable on corrfputers according to [21], [24] and
[3]. This is true especially for <> I=Rf(x & X)} resp. <> I ~Ref'(Z @ Z)} Next
we give an algonthm to compute an inclusion of a zero of a system of non- hnear equatlons

'Wlt_h automatic verification of existence and ‘uniqueness.

i 1. - Use your favorite floating-point algori'thm to compute an 'app_roximéte zero-;c' of f.
12, 'Use your favorite floating-point algorithm to compute an approximate inverse of
£G. I . ,

3. V= (0D k= 0; 2= O ) 2= O R Oz
repeat k:= k + 1; X:= Yu0; D:= &' & Oxy;
| v=z & O r-RrDy O X,

until  ¥Y<X or k>10;

5

R : _ -
4. if Y&X then {It has been verified, that there exists one and only one
) - o ) S
2ex @ X with £(R) = 0}

else {No verification}.

.o Algorithm 7.1, Non-linear Systems of Equations

Here @: VS—1VS is any function éatisfying x;s-'VS_s;-f(x)e @(x) and @': 1TVS-+IIVS is
a function satisfying XeW/S={V¥xeX holds @' (x).e.' _@’ (X)}. There is a similar algorithm for

complex systems of non-linear equations and there are similar extensions as in chapter 2, to
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functions f: BVR—IVR and f: BV¢—>IV¢. In the two latter cases every function f with
f(k)ef(x) for every )ce; @ X resp. z @ Z has exactly- one zero in ; @ ):’ resp.- z @ g (in
the terminology of corollaries 7.8 and 7.9).

The 'z.ibove algorithm can be used after a‘floating‘;-point algorithm to determine the_
accuracy of the comp.utcd:épproximation. The computing time is k + l)n3 plus one evalua-
.. tion of @ and k e\.réiuations o_f_@', where the com'p.uting time for ev.aluating @ résp. @' is
roughlf the éamé as ';or .f £esp. f’ .. As shown in the following examplées the algorithm
términates #lmost a{ways With. k =.1. This autdmaﬁc v_erificafion process could repiace effdrfs
on the part of the usel; to make an approximationjpiausib.ie. The qu‘eétion, for which mitial X
a_lgqri_thms’ 7.1 terminétes is answeréd by le_mmé 29 | | |

Theorem 7.4 resp. theorem 7.7 can be regarded as an extension of the Kantorovish

Lemma.

E};i)eriénce_showed, that if the appfoxiination X is c.)f-.tht.a magnitude of a _solu_tioﬁ of the
non-ii’near system, then al.gogi'thm 7.1 terminates f‘or.k <1 with results of least significant bit
. aécuracyg | |
The following cémputationai'results are from the UNIVAC 1108 a.t the University of
Karlsruhe. Here the fléatiﬁg—point screen S is (2,27,-’128,127). So the mantissa length is
approximately 8% decimal .digit;;. VW_e treated Example 7 in [1], Problem 1 in-[31] and
Problem 2 in [31]. For more examples see {36]. In the following table we display from left

to right

. ‘the'numb.er of the problem

o m numbér of ﬁmcﬁons and variables

. Newton—s-tépé: nuntber of Newton iterations starting with the initial guess preécribeci in. the
-cited literatﬁfe |

o k: defined in step 3 of algorithm 7.1

» succeeded: yes indicates Y<X in step 3 of algorithm 7.1
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s - digits guaranteed: least number of digiis for wthh the left and right bound coincide; here
an additional Ls.b.a. means least signfficant bit éccuracy, i.e. that the left and right bound
of the inclusion of each compqneht are )consccutivé'number_s in the ﬂoating-point screen,

Example 7 [1]:

- L Discretization of 3jy + 3° = 0, y(0) = 0, y(1) = 20.
o fi= 3x1_(x2.—2.xl) +x3/4 | |
fi= 3.,7c,-(xi+l—;2x, +X_ )+ (xl.+1—~xl._1)2/4 2<i<n—1

) 2
fn = 3xn(29_2xn +xn—-i) + (20_xn—1) /4

Solution 1083/ 4. initial guéss x; = 10 for igi<n.

Example 1 in [31]:

Discretization of u”'(1) = 2.Gi(1) + 1 + 1) 0<1<1, W(0) = 7(1) = 0

X=Xy =0, fy=kel; h=(n+1)7"

initial guess x=(¢;), &, = 1,(1; - 1) 1<i<n.

Example 2 in [31]:

) + _[{') (.0 @) 45+ 1) ds =0

_ s(1—1) s<¢ ’
. ' - H(s0)= _
1(1.—.‘9) 5>t
1y, & 3
xkzﬁ(tk),fn(x);xn+—2- A=) D i+ 1,4+ 1) +
- J=i :

. .
: 2
+1, E: 1—-tj)(xj+tj+1) } ,

. ) - ml . .. ) - )
Xg =X, =0, ¢ = jh; h = (n + 1) : initial guess x; = 1,(t; ~ '1).
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88
Probiem R Newton—steps k succeeded digits guaranteed
1) 10 8 | 2 yes 8% (Lsba)
20 7 6 ~ 2 . yes 8—:12— (I.s.hja.) 3
' 50 . 6 ‘ 3 yes : 8 |
100 7 3 -y B
2) - 10 4 o yes | '8% .<1.g_b.;.)‘
20 6 1 yes o %;.(1.s.b.a.)_“
50 6 1 yes g =
3 10 3 1 yes .o 8%(isba} |
20 4 1 | yes IR _;_ j(_l_'s_'__s.'a.')
50 & 1 yes g

The additional computing time requlred to obtam resuIts wrth venflcatlon of correctness S

* is about k times the computing time for one’ usual ﬂoatrng—pomt Newton 1teratlon However
) ‘ o iy

~any recomputing with slightly altered entries to gain in securtty is unnecessary. _

For further improvements of the above algorithm with a reduction of k to 1 in every of ‘

the mentioned examples see chapter 11 of this article. - _ I

_8 THE ALGEBRAIC E|GENVALUE PROBLEM
7. The eigenproblem (cf. [34]) can be formulated as a non—hnear system For AeM R let

a'ix'-—— Ax=0 .
(8.1)
e px— { 0. '

Here e & is the k’ umtvector, 1 <k<n If { ;éO then any pair (x, A) wrth erIR AeR is

an elgenvector/elgenvaiue parr of A In the followmg the proofs ftrst gwen m [34] are

N shortened and completed by lemma 8.3. Fmally theorem 8.8 is added From the precedmgA

: chapter a theorem can be derwed to compute an mc!usron for an etgenvector/ ergenvalue patr'

of 4 satlsfymg (8 1):
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Theorem 8.1: Let AeM,R; ReM, R, X¥eV,R and AfeR with {#0. Define for YelV,R,

MelR the function G: IV, RV, Rby

LY\ X\ AR
G = ~ =Rt -
M) \A] e’ x—¢
| ] - - o (8.2)
A=D1, ~GuY) Y-%
+9 L, —Rep L Rl L)
R A A A AU
If then for some XGHVHR,'AeHIR. .
G(TET for T= { B PO L ' - (8.3)

. A -
holds, then there exists one and only one eigenvector/eigenvalue pair (Q,A) with %eX and
AeA. o .-

Here I, is the rixn unit matrix and AuM:= [J{AvM), xuY:= [J{xvY) as defined in
chapter 1. There are similar extensions to complex -eige_nvectér/eigenvalue ‘problems and
problems with uncertain data.” VNext we will improve the assertions of theorem 8.1 under

weaker assumptions. Instead of the Jacobian matrix used in (8.2), consider

_ f A=A, —-X \ . _ ,
S(X):= C eE’MnHR with XellV,R.. - (8.4)
Define
s AT - o -
Z=f L) —-R}F . eE’VnH]R. ' . ' : T (8.5)
A ' e'kx~§‘ : : o . - .

