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Abstract— It is well known that it is an ill-posed prob-
lem to decide whether a function has a multiple root. For
example, an arbitrarily small perturbation of a real polyno-
mial may change a double real root into two distinct real or
complex roots. In this paper we describe a computational
method for the verified computation of a complex disc to
contain exactly 2 roots of a univariate nonlinear function.
The function may be given by some program. Computa-
tional results using INTLAB, the Matlab toolbox for reli-
able computing, demonstrate properties and limits of the
method.

1. Introduction

It is well known that to decide whether a univariate poly-
nomial has a multiple root is an ill-posed problem: An ar-
bitrary small perturbation of a polynomial coefficient may
change the answer from yes to no. In particular a real
double root may change into two simple (real or complex)
roots.

Therefore it is hardly possible to verify that a polynomial
or a nonlinear function has a double root if not the entire
computation is performed without any rounding error, i.e.
using methods from Computer Algebra.

Let a suitably smooth nonlinear functionf : K → K
for K ∈ {R,C} be given with a numerically double root ˜x.
In a recent paper [8] we dealt with the problem as follows.
We calculated an inclusionX ∈ IK such that a slightly per-
turbed functiong has atrue double (ork-fold) root within
X. Similar methods have been described in [1].

For real or complex polynomials we solved the problem
in [7] in a different way. We presented ten methods to cal-
culate a complex disc containing exactly or at leastk roots
of the original polynomial. In the present paper we summa-
rize how to treat the problem in the same way for double
roots of general nonlinear functions. In a subsequent full
paper methods fork-fold roots will be presented.

There is not much literature on this problem. In [3] Neu-
maier gives a sufficient criterion, namely that
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k!
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| f
(i)(z̃)
i!
| r i−k (1)

is satisfied for allz in the discD(z̃, r). Under this condition

he proves thatf has exactlyk roots inD. In our formulation
we can omit the (k − 1)-st summand on the right of (1),
which is the first derivative in case of double roots, and we
can derive a direct method for the inclusion. Moreover, we
give a constructive scheme how to find a suitable discD.

In [2] a general method for systems of nonlinear equa-
tions is described based on the topological degree. How-
ever, sometimes significant computational effort is needed.

2. Inclusion of 2 roots

Let a function f : D0 → C being analytic in the open
disc D0 be given. We suppose some ˜x ∈ D0 to be given
such that ˜x is a numerically double root, i.e.

f (x̃) ≈ 0 ≈ f ′(x̃) . (2)

We first give a sufficient criterion for a certain discY near
x̃ to contain (at least) 2 roots off .

The analytic function admits forz, z̃ ∈ D0 the Taylor
expansion

f (z) =
∞∑
ν=0

cν(z− z̃)ν , (3)

wherecν = 1
ν! f (ν)(z̃) denote the Taylor coefficients. Let

X ⊂ D0 denote a real interval or complex closed disc
near x̃ such that f ′(x̂) = 0 for some ˆx ∈ X. The as-
sumption (2) implies that it is likely that there is asim-
ple root of f ′ near x̃, so that the correspondingX can be
computed by well-known verification routines [5]. Such a
routine is implemented as Algorithmverifynlss in INT-
LAB, the Matlab toolbox for reliable computing ([6], see
http://www.ti3.tu-harburg.de/rump).

We aim to prove that some closed discY ⊂ D0 with
X ⊆ Y contains at least 2 roots off .

We expandf with respect to ˆx and split the series into

f (y) = f (x̂) +
(

1
2 f ′′(x̂) +

∑∞
ν=3 cν(y− x̂)ν−3

)
(y− x̂)2

=: f (x̂) + g(y)(y− x̂)2 .
(4)

Note thatg is holomorphic inD0, and thatc1 = 0 by as-
sumption. Later we will see how to estimateg(Y); for
the moment we assume that an inclusion intervalG with
{g(y) : y ∈ Y} ⊆ G is known and 0< G. With this we can
state the following theorem.



Theorem 1 Let holomorphic f: D0 → C in the open disc
D0 be given, and closed discs X,Y ⊂ D0 with X ⊆ Y. As-
sume there existŝx ∈ X with f′(x̂) = 0. Define g(y) as in
(4) and let G ∈ IC be a complex interval with g(y) ∈ G
for all y ∈ Y. Assume0 < G, and define the two functions
N1,2 : Y→ C by

N1,2(y) := x̂±
√
− f (x̂)/g(y) . (5)

Assume
Nν(Y) ⊆ Y for ν = 1,2 . (6)

Then, counting multiplicities, the function f has at least
two roots in Y.

Proof. Sinceg(y) , 0 for y ∈ Y both N1,2 are continu-
ous functions. Complex intervals are non-empty, convex,
closed and bounded, so Brouwer’s Fixed Point Theorem
and (6) imply the existence ofy1,2 ∈ Y with Nν(yν) = 0 or

(yν − x̂)2 = − f (x̂)/g(yν) for ν = 1,2 . (7)

Now (4) implies

0 = f (x̂) + g(yν)(yν − x̂)2 = f (yν) for ν = 1,2 . (8)

If y1 , y2, the assertion follows. Ify1 = y2, then (5) implies
f (x̂) = 0 = f ′(x̂), so thaty1 = y2 is a double root of f. The
theorem is proved. �

The main assumption to check in Theorem 1 is (6). This,
however, can be performed directly by interval evaluation
noting that for allx ∈ X and for ally ∈ Y

N1,2(y) ∈ X ±
√
− f (X)/g(Y) . (9)

Concerning the computation ofg(Y) one can show that

g(Y) ⊆ X + {z ∈ C : |z| ≤ 1
2

diam(Y)2| f ′′(Y)|} .

