
INTERVAL COMPUTATIONS WITH INTLAB ∗

SIEGFRIED M. RUMP, HAMBURG

Abstract. Version 5 and following of the widely used interactive programming environment Matlab supports an operator

concept. This offers the possibility of easy and user-friendly access to interval operations, automatic differentiation and much

more. For the toolbox INTLAB, entirely written in Matlab, new concepts have been developed for very fast execution of interval

operations to be used together with the operator concept in Matlab. The new implementation of interval arithmetic is strongly

based on the use of BLAS routines. Some of the new concepts are presented as well as reasoning for the very good performance.

1. Introduction. At a first glance it seems to be impossible to realize an operator concept in Matlab.
This is because one of the main principles in Matlab is that no type declarations of variables are necessary
but, by the interpretation principle, variables are automatically declared when used. Also, there is no
distinction between scalars, vectors and matrices, whether they are real or complex. A variable may even
frequently change its type, like in the following (artificially) constructed example:

for n=1:10

if odd(n)

A = sqrt(-n)

else

A = rand(n)

end

end

The variable A changes its type from complex scalar to a real matrix (of different dimension) during execution
of the for-loop.

The identification of new data types in Matlab works as follows. To define a new type, say TYPE, together
with operators working on it, a subdirectory with name @TYPE is to be defined. This subdirectory has to
be adjacent to the search path, i.e. the parent directory of @TYPE is in the search path of Matlab, whereas
the subdirectory @TYPE itself is not in the search path.

Within the subdirectory @TYPE there has to be a routine named TYPE. This is the constructor for the
new data type. The core of that routine, eig. for TYPE being intval, could look as follows:

function A = intval(a)

A.inf = a;

A.sup = a;

A = class(A,’intval’)

and many more. The main statement is the last ”class-constructor”, which tells the Matlab system that
the output is a variable of type ”intval”. From now on things are standard. Every operation involving a
variable of the new data type calls the corresponding function in the subdirectory @TYPE, in our example
intval, with fixed naming conventions. For example, names of operators are

+ plus

.* times

* mtimes

^ mpower

[...] horzcat

∗PUBLISHED IN BRAZILIAN ELECTRONIC JOURNAL ON MATHEMATICS OF COMPUTATION (BEJMC), 1, 1999

1

and many more. The operator concepts also includes a user-defined display routine. For example, the
statement

A = intval(3.5);

5+A

calls the intval constructor in the first line: The variable A is now of type intval. The second statement
calls the function plus for arguments 5 and A, and subsequently the intval display routine is called because
the result of 5 + A is of type intval.

Summarizing this is a really nice and easy way to define and to use new operators in Matlab. For further
information see [6].

2. Performance issues. The nice working in Matlab is, there may be a severe penalty when using low-
level operators. Matlab is a Matrix Laboratory, and extensive use of scalar operators causes much computing
time due to interpretation overhead. Consider the following four ways of writing a matrix multiplication in
Matlab, timing for multiplication of two randomly generated 200× 200 matrices included.

n = 200; A = rand(n); B = rand(n);

C = zeros(n);

tic

for i=1:n

for j=1:n

for k=1:n

C(i,j) = C(i,j) + A(i,k)*B(k,j);

end

end

end

toc

C = zeros(n);

tic

for i=1:n

for j=1:n

C(i,j) = C(i,j) + A(i,:)*B(:,j);

end

end

toc

C = zeros(n);

tic

for i=1:n

C(i,:) = C(i,:) + A(i,:)*B;

end

toc

C = zeros(n);

tic

C = A*B;

toc

The following table for a 300 MHz Pentium I Laptop shows the interpretation overhead.

2

3 loops 2 loops 1 loop no loop

time [sec] 104.2 2.7 0.14 0.046

Table 2.1. Interpretation overhead

The table clearly shows that minimization of interpretation overhead is mandatory if the system shall not
be restricted to toy problems. Consider interval matrix multiplication as our model problem.

The problem is, however, that current implementations of interval matrix operations use a top-down 3-loop
approach, similar to the first one presented before. According to the above table this is much too slow in an
interpretative system. However, even when using programming languages with highly optimized compilers
such as Fortran or C, this top-down approach is very expensive in terms of computing time: The most inner
loop is an interval operation, thus contataining if-statements and case-distinctions. Such code can barly be
optimized by a compiler.