We will show that using the function G*: v, R>PV,, R defined by

¥
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vy (Yo% -
G*( ):= Z + (In-[—l — R«S(Y)). — o (8.6)

instead of the G in -tﬁe-orf_:m 8.1, it follows from (8.3) that there exists exactly one eigenvec:tor
A . o . ' o A o A Aa - A
x of A_ in X, therg exists exac_tly one eigenvalue A of 4 in A, Ax = AX holds and that A is of_

- multiplicity one. Obviously

G* ) &G , '
and ‘th'us the assumptions are weaker.

Lemma 8.2: ',Defifze -G*:._HVn+iIR—‘;

/it R DY (8.6) for ReM, | R; 3eV,IR: A LeR; {#0.
It

e 'X_ , :
G¥ (T with T='( ) for some Xelll,R and AelR,

 (8.7)

S : A A A
then there exists an eigenvector £ of A with J?eX and an eigenvalue A of 4 with AeA and

A
AT =A% (8.8)
Proof: -Define f Ve iRV, R by
X x [ Ax=Ax
S ONA AT e'kx-f
(8.9)
AN, —x x—%
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y‘ Y '
ye¥,; ueM—,\f( )EG* ) : (8.10)
_ 2 M - _ _

y A : :
-~ By (8.9), (8.7) and the fixed point theorem of Brouwer there is a (Q,A)E(X,A) with

Then

SAR = 8, and by (8.9)

£

A
AR-N% ._
. € ker R.
'R
e x—¢
; By lemma 7.3, R is non-singular and using e %= £#0 the pljo_bf is completed. 0o

Our aim is to prove the uniqueness of X in X and A in A separately.. To this end we first

- _ . . A '
- derive the uniqueness of the pair (Q,A) in (X,A).

_ . 7 5 . | A
Lemma 8.3: With the assumptions of lemma 8.2 the eigenvector/eigenvalue pair (&\,)\) is

uniquely determined in (X,A).

Proof: Define f,: Vs R—>V, R by

_ S w w : Aw—xw—qz+ﬁ)\uz ' _ '
' . Sy = - R. - B (8.11)
. . . g e’kw—g B . |

Then short computation yields for arbitrary xe v, R

w\ [ AT-2% o fa-dr, -z w—%
) =) -2, )+ dha-k -
c A e'kx-—f : _ e’k 0 - o=\

From (8.7} and {8.12) folléws for evcfy zeX

o - X ' | : 7-
fATET with T = ( ) _ . (8.13)
A .

W T
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ot . [«]
Therefore for every zeX there is a fixed point of f, in 7. Obviously (x,A) is a fixed

point of f,.

“Lemma 7.3 imples the non-singularity of every matrix

M= ‘ € M, R for every zeX. - (8.14)
ey 0 : - .

For thé purpose of esiablishing a contradiction we assume Ax =.Ax and Ay = py with

~ xeX and A,peA with )\ge,u._._ Sﬁppose further xls an eigeﬂvalue of 4 with eigenvector v.

Ther_l m case.é'k-v.= 0. we'.havg (v,0) ¢ ker Mx,- in case e"k-vvﬁo w.l.o.g. e"k'o_v = { and

(v - x, ;—ZJ\)'e ker M . co-ntradiéting (8.14). Therefore especially K;EA aﬁd ;\'#u,. Neict we

will compute a fixed .iJoint of 'fx+ Sly—x)* Short computation yields for 8;&(;1.—)\)/ (p—=A)

w 4A% Y '
fx+30’_'—x)-( )=( )for w(8) = x + -‘-s%—?\-)-(y—x) and '

o N O

0(8) = A + (A=A)(g—A)/N with 8.15)

N=(1=e)(u=A) + e(A=A). .

This fixed point (w(8), o(3))" lies therefore on the straight line connecting x and y. By

(8.7) and x,yeX\ X follows the existence of -§;, §,¢R with

§,<0<1<0, and §,<8<8, > x+8(y—x)eX , )
8.16)

and x + 8, (y —x)edX, x—8,(y - x)edX.
For evefy deld,, 8,] with 6#(;;—?\)/(;:.-—-)\) we have.N;éO and by (8.13)

w@d) e X S (8.17)

~ N : o . :
If (p—N\)/(p—X) € [8,,8,] then there exists w(§) 3 X contradicting (8.17). Therefore

~

(8.17) and (8.18) implies

SO=7)

— — <8, | | (8.18)
(1-8)(p=A) +86(A-A)

Sel8y, 8,] > 8,<
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- Suppose N>0. Then the left inequality with § = 8, implies p>A, the"right inequality

with & = §, implies .?\>p.. “There is the same contradiction for N<0. For A = i1 we have

N = A=Az0, w(d) =x +8(y — x} and o(8) = A demonstrating lemma 8.3, S o '

f_emma 8.4: Under the assamptions of iemma 8.3 given an eigenvalue p of A with peA

“every eigenvector y of 4 corres’ponding to g must in X

Proof: Suppose Ay = py with peA. Given f from (8.9) we def_ine gy VnR—pI.f’;,IR [to'rl_)_e'_t‘h'e _

- - N l
first-n components of f(z,u):

.‘ _ N £, | :
- teV,R = f ={ B with some »elR. -

According to (8.10 and (8.7), 8, is a cont'inu.o,ﬁs self—r’riapping of X+

- 8,: X>X and g#(X)sX\aX§ o I T € % 1))

- Brouwer’s fixed point theorem states that

IzeX: g,(2) = 2, ie. f( )=( ) o S (820)

for some p*elR. Define g: Vn-i—]IR_;Vn-i-IIR by : . S R

' ' ; W ' A—odl, —;_ - w=x\
weV, R, oeR = g { =Z+81,.,—-R- . { ~ )
‘ . ) o ) N

-‘-’rk 0 O’—)\
then g('w',a_)_z f(w,0) and (8.10) holds with g substit_uted for f. Applying lemma 7.3 yicids '
that o ”

e fA—el, —X

.T(e;.r):= is non-singular for"every oeA.