Note that the diameter of this inclusion is proportional to
the square of the diameter ofY, so in general we may ex-
pect a good quality.

Theorem 1 proves existence of at least 2 roots off in
Y. It remains the problem to find a suitable inclusion in-
terval Y. Note that necessarily the inclusion interval is
complex: If the assumptions of Theorem 1 are satisfied for
some functionf , they are by continuity satisfied for a suit-
ably small perturbation off as well. But an arbitrary small
perturbation of f may move a double real root into two
complex roots.

Sincex̂ ∈ X is necessary by assumption, a starting inter-
val may beY0 := X. However, the sensitivity of a double
root isε1/2 for anε-perturbation of the coefficients. But the
quality of the inclusionX of the simpleroot of f ′ can be
expected to be nearly machine precision.

The functionsNν in (5) represent a Newton step. Thus
a suitable candidate for a first inclusion interval isY(0) :=
X ±
√
− f (X)/g(X) in (9). This already defines an iteration

Table 1: Radius of inclusion for nearby root.

e rad(Y) iter
10−1 1.74 · 10−7 1
10−2 5.59 · 10−7 1
10−3 1.93 · 10−6 1
10−4 5.71 · 10−6 1
10−5 1.71 · 10−5 1
10−6 failed 5

scheme, whereYm+1 ⊂ int(Ym) verifies the conditions of
Theorem 1.

However, it is superior for such an interval iteration to
slightly “blow-up” the intervals. This process is called
“epsilon-inflation”. The term was coined in [4] and the pro-
cess was analyzed over there. Thus we define the iteration
as follows:

Y := X
repeat

Z := Y ◦ ϵ
Y := X ±

√
− f (X)/g(Y)

until Y ⊂ int(Z)

(10)

HereY ◦ ϵ denotes a slight relative and absolute inflation.
We useZ := Y · (1±1015)±10−324, where the constants are
adapted to IEEE 754 double precision with relative preci-
sion 10−16.

3. Computational results

We briefly report some computational result. Consider

f (x) := (3x−2)2sin(x) = (9xsin(x)−12sin(x))x+4sin(x) .
(11)

The expansions are generated by the symbolic toolbox of
Matlab. First we use the method described in [8]. It is
satisfied that a function

f̃ (x) := f (x) + ε with |ε| < 1.3 · 10−31 (12)

has a precise double root in the interval

X1 := [0.66666666666666,0.66666666666667]. (13)

Using Theorem 1 it is verified that two roots of the original
function f are enclosed in

X2 := {z ∈ C : |z− 0.66666666666667| < 10−14} . (14)

Next we test the influence of the nearness of another root
to a multiple root. Considerf (x) := (3x−2)2sin(x)(x− 2

3+e)
for different values ofe := 10−k. There is a double root23
and a nearby simple root23 − e. An increase of the radius
and thus decrease of accuracy can be observed in Table 1
when another root approaches the cluster.

This effect becomes worse when two clusters are near
each other. Considerf (x) := (3x − 2)2sin(x)(x − 2

3 + e)2



Table 2: Radius of inclusion for nearby double root.

e rad(Y) iter
10−1 1.16 · 10−6 1
10−2 1.30 · 10−5 1

9 · 10−3 1.29 · 10−6 1
8 · 10−3 1.67 · 10−5 1
7 · 10−3 1.60 · 10−5 1
6 · 10−3 2.10 · 10−5 1
5 · 10−3 2.39 · 10−5 1
4 · 10−3 2.90 · 10−5 1
3 · 10−3 3.63 · 10−5 3
2 · 10−3 failed 5

Figure 1: Plot near first and second double root.

for different values ofe. There is a double root23 and a
nearby double root23 − e. For the inclusion, as before,
we used the expanded version of this function, which
is in this case f (x) = 81 sin(x) x4 − 216 sin(x) x3 +

54 sin(x) x3e + 216 sin(x) x2 − 108 sin(x) x2e +

9 sin(x) x2e2−96 sin(x) x+72 sin(x) xe−12 sin(x) xe2+

16 sin(x) − 16 sin(x) e + 4 sin(x) e2. As can be seen in
Table 2 the inclusion fails when the difference between the
two clusters becomes 0.002 or smaller.

One may ask, why the algorithm fails for the distance
0.002. In Figure 1 we display the function plot near both
triple roots. As can be seen it seems not easy to separate the
two clusters numerically. In Figure 2 we show the behav-
ior of the function near the individual double roots. Here
it becomes clear that we basically see roundoff errors be-
cause of the numerical instability. Concerning the lengthy
expression of the function we expect some overestimation
due to interval arithmetic. In that sense the achieved results
seem not bad.

Figure 2: Individual plots near first and second double root.
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