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Abstract: We discuss several methods to simulate interval arithmetic operations using floating-
point operations with fixed rounding mode. In particular we present formulas using only
rounding to nearest and using only chop rounding (towards zero). The latter was the default
and only rounding on GPU (Graphics Processing Unit) and cell processors, which in turn are
very fast and therefore attractive in scientific computations.
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1. Notation
There is a growing interest in so-called verification methods, i.e. algorithms with rigorous verification
of the correctness of the result. Such algorithms require error estimations of the basic floating-point
operations.

A specifically convenient way to do this is using rounding modes as defined in the IEEE 754 floating-
point standard [1]. In particular performing an operation in rounding downwards and rounding
upwards computes the narrowest interval with floating-point bounds including the correct value of
the operation.

However, such an approach requires frequent changing of the rounding mode. The computational
cost for that is sometimes not acceptable. Therefore we discuss in this paper various methods to
compute rigorous error bounds for the basic floating-point operations with one or without changing
of the rounding mode.

We demonstrate the computational cost for the methods by computing the range of certain func-
tions. It is a fundamental property of interval arithmetic that replacing each operation by its cor-
responding interval operation and evaluating a nonlinear function f with interval argument X, then
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the result interval f(X) contains the range {f(x) : x ∈ X}.
We use the following notation. First, we collect the constants1 used in this paper:

Eps : The distance from 1 to the next smaller floating-point number (1 − Eps)
Fmax : The largest positive floating-point number
Fmin : The smallest positive normalized floating-point number
Eta : The smallest positive subnormal floating-point number (Eta = 2 Eps · Fmin)

For example, for IEEE 754 binary64 (double precision) [1],

Eps = 2−53, Fmax = (1 − 2−53)21024, Fmin = 2−1022, Eta = 2−1074 .

Let F denote a set of binary floating-point numbers, and denote by flnear : R → F ∪ {±∞} a
rounding to nearest satisfying

r ∈ R, f = flnear(r) ⇒

⎧⎪⎨
⎪⎩

f ∈ F s.t. |r − f | = min{|r − f ′| : f ′ ∈ F}, |r| < H
f = ∞, r ≥ H
f = −∞, r ≤ −H

, (1)

where H is some huge number2 related to max{f ∈ F}. This definition does not yet specify the
tie, it can be rounded, for example, to even or away from zero. The directed roundings downwards
fldown : R → F ∪ {−∞} and upwards flup : R → F ∪ {∞} are uniquely defined by

r ∈ R : fldown(r) :=

{
max{f ∈ F : f ≤ r}, r ≥ min{f ∈ F} (= −max{f ∈ F})
−∞, otherwise

and

r ∈ R : flup(r) :=

{
min{f ∈ F : r ≤ f}, r ≤ max{f ∈ F}
∞, otherwise

,

respectively. Moreover, we consider chopping flchop : R → F (also known as truncation or rounding
towards zero), which is also uniquely defined by

r ∈ R, f = flchop(r) ⇒ r · f ≥ 0 and |f | = max{f ′ ∈ F : |f ′| ≤ r}. (2)

For r ≥ 0 we have flchop(r) = fldown(r), and flchop(r) = flup(r) for r ≤ 0. Note that the rounded
result in chopping cannot overflow.

Let fl(·) denote any one of flnear(·), flup(·), fldown(·) and flchop(·). For operations ◦ ∈ {+,−, ·, /} we
assume the corresponding floating-point operations to satisfy

a, b ∈ F, fl(a ◦ b) = (a ◦ b) · (1 + ε) + δ with |ε| ≤ u, |δ| ≤ u, (3)

where u denotes the relative rounding error unit, and u the underflow unit. The size of u depends
on the rounding mode. Moreover, the size of u depends on the rounding mode and whether gradual
underflow is allowed or not. For example, for IEEE 754 binary64 we have

u = 2−53 (= Eps) and u = 2−1075

in rounding to nearest with gradual underflow. In any case, ε · δ = 0 in (3). More precisely,

|fl(a ◦ b)| ≥ u−1u ⇒ δ = 0 and |fl(a ◦ b)| < u−1u ⇒ ε = 0 .