The effect of lack of optimization, of different sequence of the loops and more subtle methods like unrolled
loops shall be demonstrated in the following. We restrict ourselve to pure floating point computations, no
additional slow-down by interval computations present.

The first experiment is a scalar product c = xT y for x, y ∈ IRn for dimension n = 1000. The traditional loop
is compared to an unrolled loop with five terms:

for (i=0, c=0; i<n; i++)

c += x[i]*y[i] + x[i+1]*y[i+1] + x[i+2]*y[i+2] + \

x[i+3]*y[i+3] + x[i+4]*y[i+4];

The achieved performance rates in Mflops for the standard loop and the unrolled loop, both without and
with compiler optimization on a RS 6000 workstation are as follows.

Performance [Mflop] standard loop unrolled loop

w/o optimization 4.3 6.9
with optimization 12.7 19.9

We see quite some increase in performance by the unrolled loops and, as we expect, by the optimization
of the compiler. Both is not possible for the standard implementation of interval matrix multiplication; in
other words, performance is basically limited to the smallest number in the above table.

Another standard method for improving performance is the sequence of loops in matrix multiplication.
Any of the six possibilities ijk, ikj, ..., kji computes the correct matrix product, however, with quite different
performance. The following table shows performance for the six possibilities, both without and with compiler
optimization.

Performance [Mflop] jki kji ikj kij ijk jik

w/o optimization 2.1 2.1 2.9 2.9 2.9 2.9
with optimization 5.8 5.4 27 25 62 62
BLAS 3 100

The big differences in performance are mainly due to memory access and cache optimization. The last line,
with another improvement of a factor 1.5 compared to the best possible achieved so far, gives the Basic
Linear Algebra Subroutines (BLAS) performance. This library is available for almost every computer today.
The ingenious idea of BLAS was that only the function headers are specified, whereas the implementation
for each individual computer is performed by the manufacturer.

The numbers presented show that we must be very much interested in using high-level routines and, whereever
possible, in using BLAS.

3

3. Interval arithmetic. The product of two point matrices is easy to implement using BLAS. Suppose
there is a routine setround(m) with the property that after the call setround(-1) the rounding mode is
permanently switched downwards, i.e. every following operation is performed with rounding downwards
according to the IEEE 754 standard [4] until the next call of setround. Accordingly, setround(m) shall
switch the rounding to upwards for m=1, and to nearest for m=0.

Then the product of two point matrices A ∈ Mn,k(IF), B ∈ Mk,m(IF), IF denoting the set of double precision
floating point numbers, can be realized as follows.

setround(-1)

C.inf = A*B;

setround(1)

C.sup = A*B;

setround(0)

It follows

C.inf <= A*B <= C.sup

for comparison in a componentwise sense. Note that the proof is a successive use of the fact that, in case
rounding is switched downwards, the sum and the product of two floating point numbers yields a floating
point result definitely being less than or equal to the correct (real) result, whereas the floating point result
is definitely greater than or equal to the exact result for rounding switched to upwards.

Note that this approach does not necessarily work for other composed operations. For example, it is not
correct for triple matrix products. Similarly, the product of a point matrix A ∈ Mn,k(IF) and an interval
matrix B ∈ IIMk,m(IF) cannot be computed by A*B.inf and A*B.sup. In [11] a method was proposed for
fast computation of A ∗B using BLAS. The idea is the intermediate use of midpoint-radius representation.

setround(1)

Bmid = B.inf + 0.5*(B.sup-B.inf);

Brad = Bmid - B.inf;

setround(-1)

C1 = A * Bmid;

setround(1)

C2 = A * Bmid;

Cmid = C1 + 0.5*(C2-C1);

Crad = (Cmid - C1) + abs(A) * Brad;

setround(-1)

C.inf = Cmid - Crad;

setround(1)

C.sup = Cmid + Crad;

Algorithm 3.1. Point matrix times interval matrix

The first three lines calculate a matrix pair <Bmid,Brad> with the property

∀B ∈ B : Bmid− Brad ≤ B ≤ Bmid + Brad

for the comparision in the componentwise sense. The next statements first compute an inclusion [C1,C2] of
A*Bmid, and then take care of the radius Brad. The number of operations adds to 3n3 additions and 3n3

multiplications. This is 1.5 times more operations than necessary by the traditional implementation because
the product of a floating point number and an interval can be performed with two multiplications (and a
case distinction), and the interval addition requires two additions anyway. However, the following timings
will demonstrate the vast improvement in performance of the new approach.

