Interval operations in rounding to nearest

’ submitted for publication, February 2007 ‘

Siegfried M. Rump * Paul Zimmermann |

Abstract
We give a simple and efficient method to simulate interval operations using only rounding to nearest

in IEEE 754. The quality in terms of the diameter of the result is significantly improved compared to
existing approaches.

Keywords. Floating-point arithmetic, rounding to nearest, predecessor, successor, directed rounding
AMS subject classification (2000). 68-04, 68N30

1 Introduction and notation

Throughout the paper we assume a floating point arithmetic according to the IEEE 754 arithmetic standard
[3] with rounding to nearest. Denote the set of (single or double precision) floating-point numbers by F,
including —oo and +o0, and let fl : R — F denote rounding to nearest according to IEEE 754. This includes
especially the rounding “tie to even”. Define for single and double precision u, the relative rounding error
unit, and 7, the smallest positive unnormalized floating point number:

single precision double precision

a 5—27 553
n 2—149 2—1074
Then u and 7 satisfy:
Voe{+,—,x,+}Va,beF\{£oo}: fllacd)=(aob)(1+A)+pu (1)

with |A| < u and |p| < n/2 and at least one of A, p is zero, provided fl(a o b) is finite. Note that for addition
and subtraction p is always zero. An important property of the rounding is the monotonicity, that is

Vez,ye R @ 2z <y = fi(z) <fl(y). (2)
The floating-point predecessor and successor of a real number x € R are defined by
pred(z) :=max{f € F: f <z} and succ(z):=min{f eF: z< [},

respectively, where, according to IEEE 754, +o00 are considered to be floating-point numbers. For example,
succ(l) = 1+ 2u. Using (1) it is not difficult to see that for finite ¢ >0 € F

min(c(1 — 2u),c —n) < pred(c¢) and succ(c) < max(c(l + 2u),c+n), (3)

*Institute for Reliable Computing, Hamburg University of Technology, Schwarzenbergstrale 95, 21071 Hamburg, Germany,
and Visiting Professor at Waseda University, Faculty of Science and Engineering, 3—4—1 Okubo, Shinjuku-ku, Tokyo 169-8555,
Japan (rump@tu-harburg.de).

fPaul Zimmermann, Batiment A, INRIA Lorraine, Technopéle de Nancy-Brabois, 615 rue du jardin botanique, BP 101,
F-54600 Villers-lées-Nancy, France (Paul.Zimmermann@loria.fr).

and similarly for ¢ < 0. For a,b € F and finite ¢ := fl(a o b) the monotonicity (2) implies
aob € [c1,co] where ¢ :=f(fl(c—2ule|])—n) and co:=1f(f(c+ 2uld])+ 7). (4)

(Note that the above remains true if a o b is replaced by any real y, for example y = sinx, as long as ¢ is
the correct rounding of y.) This is the usual basis of interval libraries to emulate directed roundings using
only rounding to nearest (see, for example, [4]). It is disadvantageous because for 1.5 - 2% < |a o b| < 2F+1
the interval [cq, co] is twice as wide as it needed to be, i.e., 4 ulps (units in the last place) instead of 2 ulps.

The IEEE 754 standard [3] recommends (but does not require) availability of a function Nextafter,
where Nextafter(a,b) returns the next representable floating-point number of a in the direction towards
b. If b = a the result is a, if a or b are NaN the result is NaN.

The main part of the function Nextafter is the computation of the predecessor and successor of a
floating-point number. This is obvious if directed roundings, as requested by IEEE 754, are available.

However, frequent change of the rounding mode may be time consuming, or is not supported by the
programming language in use. In [2] a corresponding algorithm is given by splitting the floating-point
number in two parts, treating the second part as an integer and adding/subtracting 1 regarding possible
carry. The algorithm does the job, but is slow. In [1] a corresponding routine is given assuming that a fused
multiply and accumulate instruction is available, that is a - b + ¢ with only one rounding, and an unlimited
exponent range.

In the following we will describe a simple and efficient routine to compute an interval [c1, ca] — with
¢1,co € F — containing a o b for all a,b € F and o € {+,—, x, +} provided fl(a o b) is finite. If a0 b is not a
floating point number, the result is always best possible! except a small range near underflow.