Moreover, fl(· · ·) means a result where each operation inside the parentheses is executed as the corre-
sponding floating-point operation.

1Note that Eps differs from the Matlab constant eps, which is defined as the distance from 1 to the next larger floating-
point number, i.e. eps = 2−52 for IEEE 754 binary64. Moreover, realmax and realmin are available on Matlab as Fmax
and Fmin, respectively.

2For IEEE 754 binary64, H := (1 − 1
2
Eps)Fmax.
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Fig. 1. Normalized floating-point number: unit in the first place and unit in
the last place.

We define the predecessor and successor of a floating-point number a by pred : F → F∪ {−∞} and
succ : F → F ∪ {∞} with

pred(a) :=

{
max{f ∈ F : f < a}, f 
= −Fmax
−∞, otherwise

and

succ(a) :=

{
min{f ∈ F : a < f}, f 
= Fmax

∞, otherwise
.

For analysis we use the ufp-concept (unit in the first place, see Fig. 1), which was introduced in [4].
In contrast to the “unit in the last place”, the ufp-concept is independent of a floating-point format.
The function ufp : R → R is defined by

0 
= r ∈ R ⇒ ufp(r) := 2�log2 |r|�

and ufp(0) := 0. It follows

0 
= r ∈ R : ufp(r) ≤ |r| < 2 ufp(r) , (4)

f ∈ F : f ∈ 2 Eps · ufp(f)Z , (5)

Fmin ≤ f ∈ F : succ(f) = f + 2 Eps · ufp(f) , (6)

Fmin ≤ f ∈ F : f + 4 Eps · ufp(f) ≤ succ(succ(f)) , (7)

where the first three are taken from [4], and the last follows by

f + 4 Eps · ufp(f) ≤ succ(f) + 2 Eps · ufp(succ(f)) = succ(succ(f)) .

2. Interval bounds using rounding downwards and upwards

As has been mentioned, for a, b ∈ F, the simplest way to compute bounds X = [cinf, csup] for a ◦ b

and ◦ ∈ {+,−, ·, /} is using the following Algorithm 1.

Algorithm 1 Bounds for a ◦ b using directed roundings.

function X = BoundUpDown(a, b)
cinf = fldown(a ◦ b)
csup = flup(a ◦ b)
X = [cinf, csup]

The computed bounds are best possible. In fact, we have the nice mathematical property

cinf = csup ⇔ a ◦ b ∈ F .

But two switches of the rounding mode are necessary, and if the computation should proceed in
rounding to nearest even three. It is known that it is better to use F = −F and −fl(r) = fl(−r) for
r ∈ R. Then the algorithm for multiplication, for example, is as follows.

Algorithm 2 Bounds for a · b using rounding upwards.

function X = BoundMultUp(a, b)
cinf = flup(−(a · (−b)))
csup = flup(a · b)
X = [cinf, csup]
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Note that the results of Algorithms 1 and 2 for a · b are identical, i.e. narrowest possible. However,
Algorithm 2 needs only one switching of the rounding mode. Corresponding algorithms for the other
basic operations follow, but not for the square root.

Similar algorithms using rounding downwards are easily derived. However, in verified computations
it seems advantageous to use the rounding upwards. For example, an upper bound for the 2-norm of
a vector x ∈ F

n is computed by

Algorithm 3 Upper bound of Euclidian norm of a vector using rounding upwards.

function α = Norm2Up(x)
s = 0
for i = 1 : n

s = flup(s + xi · xi)
end for
α = flup(

√
s)

Partly due to the lack of an upper bound for square root this is more involved in rounding downwards.
Moreover, we need extra negations of the xi.

However, still one switching of the rounding mode is necessary. Next we are interested in computing
bounds without any switching of the rounding mode.