4

The only attempt to improve on the traditional implementation of interval matrix operations was the BIAS
approach [5]. The following table gives the performance in ”Miops” for multiplication of an nxn point times
an nxn interval matrix for the traditional approach, for the BIAS approach and the above Algorithm 3.1.
Timing is on a Convex SPP 200. Here the the matrix multiplication is counted as 2n3 interval operations,
and a Miop are 1 Million interval operations.

Performance [Miops] n=100 n=200 n=500 n=1000

traditional 6.4 6.4 3.5 3.5
BIAS 51 49 19 19
Algorithm 3.1 95 219 142 162

Table 3.2. Performance for point matrix times interval matrix

Obviously there is an immense improvement of performance by the new approach using BLAS routines. The
decrease of performance of the BIAS library is due to cache misses. It could be improved by implementation
of blocked algorithms. Note that the new Algorithm 3.1 uses BLAS, and therefore it uses blocked algorithms
without effort on the part of the user. The varying performance of the new Algorithm 3.1 for different
dimensions is also due to favourable and less favourable block sizes.

Another advantage of Algorithm 3.1 is that parallelization comes free of work. Just linking the parallel
BLAS does the job. The BIAS approach can be parallelized as well, however, this has to be done by the
user. The Convex SPP 200 allows us to use 4 processors, and performance data is as follows (for the
traditional approach and the BIAS approach performance does not change unless special algorithms would
be implemented).

Performance [Miops] n=100 n=200 n=500 n=1000

Algorithm 3.1 142 551 397 526

Table 3.3. Parallel performance for point matrix times interval matrix

The gain in performance is not too from the magic factor 4. Note that this was achieved by merely linking
the parallel BLAS library.

For the product of two interval matrices we also use an intermediate midpoint-radius representation. The
performance number are even more impressing than before. However, there is a drawback to this, namely,
that midpoint-radius product causes an overestimation of the true result whereas the infimum-supremum
representation yields the sharp inclusion of the product of two interval matrices.

This would be a showstopper if overestimation would be arbitrarily severe. However, it can be shown that
overestimation is globally bounded by a constant [11], and it is small if the input intervals are small. More
precisely, define the relative precision prec(A) of an interval A by

prec(A) := min
(

rad(A)
mid(A)

, 1
)

.

Let interval matrices A and B be given such that prec(Aij) ≤ e and prec(Bij) ≤ f for all i, j. Let C denote
the result obtained by midpoint-radius arithmetic, and A ∗ B denote the true (and therefore narrowest)
interval matrix product. Then the overestimation by midpoint-radius arithmetic satisfies

rad(C)ij

rad(A ∗B)ij
≤ 1 +

e · f
e + f

≤ 1.5.

for all indices i, j. For example, input intervals with relative precision 1% suffer an overstimation of not
more than 0.5% in radius.

If this small overestimation is critical, the traditional interval matrix multiplication or some variant [11]
must be used. Otherwise the following performance data apply. Again, matrix multiplication is counted as
2n3 interval operations.

5

Performance [Miops] n=100 n=200 n=500 n=1000

traditional 4.7 4.6 2.8 2.8
BIAS 4.6 4.5 2.9 2.8
Algorithm 3.1 9.1 94 76 99
Algorithm 3.1 parallel 9.5 145 269 334

Table 3.4. Performance for interval matrix times interval matrix

Implementation of complex vector and matrix operations is easily done by computing real and imaginary
part. The implementation in Matlab is straightforward because all vector and matrix operations are already
available. Thus the new approach also solves the problem of interpretation overhead.

Moreover, the above approach also applies to sparse matrices. As sparse matrices are already an intrinsic
data type in Matlab, an implementation comes without any additional work.