2 The result
We use the “unit in the first place” ufp(x) defined for = € R by
ufp(0) :=0 and ufp(z) := 208212l for 2 £ 0.
It denotes the value of the most significant bit in the binary representation of x. Then
VO#zeR: ufp(z) < |z| < 2ufp(z). (5)

This concept proved to be useful in the analysis of new summation and dot product algorithms [5]. The
definition is independent of some floating point format. Define

U={f€eF : [fl<u'n} (6)

For example, in IEEE 754 double precision, U= {f € F : |f| < 27921}, Note that u~'r is the smallest
positive normalized floating-point number. For positive ¢ € F such that succ(c) is finite the following
properties are easily verified (see also [5]):

ifceU: pred(c) =c¢—mn, succ(c)=c+mn, (7)
ifu=ln<ec, c#2F: pred(c) = ¢ — 2uufp(c), succ(c) = c+ 2uufp(c), (8)
ifulp<e c=2%: pred(c) = ¢ —uufp(c), succ(c) = c+ 2uufp(c). (9)

Moreover, define for ¢ € F\ {00} with pred(c) and succ(c) finite:

M (c) :== %(pred(c) +¢) and MT(c) = %(chsucc(c)). (10)

1Since we don’t know if ¢ := fl(a o b) is smaller or larger than a o b, the best possible interval is [pred(c), succ(c)], of 2 ulps.

It follows for c € F, =z € R,

x < M (c) = l(z) < pred(c) and MT(c) < x = succ(e) < fi(x) (11)
M~ (c) <z = c <Af(z) and < MT(c)=fl(z) <e

For given a,b € F and o € {+, —, X, +}, consider the following
Algorithm 1 Bounds for predecessor and successor of finite ¢ € F in rounding to nearest

e =f(fl(¢|c]) +n) % ¢ = u(l + 2u) = Nextafter(u, +00) = succ(u)
cinf =fl(c—e)
csup = fl(c+e€)

Lemma 1 Let finite ¢ € F be given, and let cinf ,csup € F be the quantities computed by Algorithm 1.
Then

cinf < pred(c) and succ(c) < csup. (12)
If le| ¢ [3,2]u=tn, then both inequalities in (12) are equalities.

PrROOF. Since F = —F and fl(—z) = —fli(z) for = € R, we may assume without loss of generality ¢ > 0.
One verifies the assertions for ¢ being the largest positive floating point number, hence we assume without
loss of generality that succ(c) is finite.

If c € U, then e > 5 and (7) imply (12). If [c| < 2u~!n, then ¢ < 2u~'n —n by (7), so that

1
pc<—(1+2u)np—u(l+2u)y< Y

N | —

implies fi(¢c) = 0. Hence e = 7, and the lemma is proved for ¢ € U.
Henceforth we may assume ¢ ¢ U, which means ¢ > u~'1. Next we prove

e > uufp(c). (13)
Note that uufp(c) € F. By (2), (5), (8) and (9)
¢ :=1f(¢c) = fi(u(c + 2uc)) > fi(u(c + 2uufp(c))) = fi(usuce(c)). (14)

If usucc(c) is not subnormal, i.e., usucc(c) > u~1n, then usucc(c) € F and

>
e=1l(c +n) > >fl(usucc(c)) = usuce(c) > uufp(c),
which proves (13). If usucc(c) is subnormal, i.e, usucc(c) < 2u='s, then (14), (2) and (5) imply
¢ > fi(usucc(c)) > fi(uufp(c)) = uufp(c). (15)
On the other hand
¢pc < u(l+ 2u)succ(c) < a:= (14 2u)- %u_ln € F,
implies ¢ = fl(¢c) < a < u™1n, such that (7) and (15) yield
e=1(c +n)=c +n>uufp(c).
This proves (13). By (8) and (9) we know

c—uufp(c) KM (¢) and MT(c) = c+ uufp(c),

o (13) and (11) yield

c—e<M (c) and M't(c)<c+e (16)
and prove (12). It remains to prove that the inequalities in (12) are sharp for ¢ > 2u~15. In this case

¢ < pred(2ufp(c)) = 2(1 — u)ufp(c)
follows by (5) and (9) and also for 2ufp(c) in the overflow range, so that

¢c=u(l+2u)c < 2u(l +u)ufp(c) =: (1 +u)C. (17)
Since ufp(c) > 2u~'y it follows that C' = 2uufp(c) € F. If C > 1u~'s, then

pc < (1+u)C =M*H(0),
and (11) yields ¢ = fi(¢c) < C. If C < 2u~'p, then C < tu~'y and (17) and C € F give

= fi(6e) < A(C+ 3n) =,

so that ufp(c) > 2u~'y proves

uufp(c)) = §uufp(c). (18)

e = (¢ +7) <H(C+ uuip(e)) = (] 2

2 2

Hence (8) and (9) imply
1
¢+ e <succ(e) + §uufp(c) < M*(suce(c)),

so that csup = fl(c 4+ e) = succ(c) by (10). This proves the right inequality in (12). A similar argument
applies when pred(pred(c)) > ufp(c) and shows cinf = fl(¢c — e) = pred(c). It remains to prove the left
inequality in (12) for ufp(c) € {pred(c), c}. If pred(c) = ufp(c), then (18) gives