7

o

Since y is an eigenvector of 4, y#0. So T(p)-(y,O)ééO'yields Y= e_"k « y#£0, 'Define- o
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! ! i
Mv):= eV, RIf[ - = } for rveRR. o (8.21)
" v .
For the purpose of establishing a contradiction we assume p#p* and define £: RV, R
by
- . o, - . ' ;] S |
veR = h(p)i= $z + qy with &5 (p=0)(p—p*) =Ly . (8.22)

~Then brief computation using (8.20) a'nd. (8.9) yields R

B(vYeM(y) for every reR: (8.23)
k is continuous and
n | RS ' -,
h(v + &) — h() = eaf(uop) Ty ey = )T ez (824)

If 2= ¢y; ey then (4 — pl)z = 0 and &',z = ¢ which contradicts psu* according to
(8.20) and (8.9). Thus z#{y; ey and from (8.24) follows
| A(v) | >0 fOr pesco, - T (8.25)

For every veR, any reM(») is a fixed point of &, (8.20) ,yields z = h(p*)eM(p*) and

zeX, so by (8.25) there exists a fixed point of g, on d0X. This contradicts (8.1‘9)?

Thus, g = p,* and the lemma'is proved. l N M

.Lemma 8.5: Under the assumptions of .lém'ma 8.2 given an eigenvector y of A with yeX the

e'ige_nvalué ‘1t of A corresponding to y must lie in A.

Proof: Suppose Ay = py with yeX. Using f from (8.9). we define gy R—>R be the

(n + l)_-s_t component of f(y,»):

y . - | .
veR = f ( ) = ] with some zeV R, . (8.26)



Solving Algebraic Problems 95

According to (8.10) and (8.7) 8, is a continuous self-mapping of A:
gy A—>A and g (A)SANGA. _ ' (8.27)

Brouwer’s fixed point theorem states

3oel: gy(u)="a,-i.e.'f( ) = ( ) S . (8.28)

for some ze Vﬂ—]R., Define

!

P
'

M(t):={pe]RIf(y) = (

¥

) } .fOr':té_.Vn-I__R.'._ E - .'.(8.29)

" Assuming u#o we define
vi= z + 9y — 2) with 5:= (v—0)/(p—o0),
A brief computation using (8.28) and (8.29) yields:._aeM (z} and veM(v) for every »elR,

whence for every reIR there is a veV, R with »eM(v). By (8:29) and (8.26) every » in some:

M(v) is a fixed point of 'gy. This contradicts (8.27). Thus p = & and by (8.28), ueA. 3

After these preparatory lex_xlmata, we are ready to state the following theorem.

Theorem 8.6: Define G*: I[Vn+1}R-a-H"Vn+1]R by (8.6) for ReM, |\R; ;eV,JR; K,fefR_; 0.

s

If
G¥(D)ET with T={ for some Xelll R, AeHR
A .
then all of the following are true:

1) there is one and only one eigenvector Lof A with Rex .

.~

’ A A -
2) there is one and only one eigenvalue A of A4 with AeA,
s S A DA
3). these are corresponding, i.e. 4Ax = AX and

. ’ . A
~4) the muitiplicity of A is one.
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' . o A '
Proof: The existence of an eigenvector/eigenvalue pair (J’é,)\) in (X,A) follows by lemma 8.2.
Hence we have 3) and I) and 2) follow by lemmata 8.4.and 8.3 resp. lemmata 8.5 and 8.3,

Assertion 4) follows by lemma 8.3. _ : ' _ _ o .

In contrast to theor_em 8.1, we use A instead of AUA and — X instead of -—(;QX),

whiéhé reduces the diameter of G¥(T) compared with G(T) significantly. Theorem 8.6 is
applicable on computers. This is shown by the following theorem. We formulate it at once
for finding an inclusion of the difference between the solution (fr\,)\) and an approximate

T S At 1N
SOLULION (X,A ). -

Theorem 8.7: Let deM, S, ReM,, S, xeV,S and A geS with {#0. For Xellv,S define

A=X, —%-X

Q(X):= , ' L EMn-;—IIR -and

€k 0 ' | -

R f Ax—Ax '
z=6RrR® O . ellV,, ,S.
_ . ex={ :
If then for some XellV, S and AeliR !
. o . X ’

Z® Q i, - RQUO} © T<T with T:= ( ) : (8.31) -

then the matrix R and each matrix BeM n LR and BeQ(X) is non-singular and the following
are true:
1) there is one and only one éigenvectoi‘ 2 of A with fex + X,
’ ' ' A A~
2) there is one and only one eigenvalue A of 4 with Aex + A,
: N . A b
3} they are corresponding, i.e. Ax = AX and

. A
4) the multiplicity of X is one. .

~

Proof: This is a consequence of theorem 8.6. ' ' [

The uniqueness of % resp. A cannot be guaranteed in x @ X resp. A @ A. (8.31)
and especially O(D i - R.Q(X)}) is (e‘ffectiveiy) executable on computers ﬁsing the preéise

scalar product {cf. [3]). '
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Theorem 8.7 yields an algorithm to include an eigenvector/eigenvalue pair of a given

" matrix A with automatic verification of correctness. For the algorithm and further improve-

ments sce [34]. Of course in the actual implementation x, need not to be stored as en
additi_onal variable. Instead -(8.3'0) and (8.31) are rewritten in » variabies It is poSsibie to
m,sert some X*edlV, S A*e IS with X*DX A*2A in (8.30), (8 31). If for both for (X, A) and

(X * A*) the cond:tlon (8 31) is satlsfled then it has been venfled that there is no eigenvalue

of 4 in A*\A The computmg time for the algonthm is approxzmately 2n Each 'additior_lal _

eva]uatxon of (8 31) with another T cOosts ~3n .

T 'Finaliy we nientio‘n another version of theorem 8.7.

Theorem 8.8: Let AeM S, ReMn_I_IS er Ry and )\ {eS w:th {960 If the hnear system'

Cx =4, JeIIB oS With

| A-AI, %\ | —AX+AX + AX
CCr= : and #:= ' :

e'k 0 0

is solved us‘ing.algorithm 2.1 yielding an inclusion of the solution (Y.M)', YeIlV,S, MecIIlS and,

MOreQver,
YSX and McA

is satisfied, fhen all agsertions of theorem 8.7 remain valid.

Remark: Algorithm 2.1 has to be used in its ve_fsion for interval right hand side ¢ as

described in chapter 2. In gene'ral, A4 —Al, is not an element of Mn +15- However,

aigorithm 2.1 can be applied for point matrices, for instance, by splittiﬁg a product

(4 — M )x, xeV, S in a scalar product of length n + 1. This'assur_es that all assertions

respecting algorithm 2.1 remain tfue. :

.o~

Proof of theorem 8.8: A brief computatlon usmg (2. 2) yields exactly that provwmn (8.30)

in theorem 8.7 is satisfied. Therefore all‘assumptions of theorem 8.7 are valid. o

Theorem 8.8 extends Satz 3.7 in [47}. In this specific case we do not assume 0cX, OeA

97 -
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but conclude (extending the cited Satz 3.7) the non-singularity of C,the uniqueness of the
- eigenvector/eigenvalue pair, the uniqueness of the eigenvalue and that the multiplicity of the

eigenvalue is 1. Most important is the fact. that the non-singularity of C is verified 'by, the

computer.and not assumed to be checked by the user (which is, in fact, hardly solvable). This

Bl ’

a _mékeﬁs;the cofresponding aigorithm widgly applicable esﬁccially for non-matheméticiéns,
- -Tﬁ_eré_ are.similar cxtcnsit_)ns_, as m chapter 7, to complex matfices 4_andr problems_ with
uﬂ.ce'.rt-ain data. Ig the létter case (with_‘a matrix-rd e IM n'S_) fhe_ assertions .1'), 2), 3) and _4')
- ‘remain valid for any A<M, R with Ae | | |
.Thg. fq{lowing numerical exémples were éomputed on the UNIVAC 1 IOS at the
-tlniversity of Karlsruhe. We-denote: by :
| H  the Hilbert—mgtrix |
P tﬁe Pascal.-matrix
S8, matrices;with u’niformly distributed eigenvalues in [ — 1,1], [14,170], feSp.