A first simple application example is the check of nonsingularity of a given interval matrix A ∈ IIMn(IF).
A well-known sufficient criterion for A ∈ IIMn(IF) being nonsingular is that for some matrix R and some
interval vector X

(I −RA) ·X ⊆ int(X),

is satisfied. A simple implementation of this criterion is

R = inv(A.mid);

C = eye(n) - R*A;

X = infsup(-1,1)*ones(n,1);

Y = C*X;

res = all((X.inf<Y.inf) & (Y.sup<X.sup));

If res=1 after execution, every real matrix enclosed in the interval matrix A is proved to be nonsingular.
The above is only an example for ease of use.

4. Nonlinear problems. For application of verification methods to nonlinear problems especially
the inclusion of derivatives of functions over a range is needed as well as interval elementary functions.
Gradients can be computed using an operator concept and automatic differentiation [8]. The implementation
is simplified by the vector and matrix operations in Matlab.

Automatic differentiation is one way to obtain an expansion of a certain function. Another method to obtain
such information are slopes, where the function is expanded with respect to a point or an interval. Standard
slopes are defined in [7]; an extension, which is used in Matlab, has been developed in [9] and used in [3].
Corresponding toolboxes for gradients and slopes are included in INTLAB.

When defining a function, a user friendly way would use the same source code for evaluation of the function
at some real or complex floating point number, for the evaluation of the range of the function, for gradient
information or for the gradient of the function over a certain range. This causes a specific problem. Consider
the sample function

f(x) = sin(πx).

A Matlab implementation is

function y = f(x)

y = sin(pi*x);

There are no problems when inserting a (real or complex) floating point number x, a gradient value or a slope
value. Problems occur when inserting an interval X. In this case the user may want to use an inclusion of the
irrational number π in the definition of the function. Otherwise a call y = f(intval(1)) may produce an
interval not containing zero because the floating point approximation pi of π is used instead. A redefinition

6

function y = f(x)

Pi = midrad(pi,1e-16);

y = sin(Pi*x);

would calculate a correct inclusion Pi for π and deliver a correct inclusion for zero when calling f(intval(1)).
However, the simple call f(1) would yield an unexpected interval answer. Obviously, the type of the result
shall depend on the type of the input argument x: For interval input the computation should be performed in
interval arithmetic with correct interval data for π, for floating point input the Matlab internal approximation
pi is sufficient and a floating point approximate result should be delivered.

The solution to the dilemma are two functions to adjust the type of a constant. Consider

function y = f(x)

Pi = typeadj(midrad(pi,1e-16) , typeof(x));

y = sin(Pi*x);

In this implementation typeof(x) returns type information about the input parameter x. Especially, this is
”intval” for interval input and ”double” for floating point input. The statement typeadj(a,type) adjusts
the type of the input a to the type type. Especially, in case type is ”double”, the midpoint of a is returned.
This allows to write one source code for various applications, from pure floating point computation to complex
interval gradients and others.

The above implementation requires rigorous standard functions. This has been indeed a major task in
previous approaches. Following we present a very simple method to implement rigorous standard functions
over real and complex intervals.

5. Standard functions. For single precision it is in principle possible to test all values of a built-in
standard function for their accuracy and to add a suitable error margin. For double precision this is not
possible.

Usually the built-in standard functions are very accurate, and it is seldom that a value is not correctly
rounded to least significant bit accuracy. In fact, we rarely found cases where the computed result is off by
more than one bit - at least for arguments in a reasonable range. However, there is no proof for the accuracy
of the results, and in order to achieve truely rigorous results a guess of accuracy is not sufficient.

The idea is to use a table approach together with some correction formulas. Take, for example, the expo-
nential. We suppose that multiple precision functions F , F are available such that for a given floating point
number x ∈ IF it is

F (x) ≤ ex ≤ F (x)

with high accuracy. Define

Rexp := {±(0, 1, . . . , 214 − 1) · 2−14} ⊆ IF

as a reference set for the exponential. For given x ∈ IF define y = exp2(x) ∈ IF to be the floating approxi-
mation computed by the given (floating point) exponential function. Then the error of such approximations
over the reference set is defined as follows.