3. Interval bounds using rounding to nearest
The most obvious choice if the rounding mode shall not be altered seems rounding to nearest. An
advantage of computational error bounds in rounding to nearest is that the rounding mode does not
have to be changed at all, also not after finishing rigorous computations and returning to ordinary
floating-point operations. Various interval libraries utilize the rigorous error bounds (3) provided by
the IEEE 754 floating-point standard.

For example, it is easy to see [2] that c = flnear(a ◦ b) implies

cinf := flnear((c − (2 Eps) · |c|) − Eta) ≤ a ◦ b ≤ flnear((c + (2 Eps) · |c|) + Eta) =: csup

for ◦ ∈ {+,−, ·, /}. This is used in Kearfott’s interval arithmetic library INTLIB [2].
Obviously, the width of the interval [cinf, csup] depends on whether c is in the left half or the

right half of [2k, 2k+1] for 2k ≤ |c| < 2k+1, namely, the width of the result interval is 2 ulps or 4 ulps,
respectively. This drawback can be overcome as follows.

If for r ∈ R the only available information is c = flnear(r), then we only know that r is bounded by
the predecessor and the successor of c, so that the narrowest interval enclosing r is [pred(c), succ(c)].
In [3] we presented two algorithms to compute an enclosing interval for a ◦ b. The first is as follows,
using the constant φ1 := Eps(1 + 2 Eps) = succ(Eps):

Algorithm 4 (Rump et al. [3]) Enclosing interval of a ◦ b for ◦ ∈ {+,−, ·, /} using rounding to
nearest.

function X = BoundNear1(a, b)
c = flnear(a ◦ b)
e = flnear(φ1 · |c| + Eta) % φ1 := Eps(1 + 2 Eps)
cinf = flnear(c − e)
csup = flnear(c + e)
X = [cinf, csup]

In [3] the following is proved.

Theorem 1 (Rump et al. [3]) For all finite c ∈ F with |c| /∈ [1, 4] · Fmin the quantities cinf and
csup computed by Algorithm 4 satisfy

cinf = pred(c) and csup = succ(c). (8)
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Remark 1 In IEEE 754 binary64 the excluded range is [1, 4] · Fmin = [2−1022, 2−1020]. In this range
Algorithm 4 returns cinf = pred(pred(c)) and csup = succ(succ(c)), i.e., it is one bit off.

Remark 2 The assertions remain true for any tie-breaking rule in rounding to nearest.

This algorithm is branch-free and fast because only ordinary floating-point operations are used,
and the rounding mode need not to be changed. The result interval [cinf, csup] is 2-ulps wide, i.e.
best possible with only the information c = flnear(a ◦ b) at hand, except a tiny range near underflow.

On today’s processors one observes that operations with quantities in the underflow range involved
are significantly slower than ordinary floating-point operations3. This may slow down Algorithm 4
significantly because the smallest positive subnormal floating-point number Eta has always to be used
in the computation of e.

The idea of the second algorithm is to scale the input off the underflow range if necessary. This
solves two problems. First, an operation with quantities in the underflow range occurs only if the
input c is in the underflow range. Second, the result interval is always 1 ulp wide without exception,
and moreover the case distinction allows to use simpler formulas. However, the algorithm contains
a branch, although almost always the first branch will be taken. The same constant φ1 := Eps(1 +
2 Eps) = succ(Eps) as before is used.

Algorithm 5 (Rump et al. [3]) Enclosing interval of a ◦ b for ◦ ∈ {+,−, ·, /} using rounding to
nearest.

function X = BoundNear2(a, b)
c = flnear(a ◦ b)
if |c| ≥ Eps−1 Fmin then

e = flnear(φ1 · |c|) % φ1 := Eps(1 + 2 Eps)
cinf = flnear(c − e)
csup = flnear(c + e)

elseif |c| < 2 Fmin
cinf = flnear(c − Eta)
csup = flnear(c + Eta)

else
C = flnear(Eps−1 · c) % scaled c

e = flnear(φ1 · |C|)
cinf = flnear(Eps · (C − e))
csup = flnear(Eps · (C + e))

end if
X = [cinf, csup]

Then for all c ∈ F the quantities cinf and csup computed by Algorithm 5 satisfy

cinf = pred(c) and csup = succ(c) ,

hence the result interval X = [cinf, csup] is always 2 ulps wide. With only the information c =
flnear(a ◦ b) at hand, this is best possible. However, we may ask whether 1-ulp wide intervals can be
computed without switching the rounding mode. This is indeed possible using chop rounding.