'

C - a matrix with clustered eigenvalues 1+ ie 10*5,'_1' = 1(1)n
R | 4 randomly generated matrix w—ith {R :‘j..{ <1

We first applied a bui[t__—in procedure to compute approximatidns E,K for the eigenv_ectors

and eigenvalues of A, resp. Then the ﬁew‘ algorithm was_'appliéd. The fol_lowing table displays
the matrix, the numbgr of rows n, the maximum reIatiye error Z of the components of all
approximations ;,K and. the numbe.r of digifs guafanteed in the final inc_lusioné fof all éi_genvec—
tors and all eigenvalues of the matrix. Heré an additional I.é.b.a. indicates thét all cbmponeﬁts
~of .t(he inclusion of eigenvecto'fs and ﬁhe inclusions é'f eigenvaiues.are' of least signifi_caﬁt bit
accuracy, i.e. Ieft and right bounds are consecutive ﬁumbers in .tl.le. ﬂ"oati-ﬁg-p‘oint sc_reen-
s =27, - 128,127). The « for & in &' indicé_tg‘s, that the approximation A = — 2.1716_3

- for one eigenvalue was of wrong sign (the correct value is + 1.259..'.10-3).

H
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) matrix n K _ digits guaranteed
H 6 17452 8 (lsba)
, e
7 % 8L (Ls.b.a. =
y (sba)
8§ 43 8-;- (Ls.b.a.)
’ P 8 15,3 82 (sba)

9 30 .3 3% (Ls.b.a.)

10
, S, 20 56, 83 (sba)
S, 20 31,0 8l asba)
c 20 19,1 8
R 50 69,5 8L Asba)

9. REAL AND COMPLEX ZEROS OF POLYN.O'MIALS.

Consider a polyn.pmia'l p of dggreé n. p can be regarded as a_(continuoﬁsﬁr differentia-
ble) mapping, S0 the theore'ms_ and 'éorollaries derived in chapter- 7 are applifcablé. Here we
mentioﬁ twé theorems for real zeros .cf r‘eal. rpoi'ynomials and compléx zeros of complex
polyﬁomials. They both are formulated directly _for application‘ on the computer, for an

inclusion between the difference of a zero and an approximation.

, . .
Theorem 9.1: Let p(x) = X g; «x' with €8 for 0<ign and let xeS reS be given.

. i=0
Let @ : 8§~ IS resp. @ : SIS be funct:ons satisflying xeS = p(x)e @'(x) resp. P (x)e
@ {x). If then for some Xe<I¥ with 0cX |

o @@(x)@O{l—r«-@(x@X)}@ch e

then there exists one and only one ReR with Rex @ X and p(x) =0. Risa simple zero of p.

- ‘ﬂ ; . ~
Theorem 9.2: Let p(z) = 2 ¢; z' with c-e¢S for 0<i<n and let ze¢ S, re¢S.
Let @ ¢S->H¢S resp. @ 1I¢S-+II¢S be functions satlsfymg xe¢S=>p(x)e @ (x) resp.

@ (x)e @ (x) If then for some ZeII¢S with {)eZ

& r @@(z):@O{I-—r-@(z@zn@nz 02

99
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then there exists one and only one 9&@3 with 2ez @ Z and p(?) =0. Zisa simple zero of p.

‘The proofs are an immediate consequence of corollaries 7.8 and 7.9. However, both

theorems can be proved directly using Banach’s fixed point Theorem.
The' functions @ resp. -@' may be the usual interval extensions of p resp. p'. However,

»

this is an overestimation. In chapter 11 a new method will be derived for the computation of

the value of arbitrary arithmefic cxpreésions at certain p_qiﬁt_s with least significant bit accura-
Cy. Ap;pl}}ing this to (9.1) and =(9.2)_ gives a__siénifica_nt imp'ro'vement.. |
.In {6] Bohm gave a large number of diffgrént aléorit-hms for fhe inclusion .of zeros of
polynomials with automatic vér.ifica.tio.n of _-r;drrectngss. Their .prés'entation lies outside the
scope of thi§ a_rticlé; we give only a few Iéeﬁrérds. For a complete discussion cf. [6]. |
“In [6] algorithms of .higﬁer order u‘sing:rhigh.er. order deri.\?atii;'es are given. Here the
possibility is demo_nstréted of. computirig iﬁclﬁsions of the coefficients of quadratic factors of a
ﬁolyno’miai. If, e.g., p(x) =.§Oa,-x’. is given, then Ax? + Bx + C, where 4,B,CellS resp. ILS,
. . A= _ : . .
is computed and the foilowi'ng is true. There exist a,b,_qelR fesp. ¢ vﬁth acd, beB : ceC such
that gxz + bx + ¢ diﬁi_des p(x) '\‘n-'i_thoutl fexﬁinder.'- In this manner double zeros and, when
including factors of h-igh'er degre.e,‘m.ult_iﬁle' zeros of a polynomial can be included. However,
it cannot bé verified that p. has; zero of -multiplicity gfeater than one.
Moreover in [6] sevérél t.ﬁeorems and correslponding algorithms are .dérived using the
Frobenius matrix of p and tile tra;lsi)osed' Frobenius matrix.
Nexf we briefly 'deécribe two'methods for sim_ultaﬁeoﬁs inplusion of all complex zeros of
a co_mpiéx polynomial. The first oné is an extenéion of a well-known Jprocedure.

n

Theorem 9.3: (Bsohm): Let p(z}=_2a,--zi‘ with a;¢S for 0<ign and let

| T = @7 )eVES with 7 #2; for 1<i,j<n and i), If then for some Z = (Z,,...Z,)elVES

70 0G0 10,9 o G, sz)gz,. for 1gign,
P | |

then for the zeros §;, 1<i<nof pand a suitable indexing, we have £ ,-e?i @ Z, 1<ign.
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_ - Here @ is defined as above. Notice, that p’ is not needed.
The next theorem gives'an improvement of the well-known method of Gargantini and

Henrici for simultaneous inclusion of the complex zeros of complex polynomials.