ε := max
x∈Rexp

y=exp2(x)

{(y − F (x))/|y|},

ε := max
x∈Rexp

y=exp2(x)

{(F (x)− y)/|y|}.

A short computation yields

y − ε · |y| ≤ ex ≤ y + ε · |y|.
Now lower and upper bounds for the left hand side and right hand side, respectively, are computable for
every x ∈ Rexp by

7

ys = exp(x);

setround(-1)

y.inf = ys + (-eps)*abs(ys);

setround(1)

y.sup = ys + eps*abs(ys);

with the property

y.inf ≤ ex ≤ y.sup ∀x ∈ Rexp

where eps:= εexp. The point is that F (x), F (x) for all x ∈ IRexp and εexp have to be computed only once.
From then on the constant εexp is a system constant to be used in the further computations. For arbitrary
X ∈ IF inclusions of the exponential are computed as follows. In an initialization procedure we compute
floating point numbers Eν , Eν , Eν with

Eν + Eν ≤ eν ≤ Eν + Eν for − 744 ≤ ν ≤ 709.

For x ≤ −745 or x ≥ 710, ex is outside the double precision floating point range. For X ∈ IF, split
X := Xint + x with Xint = sign(X) · b|X|c ∈ R and −1 < x < 1. Furthermore, set

x̃ = 2−14 · b214xc
d = x− x̃.

Then x̃ has no more than 14 leading bits in its binary representation and x̃ ∈ Rexp. This implies

ex = eex · ed with
3∑

i=0

di

i!
≤ ed ≤

3∑

i=0

di

i!
+ e · d4

4!
.

By the choice of the reference set it is 0 ≤ d < 2−14 and

e · d4

4!
≤ 0.68d · d3

3!
< 1.6 · 10−18.

Putting things together yields rigorous bounds for the value of the exponential over the entire floating point
range.

Corresponding reference sets and formulas for splitting arguments have been developed for all elementary
standard functions. A careful implementation of the formulas yields standard functions of very high accuracy,
in fact always better than 3 ulp. For example, the relative error for the exponential, tested over some 50
Million test cases, looks as follows. Here crosses depict the maximum relative error of the lower and upper
bounds against each other over a certain domain, whereas the circles depict the average error.

−10
20

−10
0

−10
−20

0.5

1

1.5

2

2.5

3

3.5

10
−20

10
0

10
20

0.5

1

1.5

2

2.5

3

3.5
exp, global maximum error 2.00 [ulps]

Graph 5.1. Accuracy exponential

8

The maximum error is not more than 2 ulps, whereas the average relative error is about 1 ulp. Even for the
trigonometric functions, where problems with argument reduction may cause significant cancellation errors,
high accuracy is achieved. For example, the error plot for the sine is as follows.

−10
200

−10
0

0.5

1

1.5

2

2.5

3

3.5

−10
20

−10
0

−10
−20

0.5

1

1.5

2

2.5

3

3.5

10
−20

10
0

10
20

0.5

1

1.5

2

2.5

3

3.5

10
0

10
200

0.5

1

1.5

2

2.5

3

3.5
sin, global maximum error 2.50 [ulps]

Graph 5.2. Accuracy sine

The test set for the sine comprises of some 100 Million floating point numbers in the range from −10300 to
10300.

Guaranteed accuracy does not come free of cost, expecially when the entire implementation is performed
in Matlab itself, suffering from interpretation overhead. For the sine of a single floating point number the
verified computation takes about 700 times the computing of an approximate computation. However, the
first is correct to the last digit, whereas, especially for large arguments, the latter may be afflicted with large
errors. For example,

format long; x = 2^60; sin(x), sin(intval(x))

produces the answer

x =

1.152921504606847e+018

ans =

-0.83147474810936

intval ans =

-0.83064921763725

where only the first two digits of the floating point approximation are correct. For vector input interpretation
overhead decreases. For example, vectors of length 100 take about 200 times more computing for the verified
sine.

The computing time for trigonometric functions suffers from argument reduction. In a C- or Fortran imle-
mentation the factor would be much smaller. Other functions behave much better. In the following table
we list timings for exp and atan on a 300 MHz Pentium I Laptop for input vector x with n components.

time n=1 n=100
[msec] approx./verified/factor approx./verified/factor
exp 0.03 / 3.9 / 152 0.22 / 7.7 / 35
atan 0.02 / 3.5 / 164 0.10 / 6.4 / 58

From the times it can also be seen that computing time for verified computation only doubles when going
from one double number to a vector with 100 components. This is mainly due to interpretation overhead.