4. Interval bounds using chopping
The chop mode has some interesting properties. For example, there is no overflow because a very
large result in magnitude is rounded towards zero, i.e. to the largest magnitude positive or negative
floating-point number. Moreover, the implementation is very simple because no care is necessary for
some rounding bit: One just computes the leading bits, as many as given by the floating-point format,
and discards the rest (see Fig. 2 for addition). This is one reason why both GPU and cell processors
used chop rounding by default4.

3On the other hand, it does not happen on today’s GPU environments.
4Today’s GPU processors use rounding to nearest by default.
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Fig. 2. Addition in chop mode.

Concerning interval bounds for a ◦ b, we use F = −F and have for c := flchop(a ◦ b),

a ◦ b ∈ [c, succ(c)] if c > 0
a ◦ b ∈ [pred(c), c] = [−succ(−c), c] if c < 0.

So an enclosing interval for a◦b is known a priori without case distinction if c 
= 0. The only exception
is c = 0, in which case the interval [−Eta, Eta] is always correct but 2-bits wide; alternatively the sign
of a ◦ b can be determined somehow. Thus for c 
= 0 it suffices to compute succ(c) for positive c ∈ F

to obtain a 1-ulp interval for a ◦ b.
In IEEE standard 754 [1] there is ±∞, so the successor of Fmax can be defined to be +∞. However,

the chop rounding avoids overflow. That means there is no way to produce ∞ as a result of a floating-
point operation except the divide-by-zero. Hence always special care is necessary to check for c = Fmax

or for overflow.
On cell processors [7, 9] the computation of the successor of a positive floating-point number is

in particular simple because there is no gradual underflow. That means it suffices to compute the
successor of a positive normalized floating-point number.

Theorem 2 Let c ∈ F be given and define

csup = flchop(φ2 · c) for φ2 := 1 + 2 Eps = succ(1). (9)

Then for all normalized positive c 
= Fmax we have csup = succ(c).

Proof. By assumption we have c ≥ Fmin, and therefore succ(c) = c + 2 Eps · ufp(c) by (6). Hence
succ(c) ≤ φ2c, and succ(c) ∈ F and chopping implies succ(c) ≤ csup. Furthermore, chopping, (4) and
(7) give

succ(c) ≤ csup ≤ (1 + 2 Eps)c < c + 4 Eps · ufp(c) ≤ succ(succ(c)) ,

and the result follows. �
To compute the successor of a floating-point number in IEEE 754 arithmetic including gradual

underflow is a little more involved. One way is to check for underflow as follows [8], using the
constant φ2 as in Theorem 2:

Algorithm 6 Computation of the successor of 0 ≤ c ∈ F\Fmax in chop rounding.

function csup = SuccChop1(c)
csup = max

(
flchop(φ2 · c), flchop(c + Eta)

)
% φ2 := 1 + 2 Eps

The correctness follows by Theorem 2. However, as mentioned before, the operation involving Eta

may slow down the algorithm significantly. This is the more annoying as the maximum in Algorithm 6
will almost always be the number flchop(φ2 · c). An alternative along the lines of Algorithm 5 may be
the following.

Algorithm 7 Computation of the successor of 0 ≤ c ∈ F\Fmax in chop rounding.

function csup = SuccChop2(c)
if c ≥ Fmin then
csup = flchop(φ2 · c) % φ2 := 1 + 2 Eps

else
csup = flchop(c + Eta)

endif
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This variant uses quantities in the underflow range only if necessary; however, it contains a branch.
A third variant computes the successor without branch, however the underflow unit Eta is again
involved. It is as follows.