‘ ) n . ~ L Eard )
Theorem 9.4: (Bo6hm): Let p(z) = Eaiz' with a,c¢ for 0<i<n and let z = (z{,-nz,)eVE.
. _ i=0 -

' Define f VeV, f= (f1s-af ) componentwise for z = (z,,...,z,)e¢ by

¥

1@ =% = G/ C) + 9GS Gimzp 7Y 15ign. (9.3)
' j=1 ' _
a4 . j#t ' '

" If then for some ZellV¢, Z = (Zy,..,.2,) the demoninator of (9.3) does not vanish for

B zeZ, 1<i<n and
@ lzezysz, _ (9.4)

then the zeros £, 1<i<n of p satisfy !E,-e_;,- + Z; with suitable indexing. Moreover for

every kelV

&= (L8 e iz + fk(z) |ze Z}.

For the proof of the two preceding theorems cf. [6]. In contrast to the algorithm of

Gargaﬁtini and Henrici an algorithm based on theorem 9.4 does not require inclusions for the .

zeros of p as an input. Moreover any complex arithmetic (rectangle, circular) can be used as

* }ong‘as {he intervals a-re c’onﬂrex; The ?,- need not to be the midpoints of Z,, in fact ?, is not
required ito be an element of Z,, 1.5:'5:1.‘ ) | |
Agéin the coefficients of the given polynomial may be intervals therﬁselves. In this casé
the zeros of evér{;-pqint polynomial i\nciuded By the intcfval polynomial are included.

The computing time for the new algorithms is of the same order as comparable (purely)

floating-point algorithms. The lat_tér, of course, offers none of the new features.

W5



2 | | Siegfried M. Rump

In the following wé give sohle numerical examples. The ‘aIgorithms are prOgramméd on
the UNIVAC 1108  0£ the Univei’sity at Karlsruhe. There the floating-point Vscreen is
502,27, - 1_27,128). In fact the. compuiationa.l resulté r()f the algorith’ms,. derived from
th.eor.ems 9.1, 9.5, 9.3 and 9.4 are almost identical, so we di_spiay th_¢ results fpr th_e last case
only. ‘Tl;e polynomials tre.ated are: |
with zeros +V'2, 17/12, 41/29
P2 with zeros i\/g, 3363/2378
R product of linear fact'o'rs with random z'érps in[ — 2,2]

R, coefficients randomly génerated-in .[ - 1,11 |

W - D=2 «x-11)—1-

LL ’Legendre polynomial, coefficients "compute(‘I in flogting-poi.nt'
R_Cl.. ra_n‘doml& gene:rated coefficienfs in the unit squar_é

" RC, randon;ly' generated zeros with | Rez| £1.5, |Im z| 5.1.'5' .

RC, [i_'rodu_cts of linear .f'actors{ randorhly generated with zeros m lz| 52 ‘

As an example we give two figures displaying the zerés of RC, and R(;fs, both for
d.egre'e 49, o
'I_‘ﬁe zerés of R, gré particu‘iarly ill-conditioned. A prdcedﬁre' fron; IMSL i_mplementéd on the
UNIVAC 1108 génerated for R, of degree 50 an. approximatioh _—._2..1 for a real zero,

whereas — 1.06 is the smallest real zero. The results are displayed .in the following table.

For moi‘e examples see [6].
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104
polynomial ~degree k # of digits guaranteed

. ) 1
Pl 4 2 8—2*‘ (I.s.b_.a.)

| 1
P, 3 2 85 (Ls.b.a.)

. . 1
R R, 25 2 85 (Ls.b.a.)

: 50 3 8

R, 25 2 8-12- (Ls.b.a.)
50 2 -;- (Lsb.a.)

ik
Pt

4
rl
"

1
2
15 2 8—;- (Ls.b.a)

L
RC, 25 2 % (Ls.b.a.)
| 9 2 8% (Ls.b.a.)

RC, s 2 3% (Lsba)
49 2 3% (Lsb.a)

.R.CBI s 2 -é— (Ls.b.a.)

. <. _
49 2 = (Ls.b.a.
| 2 ( )

The initial X resp. Z is.an mterval w1th left and right. bound equal to.a floatmg-pomt
approxlmauon Therefore (9. 4) cannot be satisfied for the initial X resp. Z and an iteration is
started similar_te those described in chapter 7. In the table, k is the number of iterations,
%>2. In the last column the minimum n_umb'er of digits guaranteed of all inclusions of all
zeros is displayed. "An additional Ls.b.a..means that the left and right bounds of all inclusions

were consecutive points m the floating-point screen. The zeros of P, are
£ 1414213562... = V2
and  +1. 414213625 =3363/2378

Therefore between + 2 and 3363/2378 are only 4 pomts of the ﬂoatmg-—pomt

screen. Nevertheless all zeros have been included to least s1gn1f1cant blt accuracy’ w1th _

automatic verification of the correctriess.
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10. LINEAR, QUADRATIC AND CONVEX PROGRAMMING

In this chapter our aim is to give algorithmg which verify the optimality of 4 solution to

" a linear, quadratic or convex programming problem. We begin the discussion with linear

programrhing probiems. We use the same notation as in {9]. In this chapter all _vectors are by .

definition column vectors, the transposed vector is indicated by a prnne '

E

m<n. The problem is to find a vector er R with x>0 satlsfymg the condmon Ax = b and

4
héving the property

yeV,R, y20 and Ay =b = o) 2 0(x).

i

We write this linear programming problem as follows: -

Let x,peVIR beV R, AeM ]R and @: V,R—+R where Q(x) = px Wc suppose

Ax = b, x>0 and O(x) =p'x = Min! o e e0)

Let Ay, 1<k<n be the coiumn vectors of A and let Z be a set_of indices in the range .

l..n. We suppose |1Z] =m and define AeM R to be the matrix with columns A & keZ.-'

and peV IR to be the vector with components p;, keZ. Let A be non—smgulat and defme '

=)= p A_iA. Define the vector x’eV, IR in the followm'g way: x~‘:= 0 for JEZ an_d the

m components j€Z are the components of A 'p in successive order Then the followmg is

true (cf. [9}):
1) _If tjspj for every J¢Z, then x'G is an ootimal solution to (1{).1.).'
2) If there'is a j’;fZ' such thai tj>pj-and (;i""'iAj)kSO -f°1f Is_kSm, .t'hon ‘(1(:).1).has no
...soluiion. o | | :
3). -If 1;>p; for a j#Z and a componeot of ;"‘Aj_'is-greoter tﬁan- Zero, then‘.th'e.re isa

feasible solution xle V,R of (10.1) satisfying Q(21)<Q(x0).