9

For the other standard functions similar considerations are possible. The formulas must be developed
carefully in order to maintain the anticipated accuracy of 3 ulp. This has been performed for exp, log, log10,
the trigonometric functions and their inverse functions, and for the hyperbolic functions and their inverses.
All are included in the new version INTLAB.

For complex interval functions we use the results obtained by Börsken [2]. Denote for given a ∈ C, 0 ≤ r ∈ IR

A =< a, r >:= {z ∈ C : |z − a| ≤ r}.

Then Börsken defines the midpoint of f(A) to be f(a) and shows

exp(< a, r >) ⊆ < exp(a), | exp(a)| · (exp(r)− 1) >

log(< a, r >) ⊆ < log(a),− log(1− r/|a|) >

sqrt(< a, r >) ⊆ < sqrt(a), |
√
|a| − r −

√
|a|| > .

These bounds are sharp for certain arguments. However, in other cases there may be quite some overesti-
mation due to the choice of the midpoint. However, other formulas defining a different and more optimized
midpoint with respect to, for example, the area of the inclusion may become quite involved. To our knowledge
nothing is known in this direction, a research opportunity.

Having those three standard function all other mentioned standard functions can be expressed by those using
standard formulas. Doing this another problem occurs. Complex standard functions are usually defined by
some main value. This causes discontinuities. For example,

√−4 = +2i, but
√−4 + εi for small ε < 0 yields

a value near −2i. This causes problems when an interval approaches the negative real axis and if f(X) for
a complex interval X is defined to enclose the result of the usual power set operation

f(X) := {f(x) : x ∈ X}.

We choose for the moment to use the above formulas. This implies that for a given function f the following
weaker statement is true:

Y = f(x) ⇒ ∀x ∈ X∃y ∈ Y : f−1(y) = x.

There is also space for future development and research.

6. Long arithmetic. Finally, the above approach for the definition of standard functions requires some
multiple precision arithmetic with error bounds. There are a number of such packages available, for example
[1] only to mention one. However, we choose to write a package in Matlab in order to maintain best possible
portability.

The data type long has the structure

C.sign in {-1,1}

C.mantissa in 0 .. beta-1

C.exponent representable integer (-2^52+1 .. 2^52-1)

C.error nonnegative double, stored by C.error.mant and C.error.exp

representing the long number

C.sign ·
n∑

ν=1

C.mantissaν · βC.exponent−ν ,

where C.mantissa is an array of length n corresponding to the precision in use. The field C.error is optional;
if specified it represents the number

C.error.mant · βC.error.exp,

10

where both C.error.mant and C.error.exp are nonnegative double numbers. It is interpreted as the radius
of an interval with the above midpoint. Therefore the radius is stored in only two double numbers, whereas
the midpoint is stored in an array of double numbers. The basis β is a system constant. It is a power of 2;
usually 225 is used.

The definition of multiple precision arithmetic is standard. For the current implementation we have two
additional difficulties. First, it is no integer arithmetic but a long floating point arithmetic (to base beta).
This makes addition and subtraction more involved. Secondly, all long routines are written to support vector
input in a vectorized computation. Treating vectors one component after the other causes a significant
interpretation overhead. For example, given two long vectors X and Y of length 100 and precision of 500
decimal places, calculation of the 100 products X(i) ∗ Y (i) by

for i=1:100, Z(i) = X(i)*Y(i); end

takes 25.9 sec, whereas the vectorized multiplication

Z = X.*Y;

takes only 0.6 sec on a 300 MHz Pentium I Laptop. Otherwise, the vectorized operations in Matlab can be
used. For example, the multiplication of multiple precision numbers is a convolution and already built into
Matlab.