Algorithm 8 Computation of the successor of 0 ≤ c ∈ F\Fmax in chop rounding.

function csup = SuccChop3(c)
csup = flchop(c + (2 · (Eps · c) + Eta))

Theorem 3 Let c ∈ F be given, and suppose csup is computed by Algorithm 8. Then for all c ≥ 0,
c 
= Fmax, we have

csup = succ(c).

Proof. Depict the intermediate steps as follows.

x = flchop(Eps · c)
y = flchop(2 · x)
e = flchop(y + Eta)

csup = flchop(c + e)

We distinguish two main cases. First, suppose c is near the underflow range, more precisely 0 ≤ c <

2 Fmin. Then Eps c < Eta and x = y = 0, e = Eta and csup = c + Eta = succ(c).
Second, assume c ≥ 2 Fmin. Then succ(c) = c + 2 Eps · ufp(c) by (6). As a first sub-case assume

c ≥ Eps−1 Fmin. Then (5) implies

c ∈ 2 Eps · ufp(c)Z ⊆ 2 FminZ,

so that x = Eps c and y = 2 Eps c. The assumption c ≥ 2 Fmin implies succ(y) ≥ y + 2 Eta, so that
the chop rounding and (4) imply e = 2 Eps c < 4 Eps · ufp(c). With (7) we obtain

succ(c) = c + 2 Eps · ufp(c) ≤ c + 2 Eps · c = c + e < c + 4 Eps · ufp(c) ≤ succ(succ(c)) .

It remains the second sub-case 2 Fmin ≤ c < Eps−1 Fmin. Define m ∈ N and κ ∈ R by

c = 2(m + κ)Fmin with 1 ≤ m ≤ 1
2
Eps−1 − 1 and 0 ≤ κ < 1 .

Note that m ∈ F. Furthermore, let k ∈ N such that

2k ≤ m ≤ 2k+1 − 1 .

Then
ufp(c) = 2k+1 Fmin and succ(c) = c + 2k+1 Eta .

It follows x = flchop(Eps · c) = flchop((m + κ) · Eta) = m Eta and y = 2m Eta. Furthermore, 2m + 1 <

Eps−1, so that y + Eta < 2 Fmin and y + Eta ∈ F, which means e = (2m + 1) Eta < 2k+2 Eta. Hence
(7) gives

succ(c) = c + 2k+1 Eta ≤ c + 2m Eta < c + e < c + 2k+2 Eta = c + 4 Eps · ufp(c) ≤ succ(succ(c)) ,

and the chop rounding implies csup = succ(c) and finishes the proof. �
Formula (9) in Theorem 2 computes the successor of a normalized floating-point number without

exception over the whole nonnegative range. It requires 1 flop. Algorithm 8 does the same including
subnormal floating-point numbers, but requires 4 flops. If one accepts a small range near underflow
where, as before, succ(succ(c)) is computed rather succ(c), then 2 flops suffice as follows.

Algorithm 9 Computation of the successor of 0 ≤ c ∈ F\Fmax in chop rounding.

function csup = SuccChop4(c)
csup = flchop(φ2 · c + Eta) % φ2 := 1 + 2 Eps.
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Table I. The methods for calculating the successor in chop rounding with
considering the possible gradual underflow.

Method flops branches maximum always using Eta always 1 ulp
Algorithm 6 2 – 1 yes yes
Algorithm 7 1 1 – no yes
Algorithm 8 4 – – yes yes
Algorithm 9 2 – – yes no

Theorem 4 Let c ∈ F be given, and suppose csup is computed by Algorithm 9. Then csup = succ(c)
for all c ≥ 0, c 
= Fmax, except c ∈ E := [1, pred(pred(2))] · Fmin.

Proof. For 0 ≤ c < Fmin we have succ(c) = c+Eta and 2 Eps c < Eta, and therefore flchop(φ2 ·c) = c.
Hence csup = succ(c) in that case.