Consider the linear systems

4 0 {7 4\ S o |
: ¥ . = ), where yjeVnIR'and c;eRjEZ. (102)

ot
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Then (provided A exists)
_ -t o D
yj-A Ajandcj—.pA Aj pj—rj P J#Z

So -if c;<0 for all j,fZ then QeVIR deflned such that 'QI':.{) -fbr ng and the m
_components j€z are the m components of A 1l; is an opttmal solutlon to (10 1) (cf [9])
ThlS leads to an algonthmnc applrcatron on computers wrth automatlc verrfrcatron of correct-
ness. For this purpose the problem is formulated as follows o

" AeM m’n'S::x-,pg'Vn,S,: beV. 8 and ,define "Q:_ 'V','le—»IR by Q(x):= -'p’x:__

g : - o B ST _ (10.3)
Find an 8¢V, R withQ(3)=Min! under the restrictions 20, 4% =b..
Theorem 10.1 Let the linear programmmg problem (10 3) be grven SuphoSe .inclusions
YeEV S for yj, resp. C{ES' for ¢, ; ;.’Z in (10 2) usmg algorrthm 2 1 have been eomputed

Then A is non-smgular and the followmg is’ true .' i |

1) If sup(C )<0 for every Je Z then the vector er IR defmed such that x = {) for

o

JE Z and the m components jeZ are the m components of A Ip, is an optrmal )

_ solutron to (10 3)

2) If there is aJ,fZ such that mf(C )>0 and (sup(Y))k<0 for 1<k<m then (10.3)

has no solutron

3) If mf(C >0 for a ;¢Z and (mf(Y))k>0 for some l<k<m then a base vector

AjjeZ has to be exchanged.

 Proof: Thisisa consequence of corollary 2-and the preceding discussi_o'n.. . : n

The lmear system (10.2) always mvolves the same matnx for all nght hand srdes 80 the
total computmg time reduoes to m> 2(n - m)m : ‘The optlmal solutlon can be mcluded by -
settmg the rlght hand snde of (10 2) equal to (b 0} Moreover the last component of thrs

solutron vector mcludes the optunal value Q(x) Of course, the restnctlon m<n can be

omitted and dual problems can be treated m a smnlar way
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- Next we discuss convex programming problems. Again we use the same notation as in
[9]. Consider F V,R—+RR, fj V,R—>R for 1<j<m. Suppose F,f:f for- 1<j<m to be

convex, having first partial derivate. Then for xeV, R
F(x) = Min! with the restrictions x>0 and fj(x) <0, 1<j<m (10.4)

- is ‘a convex -programmi_ng problem. We define the Lagrange function c,b(x;u): Y pm B,

xeV,R, ueV, R by (cf. [9])

$(hu)s F(x) + W o fG2) With £1= (f],nf ). (10.5) -

If q'sx'.résp. "y ;ienotES the gradient of ¢ with respect to x resp. u:
_ (9% a¢)-, _(aqs aqz»), .
. (PI = (‘é‘; _,."-’ a-xn ] q’)y - .aul ERAE) 611" ’ . (10-6)

then the following is true (Kuhn-Tucker, cf. [9]):

If there. exists a feasible point XV, R with f(X)<0,
_ then Xe V,R with on is an optimal_ solation of (10.4) ‘ {10.7)

if and only if there is a ue V, R with u>0 satisfying

T 9, (Za)20 Xeg (Bu)=0
o ' (10.8)
,(Xu)<0 w'eg, (1) =0. _
Sincerx,u,>0.condition (10.8) is equivalent to
$x(%.u)20, - ¢,(%u)<0
for every 1<j<n Qj or =(¢x(5},u))j equals zero : (10.9)

for every 1<j<m u; or (q&u(.Q,u))j equals zero.

.~

Suppose the convex programming problem (10.4) is to be solved on a computer

including automatic verification of correctness of the result. Assume there are functions @ :

V,R>1lV,S, &+ VRIS, : V,.wR—1V,S and ;' Vo mB—>IV,S satisfying

6
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7x€ V,R> f(x)e @ (x)' and F(x).e @ (x)

{x,u)eV +mIR=>q5x(x u)e (x;u) and qbu(x u)e ‘ (x,u).

Let xeV, S with x>0 and sup( <f> (x})<0 be given and let floating-point approximations

. (10.10)

Xe V.S and ue VS for a solution of (10.8) be given. Let I resp. J be the set of in'dicés i resp.
J for which-;_,- resp. ;j is approximately zero. Consider the following system of non-linear

equations.

¢ (x.t)ex;=0 for 1<ic<n and i¢l -

. (10.11)
A v ila =0 far 1{ i< m and id T .
ATt A e S
These are n + m — |I}—|J| equafions in the same number of unknowns when

omitting x; for iel, u ; for jeJ inthg coplﬁutation_of qui(x,u); ¢uj(x,u). "To this non-linear
system algorithm 7.1 is 'al:)piiéable. | -

'Theofem 10.2: Solve the non-linear syst'em (10.11) using Aigori;hm 7.1 and let X, 1<i<n,
i 21 and U 1<5<m, J,{J be the computed inclusions for the solutlons Define X = 0 for iel

and Uj:= 0 for jeJ and let X:= (Xl,...,Xn)eIIV"S and U:= (Ul, U ellv, S, It then

inf(X,)>0 and inf(U;) 20 for 1<i<n, 1<j<m and

inf{ (X,1)1>0 and sup{ (X,0)1<0,

'..thhen the convex f)rogrzl{rr_lmin'g' problem (10.4) has an optimal solution ReX.
Next we discuss quadratic programming problems. Again we use the same notatibn as
in {9]. To éol\}c a cjuadratic programmin_g problem with;utomatic ve_rificat-io'r'l'of correctness
of tﬁe resulL theorem 10.2 coﬁld be used. However, taking ._advantage'of the special structure

-

of the problem finally leads to a sysfem of linear equations as will be shown now.

Let AeMm’n]R; x,peV, R, beV,."IR and let CeM . R be a symmietric, positive definite

matrix. Then a quadratic programming problem is given by (cf'.. [91:

01 V,R—>R with Q(x):= p'x + x'Cx = Min! with Ax<b, x20. (10.12)
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A spe.cialization of the Ku_hn;-Tucker Theorem yields (cf. [9]):
A vector Xe V, R with QzO is an optimal solution to (10.12) if and only if there exist

ueV, R, ve V,R, and ye¥V, R such that

-A.Q-i_-y=b,'v-—2Cx—.A'u=p
| | S (10.13)

a0 u20,v20,y20

and |

(-2

v+ pl=0. (10.14)

The éssumptipﬁ of the gxiétenc’e of a.ln XeV, R with £(x)<0, as in the convex case, can '
be o:mittec_!rbecaus'e the res-trictidn.s_- ar_e- affine-lin.eér. Céﬁditio'n (10..14)‘ means because of .
i,.y;y,u 20 :that fof ISiSn '-resl.). iﬁjSm either X; =0 or v; = 0 resp. eithér y;= 0 or up= 0.'.
Thus.we can proceed in the foll(_)wing"way. |

Consider the system of non-linear equations

Ax +y =‘b, v=2Cx — A'u = pxyv; =10 for 15i5n,yjuj =0 for 1<j<m (10.15)

in 2n + 2m unknowns (x,v,y,u}). Let '(;,?,;,;) be an ap'proximate solution of (1_0.'15)'. It '_

follows from (10.15) that for every 1<i<n either x; or v; equals zero and for every 1<j<m

either y; or u; equals zero. Delete in {10.15) e{re:y.variable xV;py i for which ;i’;i’;j’;j is
approximately zero. Then n 4+ m equations

Ax* + y* = band v* —2Cx* — A'u* = p . . (10.16)

G o : L . | .

remain, where in x*,v¥* y* u* have on the whole n + m fewer components than x,v,y,uz. The

system (10.16) is linear.