7. An example of INTLAB code. Finally we give an example of INTLAB code to demonstrate
its ease of use and readability. We print the full code to compute inclusions of multiple eigenvalues and
corresponding invariant subspaces for a given (real or complex, not necessarily symmetric or Hermitian)
matrix. We also give the full code how to call the algorithm. So the following is executable code in INTLAB
under Matlab.

function [L,X] = VerifyEig(A,lambda,xs)

%VERIFYEIG Verification of eigencluster near (lamda,xs)

%

% [L,X] = VerifyEig(A,lambda,xs)

%

%For an eigenvalue cluster near lambda, where xs(:,i), i=1:k is an

% approximation to the corresponding invariant subspace

%

%On output, L contains (at least) k eigenvalues of A, and X

% includes a base for the corresonding invariant subspace

%By principle, L is a complex interval

%

% written 07/15/99 S.M. Rump

%

[n k] = size(xs);

[N,I] = sort(sum(abs(xs),2));

u = I(1:n-k);

v = I(n-k+1:n);

midA = mid(A);

% one floating point iteration

R = midA - lambda*speye(n);

11

R(:,v) = -xs;

y = R\(midA*xs-lambda*xs);

xs(u,:) = xs(u,:) - y(u,:);

lambda = lambda - sum(diag(y(v,:)))/k;

R = midA - lambda*speye(n);

R(:,v) = -xs;

R = inv(R);

C = A - intval(lambda)*speye(n);

Z = - R * (C * xs);

C(:,v) = -xs;

C = speye(n) - R * C;

Y = Z;

Eps = 0.1*abs(Y)*hull(-1,1) + midrad(0,realmin);

m = 0;

mmax = 15 * (sum(sum(abs(Z(v,:))>.1)) + 1);

ready = 0;

while (~ready) & (m<mmax) & (~any(isnan(Y(:))))

m = m+1;

X = Y + Eps;

XX = X;

XX(v,:) = 0;

Y = Z + C*X + R*(XX*X(v,:));

ready = all(all(in0(Y,X)));

end

if ready

M = abs(Y(v,:)); % eigenvalue correction

[Evec,Eval] = eig(M);

[rho,index] = max(abs(diag(Eval)));

Perronx = abs(Evec(:,index));

setround(1);

rad = max((M*Perronx) ./ Perronx); % upper bound for Perron root

setround(0)

L = tocmplx(midrad(lambda,rad));

Y(v,:) = 0;

X = xs + Y;

else

disp(’no inclusion achieved’)

X = NaN*ones(size(xs));

L = NaN;

end

Algorithm 7.1. Rigorous inclusion of multiple eigenvalues

The algorithms follows [10] to be published in Linear Algebra and it Applications. It is based on the following.

For K ∈ {R,C} denote by A ∈ Mn(K) an n× n matrix, by X̃ ∈ Mn,k(K) an approximation to an invariant
subspace corresponding to a multiple or a cluster of eigenvalues near λ̃ ∈ K, such that AX̃ ≈ λ̃X̃.

The degree of arbitrariness is removed by freezing k rows of the approximation X̃. If the set of the remaining
rows is denoted by u, then we denote by U ∈ Mn,n−k(R) the submatrix of the identity matrix with columns

12

in u. Correspondingly, we set v := {1, . . . , n}\u and define V ∈ Mn,k(R) to comprise of the columns in v

out of the identity matrix. That means UUT + V V T = I, and V T X̃ is the normalizing part of X̃. Then the
following is true [10].

Theorem 7.2. Let A ∈ Mn(K), X̃ ∈ Mn,k(K), λ̃ ∈ K, R ∈ Mn(K) and X ∈ IMn,k(K) be given, and let U, V

partition the identity matrix as defined before. Define

f(X) := −R(AX̃ − λ̃X̃) + {I −R
(
(A− λ̃I)UUT − (X̃ + UUT ·X)V T

)} ·X.

Suppose

f(X) ⊆ int(X).

Then there exists M̂ ∈ Mk(K) with M̂ ∈ λ̃Ik + V T X such that the Jordan canonical form of M̂ is identical
to a k × k principal submatrix of the Jordan canonical form of A, and there exists Ŷ ∈ Mn,k(K) with
Ŷ ∈ X̃ + UUT X such that Ŷ spans the corresponding invariant subspace of A.