) 1
c—e>c— §uufp(c) = pred(c) — iuufp(c)7

and rounding tie to even implies fl(c—e) = pred(c). Finally, if ¢ = ufp(c), then ¢ is a power of 2 and ¢ > 2u~!n
yields ¢ > 4u’177. In that case either ¢ > %u*2n and then ¢c € F; or ¢ < %ufzn and then uc < ¢c < uc+ %77,
which shows With rounding tie to even that fl(¢c) = uc. In both cases ¢ = fi(¢c) < ¢c < Zuc, and
d+n< 8uc—l— 4uc implies

11 11 3
e=1f(d +n) < ﬂ(guc) g ue < uc-

Hence (8) and (9) imply pred(c) = (1 — u)c and M~ (pred(c)) = (1 — 3u)c, and (11) finishes the proof. [

Given a,b € F, rigorous and mostly sharp bounds for aob, o € {4, —, x, +} can be computed by applying
Algorithm 1 to ¢ := fl(aob). This holds for the square root as well. Although addition and subtraction cause
no error if the result is in the underflow range, the extra term 7 cannot be omitted in the computation of e
because it is needed for c slightly outside the underflow range.

Figure 1: Minimal, median, average and maximal difference in ulps between bounds of enclosing interval with
formula (4) and Algorithm 1, for IEEE 754 double precision. For each range between consecutive powers of
two, 1,000,000 random values of ¢ were used. The excluded range [%, 2Ju~!n from Lemma 1 corresponds to

[2710227 271020]'

3 Conclusion

When using rounding to nearest only, the advantage of Algorithm 1 over formula (4) — for computing

range

formula (4)

Algorithm 1

(1/2,1]
9—1020 9—1019

{2—1021’ 2—1020}
[2—10227 2—1021]
[2710237 271022]
[2710247 271023]

2 /2 /2.999696 / 4
2 /4 /3250584 / 4
4 /4 / 4.000000 / 4
4/ 4/ 4.999696 / 6
4 /4 /4.000000 / 4
2 /2 /2.000000 / 2

2 /2 /2.000000 / 2
2 /2 /2.000000 / 2
2 /2 /2.999696 / 4
4/ 4/ 4.000000 / 4
2 /2 /2.000000 / 2
2 /2 /2.000000 / 2

rigorous bounds of a o b — is that the width is often halved (see Fig. 1).

However, this applies only if a,b € F. In applications often interval operations A o B for thick intervals
A, B are executed. The wider A and B are, the less is the gain of Algorithm 1 compared to (4). In practical

applications the gain is negligible unless point intervals play a significant role.

Moreover, the algorithm is valid only for finite floating point result. If infinite bounds are allowed, a
necessary case distinction — as would be necessary before applying (4) — may slow down the Algorithm.

As a corollary of Lemma 1, we can compute succ(c) as follows:

Algorithm 2 Nextabove(c).

e« |
ife > 2u_177 then
e — fi(ge)

e —fi(e +n)
Return fi(c + €)
elseif e > u~'n then

Return fi(c + 2n)
else
Return fi(c +n).

An algorithm to compute pred(c) follows similarly. We have implemented this algorithm in the C language,
and compared it to the native nextafter (c,MAXDOUBLE) implementation. We obtained the following timings
in seconds for 10 million calls on a 800Mhz Pentium M under Linux with gce 4.0.2 (using inline code):

References

[1] S. Boldo and J.-M. Muller. Some Functions Computable with a Fused-mac. Technical Report 5320,

range nextafter | Algorithm 2

[1/2,1] 1.072 0.192
[271020 2—1019] 1.080 0.192
[271021 9—1020] 1.076 3.256
[271022 9—1021] 1.088 0.156
[271023 9-1022] | 18,369 0.160
[271024 9-1023] | 18,389 0.160

Institut National de Recherche en Informatique et en Automatique (INRIA), 2004.

[2] W.J. Cody, Jr. and J.T. Coonen. Algorithm 722: Functions to support the IEEE standard for binary
floating-point arithmetic. ACM Transactions on Mathematical Software, 19(4):443-451, 1993.

[3] American National Standards Institute, Institute of Electrical, and Electronic Engineers. IEEE standard
for binary floating-point arithmetic. ANSI/IEEE Standard, Std. 754-1985, 1985.

[4] R.B. Kearfott, M. Dawande, K. Du, and C. Hu. Algorithm 737: INTLIB: A Portable Fortran 77 Interval
Standard-Function Library. ACM Transactions on Mathematical Software, 20(4):447-459, 1994.

[5] S-M. Rump, T. Ogita, and S. Oishi. Accurate Floating-Point Summation. Technical Report 05.1, Faculty
of Information and Communication Science, Hamburg University of Technology, 2005.