Theorem 10.3: "Let AeMm,nS, peV,s, be.VmS and let CeMn_n be a symmetric, positive
definite matrix. Define @: V,R—»>R by
xeV,R: Q(x):= p'x + x‘_'Cx'.

If the linear system (10.16) has been solved using algorithm 2.1 with -includiﬁg intervals
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X*,V*eI—IVnS and Y*,U*eWmS of the solution, then the following is true:
If inf(X*)>0, inf(V’;)f-O inf(¥Y*)>0 and’ inf ({/*)>0, then the. quadral;ic
| programmmg problem (10 12) has an optlmal solution er R. The non Zero
components of & are mcluded in X*, the others are zero respective to the.

: procedure generatmg ( 10.16') descrlbed above.

3

) the presented theorems 10 1, 10 2 and 10 3 lead to algorlthms for automatic verlfrcatron of the

optlmahty of an approxunate solution to a lmear convex and quadratic programmmg problem -

"~ asin chapters 2 and 7. The presented theorems and the correspondmg algonthms can easily
be extended to uncerfain data. They are similarly applicable to dual optlmnzatlon problems L
Computational results of the correspondmg alg_onthrns are for instance those presen_ted_

o

in chépters 2 end 7 of this article for linear and non-linear problems.
11. ARITHMETIC’.E‘XPRESS!ONS

Single _precision.floating—pdint computstions may yield an arbitrarily false result due to
cance_llation and rounding errors.. This is' true even for very simple, structured fexpressi_ons
such as Horner’s scheme for polynomial evaluation. A sirn_pie procedttre will be pr'esented for
fast calculatio.n of the v_alue '_of an arithmetic expression to least significant bit éccuracy in
single~precision com'putation. _ For this purpose in addition to the usual floating-pt;int arithme— '7
‘tic, only a precise scalar product is required.l If the aporonimation cornputed_ by usual
floatmg point ar:thmetrc is good enough, the computmg time for the new algonthm is approxn—
mately the same as for usual floatmg—pomt computation. - If not, the essentlal advantage of the
algorithm presented here is that the maccuracy of the approxrmatlo_n is _recogmzed and
correc_téd. An inclusion. w-_ith ieast significant bit accnracy for the véllne of the 'arithnretie
expression is computed with automatic verification of correctness. Foilowing'we gi\re a brief
description o’f the proce'dure. For more details cf. .[S], [33]. .

Let § be tne fioating-point screen of the compute.r in use. Then eiements of S .are
named constants. Arithmetic expresswns consist- of constants and X —,-,/ {,). An. anthme-

tic expressxon can be transformed to the quotlent of two arlthmetrc expressions where in the
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numerator and denominator quotients may occur but only with constants in the denominator.
Further an expression can be altered in such a way that in every product at most one factor is

an expression itself, the others are constants. Example:

9 2 2oy 2, :
az—b}-f- 4a . (a—-bb-(a b)q+4a /b- o (11.1)
) b{b—a) b-a : '

This process can be p@r'formed' auntomatically (bf. [8D). Therefore we consider arithmetic

expressions which can be obitiained by applying the folldwing rules:

i .
1) A constant is an expression.

. s N . 4_- e - . : .
he sumand difference of two cxpressions-is an expression.

23

-

3) The product of an expression and a constant is an expression.

4). An expression divided by a constant is an expression.

Such expressions are calied simple (arithmetic) expressions.

When evaluating a simple expression, each rule 1...4 corresponds to the evaluation of an
intermediate result. Let a,b,c be constants and x,y be values of ‘subterms. Then a new

intermediate result z is obtained in one of the following ways:

1) z=a
2) z=x+y i
13) Z=Xxea

4) z=x/a or ga.z=x.

Thus a simple arithmetic expression can be regarded as a system of linear

equations. The variables are the intermediate results. Applying only rules 1'),. 2}, 3)

and 4) may result in.m'any variables. The number of variables can be reduced.
Example for (11.1):

Xy=a x4=x3-b' v
Xy=X *a’ bexg =x, '(11.2)

x3.—_.'-x2—b x6=—a-x3+x4+4x5 :
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) . .on B
For calculating the value of a polynomial p(¢) = Z a;-£" 7' we obtain the linear system
. _ i=0

Xog = ays X 1 = Eox; + a; for 0<ig<n — 1.

Obviously the linear system corresponding to a simple arithmetic expression is lower
triaﬁgula’r; '."I_'his it can be solved by forward substitution and, which is important, this procéss

3

can be_ iterated. Moreover not only approximations are achieved but also an inclusion of the
value of the arithmetic expression with automatic verification of correctness.
_'The following remarks hold for arbitrary lower triangular linear systems and especially

for Iinéar systéms -corr_esppn_ding to simple arithmetic expressions.
Let LeM_'S, beVS with L,.j = 0 for i<}, 1<i, j<n and consider
Lx = b with L;#0, 1gi<n. | 13
- Then (1 1.3)"'(:&11_ be solved using Bohlender’s algorithm (cf. [3]) by
Xi€Xy, 1<kgn, _' o (11.4)
This process can be iterated using the residue iteration. The corresponding algorithm is
given in [33). Let Xk, k>1 denote the computed inclusion vector (Xk <llVs) for % after the
k~" iteration step. Then in [33] the following is proved.
-_ Lemﬁ‘zé 11.1: Let & be the unit of relative rounding error. If then no over- or underflow
occurred during computation then for some normn I«4
14Oy | geone 1K) with 5 = 5n° + 0Ce).
The constant 7 is given explicitly in [33]. Lemma 11.1 covers all rounding errors due to
 arithmetic o;ierati-ou§ in the roatin'g—poi_nt screen. If 7 is the length of the mantissa of the
computer in use then, by the”pre.ceding lemma, the diameter of the inclusion improves in every
iteration step bj{ ‘é factor of at least snz-B"’"‘"‘, where B is the base of the floating-poiht

scieen in use. -
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There are dzrect extensions to arithmetic expressions- con31stmg of complex numbers.
The result is a complex interval with least mgmflcant bit accuracy The anthmetlc may be

~ rectangular, c:rcular, segment or any other.

In the foliowmg we give some computatlonal results. For more examples see [5} [33]

1) y¥4x" + )% —4x%)=8x5  for x = 470832, » =665857

2) Fat-te (3’ for x;=7.951,7 +i =3, i=1(1)5.
FESS == .

!

Remark: Expressions like this occur in least square approximation.