Following we give two examples how to call the algorithm. The first one generates a random matrix, calcu-
lates approximations for the eigenvalues and eigenvectors and calls the algorithm for the first approximate
eigenvalue/eigenvector pair. Note that [V,D] = eig(A) calculates a matrix V of eigenvectors and diagonal
matrix D of eigenvalues such A∗X is approximately equal to X∗D. Furthermore, rand produces random num-
bers uniformly distributed in the interval [0,1] such that the entries of A are uniformly distributed within
[-1,1].

n = 100; A = 2*rand(n)-1;

tic, [V,D] = eig(A); toc

tic, [L,X] = VerifyEig(A,D(1,1),V(:,1)); toc

format long

L

This produces the following output:

elapsed_time =

0.6100

elapsed_time =

0.9900

intval L =

-4.6875246581698_ + 3.4404126988075_i

The underscore in the output of the inclusion L of the eigenvalue indicates that the last digit of the real
and the imaginary part is uncertain. More precisely, subtracting and adding one to the last displayed figure
(before the underscore) yields a correct inclusion. Note that input/output is also rigorous by means of
specific INTLAB routines for interval I/O [12].

The second example produces a triple eigenvalue 1 together with some randomly choosen 97 eigenvalues,
and eigenvector space in [−1, 1].

X = 2*rand(100)-1; A = X * diag([1 1 1 2*rand(1,97)-1]) * inv(X);

tic, [V,D] = eig(A); toc

index = find(abs(diag(D)-1)<1e-12);

k = index(1);

tic, [L,X] = VerifyEig(A,D(k,k),V(:,index)); toc

format long

L

The result is as follows.

13

elapsed_time =

0.5000

elapsed_time =

0.9900

intval L =

1.000000000000__ - 0.000000000000__i

There are many more examples including ill-conditioned ones in the paper cited above [10]. Here our main
objective is ease of use and readability. Note especially the index notation in Algorithm 7.1.

8. Conclusion. We presented some of the main ideas of the toolbox INTLAB for Matlab. INTLAB
is available in its third release for PCs, a number of workstations and mainframes. More details can be
found in [12]. The only machine dependency is the routine setround for switching the rounding mode. This
assembly language routine is available for a number of machines. In Release 5.3 of Matlab under Windows
even this is a built-in routine of Matlab. Then the entire toolbox is plain Matlab code.

All other code, some 362 functions and some 20 kLOC, is written in Matlab and therefore as portable as it
can be. INTLAB is freely available for non-profit use from our homepage.

REFERENCES

[1] O. Aberth and M. Schaefer. C++ Module for Range Arithmetic, August 1991.

[2] N.C. Börsken. Komplexe Kreis-Standardfunktionen (Diplomarbeit). Freiburger Intervall-Ber. 78/2, Inst. f. Angewandte

Mathematik, Universität Freiburg, 1978.

[3] J.B.S. de Oliveira. Slope methods for sharper interval inclusions and their application to global optimization. Dissertation,

TU Hamburg-Harburg, 1996.

[4] ANSI/IEEE 754-1985, Standard for Binary Floating-Point Arithmetic, 1985.

[5] O. Knüppel. PROFIL / BIAS — A Fast Interval Library. Computing, 53:277–287, 1994.

[6] MATLAB User’s Guide, Version 5. The MathWorks Inc., 1997.

[7] A. Neumaier. Interval Methods for Systems of Equations. Encyclopedia of Mathematics and its Applications. Cambridge

University Press, 1990.

[8] L.B. Rall. Automatic Differentiation: Techniques and Applications. In Lecture Notes in Computer Science 120. Springer

Verlag, Berlin-Heidelberg-New York, 1981.

[9] S.M. Rump. Expansion and Estimation of the Range of Nonlinear Functions. Mathematics of Computation, 65(216):1503–

1512, 1996.

[10] S.M. Rump. Computational Error Bounds for Multiple or Nearly Multiple Eigenvalues. LAA, to appear, 1999.

[11] S.M. Rump. Fast and parallel interval arithmetic. BIT, 39(3):539–560, 1999.

[12] S.M. Rump. INTLAB - INTerval LABoratory. In Tibor Csendes, editor, Developements in Reliable Computing, pages

77–104. Kluwer Academic Publishers, 1999.

14