3) f(x) = ((543339720x—-768398401)x — 1086679440)x + 1536796802
a) x=1.4142
L b) x=1.41421356238

¢) x=1.414213561

8 (G = h) = 2f(x) + f(x + B)/h” with f(x) = — 2;"34"— 2761 gorx - 1.
- : ‘4556x" —9247x + 4692 .
This is an appr_oximation for f(1).
5) 2 (-1

=0

This is an approximation to ¢~20,

T
-

‘The followmg table shows computatlonal results computed on a minicomputer based on

280 with fioatmg -point screen (10,12, — 99 99) In the columns of the table are displayed

from left to right:

s The number of the example
s The floating-point approximation x

e The correct value £ of the expression rounded to 12 decimal digits
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e The number k of iterations

e  The final result X o.f the new algorithm.

Siegiried M. Rump

k X

x x
T 450,423 +1.0 2 +10
2) 1000000  +10.0 | 1 +10. 0
\ 3a) +0.2800 40.2826'}391.93._60 1 +0.282673919360
36 . +0.01 '+7.32719247.11_710—t4 . 2 '+_7.3271924711m_:4'
3c) —0.01 +.2_.8_974‘613435_91(-,_-9' BRI +2.8974613436§m—9
Example 4) resp S) are apprommatlons to f' (1) resp., 8420_ -it 'eeemé not. to be

meanmgful o gwe the exact value of an approx1matmn Therefore m the followmg table we

display only the leadmg digits of % and X to demonstrate their d1screpancy I—Iowever all

' mclusmns X were computed with least s1gmfxcant blt accuracy ‘The exact value of f" (1) in

_ example 4) is 54 Notlce that the fmal summand in Example 5) is 2090/ 90! 1 :
Example. x ‘ X
4y h=10"" s645 5645
h=107" 3788500 378500
h=10"3 1184 1185
h=10"" 125.0° - - 65.21
h=10"> 4900 sa11
h=10"" 330000 54.001
h=10"" —10000000 *  54.00001
~12 0 540000000002, 53.-999999999'9_

5)

1.188,'0;_4

206115362243 14—9 o
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) The initial floating-point approximation is ghe result when evaluéti‘ng the expression
usiﬁg usual floating-point arithmetic. Either, the final result with automatic verification of
correctness is a point interval or else (in examples 3b, 3¢) identical digits of tﬁe left and right
bouha are disp;ayed only once.

. If the initial approximation is "good enough", one iteration is executed to achieve least

significant bit accuracy. In this case the total compiiting time is of the same order as usual

floating-point evaluation.
. : [’
The algorithm for computing the value of an arithmetic expr_éssion to least significant bit

accuracy gives a significant improvement of the algorithm for non-linear systems presented in

chapter 7 (applicable to those functions not éonsisting of transcendental funcﬁons) and of the

- algorithms for including real or eompI,e)'( zeros of a polynomial preSented in chapter 9. It is

obvious that if (in the latter case) the value of a polynomial is not correct computable, then

arbitrarily false résu‘lts may be computed. Consider the following example:

P(x) = 67872320568x°~95985956257x°—~ 135744641136x + - .

+191971912515.

Newton’s pro;:edure was appiied to P with starting point x = 2, where P(x) and P'(x)
were evaluated using Horner’s scheme and usual floating-point arithmetic. The fldating~point .
screeh in use is (10,12, —~ 99,99) in which the coefficients of P and P’ are storable without-
rounding error. -The., arithmetic in use satisfies (R), (R1), (R2), (R4) and (R6) given in
chapter 1: | |

In the following table in the left column (cf. [37]) the



16
_ X i+l y
173024785661 2.698 ,-01
1.57979152125 - 1.505 401
149923019011 - 8.056,4-02
:1'.45_'73331'70_58 4.190,4-02
o 143593403289 2.140,4-02
| 142511502231 - 1.082,9-02
1.41967473598 5.440,-03
1.41694677731 2.728,4-03
141558082832 1.366 -0
141489735833 6.835,9-0¢
141455549913 13.419;9-04 -
141438453509 1.710,4-04
1.41429903606 8.550,4-05
141425628589 4.275 (=05
141423488841 2.140,-05
1.41422414110 1.075,5-05
1.41421847839 5.663 19-06
141421582935~ 2.649,~06
'1.414_2'1353154' 2.298 ,,-06
141421353154 0
141421353154 0
1.41421353154 . 0
1.41421353154 0
0

141421353154

Siegfried M. Rump

iterates x* are displayed .and in the right column the difference x**! — x* of two successive

iterates. The iteration is monotone, the difference of two successive iterates decreases and
% = 1.41421353154
is a fixed point. Computati_dn in R would imply P(¥) =0. However, Wi_th Ithé new,algérithm '

to compute the value of an arithmetic expression to least significant bit accuracy we obtain

P(%)€1.0001825038%,
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and in fact the smallest value for P(x) for x>0 is approximately 1.

CONCLUSIONS

In the preceding chapters the theoretical .background and correspontl__ing -elgoﬁthms.hév_e-

been given for sev-e-l'él problems in numerical analy.sis. The algonthms for solvmg hnear

systems {dense, band, overdetermmed underdetermmed and sparse), inversion of matrxces and

evaluation of arithmetic expressnons compute an inclusion of -the _'sOlution with aut_oma_tic;

/

verification of correctness, existence and ﬁniqueness; all this in a sel‘f—contained -manner. The -

other algonthms for non- hnear systems algebraic elgenvalue problems Zeros of real and

complex polynomxals and hnear quadratlc and convex programmmg problems prov1de an‘

approxxmatlon of the solutlon for use in computmg an mclus:on of the solutlon w1th automanc o

117

veraflcatton of correctness existence and umqueness ThlS approxnnatlon can be obtamed by_ '

any floating-point algorithm. Thefefo‘_re the 'latter procedures estimate 'the- e-rror ‘of an

approxirnate soln‘tionl. In other Words they venfy the correctness of an error margm (m
addition to verification of exxs.tence and uniqueness}. These venﬁcatlon algonthms could
replace additional tests such as altermg input data, recomputmg in hlghet-preci_slon etc. These
tests would have to be develooed and rutiliz’ed fot eaelt i-ndividual“ orobl'em 'by.tlne nrogtemmer.

The new algorithms perform the verification automatically without a'ny-effort on.the part of

the user, w1thout any knowledge about the condmon of the problem and, most 1mportantly, :

without either a deep mathematlcal background or an extens1ve mvest1gat10n Tlus of course,

is also true for the algorithms which compute an mclusmn of the solution dlrectly w:thout

W

initial approx:matlon'. The -automatlc error control is a key ‘property of all the _algorithms

presented here. -

~
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The efficiency -of the .aigorithr_ns has been deﬁonst;-ated by inverting the Hilbeft 21 x21.
maltrix on _a' 14 hexadecimal _digit'computer. This is _(after multiplying with a proper factor) -
the Hilbert matrix of largest dimension which can be stored without rounding errors in this
floating—point sys'tem. The error bounds f_o; all components of thre:invers'é of the Hilbert

21x21 ;na’trix are as small as possible, Le., left and right bounds differ only by one' in the last

place of the mantissa of each component. We call this least si_gnificant"bit accuracy (lIsba).
Our experience shows that the results of the algorithms using our new methods very often

have the 1sba-property for every component of the solu_tidn.
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