For c ∈ E we know flchop(φ2 · c) = succ(c) by Theorem 2. So succ(c) ≤ pred(2)Fmin implies
succ(succ(c)) = succ(c) + Eta = csup in that case. Finally, assume c ≥ pred(2)Fmin. Then

x := flchop(φ2 · c) = succ(c) ≥ 2 Fmin

again by Theorem 2, and succ(x) ≥ x + 2 Eta. The result follows. �
The methods for computing the successor in chop rounding with considering the possible gradual

underflow are summarized as in Table I. As mentioned before, using the smallest positive subnormal
floating-point number Eta may slow down the computational speed significantly. We will see it from
the numerical results in the next section.

As mentioned before, chopping implies a particular difficulty if the result c = flchop(a ◦ b) of a
floating-point operation is zero. Unless further checking on the operands a, b is performed, it is not a
priori clear whether the true result a◦ b is negative, truly zero or positive. This suggests the following
algorithm to compute interval bounds for a floating-point operation a ◦ b.

Algorithm 10 Narrow enclosing interval of a ◦ b for ◦ ∈ {+,−, ·, /} using chopping.

function X = BoundChop(a, b)
c = flchop(a ◦ b)
if c > 0 then

if c 
= Fmax then
X = [c, succ(c)]

else
X = [Fmax,∞]

end if
elseif c < 0

if c 
= −Fmax then
X = [−succ(−c), c]

else
X = [−∞,−Fmax]

end if
else

X = [−Eta, Eta]
end if

Of course, Algorithm 10 is easily adapted to the square root. All presented possibilities for succ(·)
may be used in Algorithm 10. Then we have the following result.

Theorem 5 Assume a, b ∈ F and |flchop(a ◦ b)| 
= Fmax. Then the following are true:

i) If succ(·) is computed by Algorithm 8, then the result interval X is always 1-bit wide, i.e. best
possible unless a ◦ b ∈ F.
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Table II. Testing environments.

Processor Compiler, compiler options
I) CPU: Intel Core i7 (1.7 GHz) Intel C++ Compiler version 15.0.3

L2: 256 KB, L3: 4MB icc -fast -fp-model strict

II) GPU: Tesla K40 (745 MHz) NVCC: CUDA compilation tools, version 6.5.12
(single thread use) nvcc

ii) If there is no gradual underflow and succ(·) is computed by (9), then the result interval is always
1-bit wide, i.e. best possible unless a ◦ b ∈ F.

Remark 3 To avoid the presence of subnormal numbers, one may replace Eta by Fmin in the algo-
rithms, though it may widen the result intervals in the case where c is near or within underflow range,
i.e. |c| < Eps−1 Fmin.

As a conclusion, we have several possibilities to compute narrow, often best possible bounds for
a ◦ b without switching the rounding mode. This may be particularly useful on processors such as
GPU and cell processors. Next we compare the approaches in a practical application, namely the
computation of the range of functions.

5. Computation of the range of functions
We present numerical results by applying the different approaches of interval arithmetic presented in
this paper to the evaluation of some common test functions for optimization methods.

We compare the following implementations of interval arithmetic:

Method
UpDown a traditional approach, similar to Algorithm 1 (BoundUpDown)

Up similar to Algorithm 2 (BoundMultUp)
Near1 similar to Algorithm 4 (BoundNear1)
Near2 similar to Algorithm 5 (BoundNear2)
Chop1 similar to Algorithm 10 (BoundChop) with Algorithm 6 (SuccChop1)
Chop2 similar to Algorithm 10 (BoundChop) with Algorithm 7 (SuccChop2)
Chop3 similar to Algorithm 10 (BoundChop) with Algorithm 8 (SuccChop3)
Chop4 similar to Algorithm 10 (BoundChop) with Algorithm 9 (SuccChop4)

All algorithms are tested in two different environments, namely Core i7 (CPU) and Tesla K40
(GPU), see Table II. All the floating-point computations are performed in IEEE 754 binary64 (dou-
ble precision). We carefully choose compiler options to achieve best possible results, see Table II.
Following are remarks on the CPU environment:

• We should be careful to make the computations conform to IEEE 754 arithmetic with validating
the change of rounding mode, for example, by setting suitable compiler options.

• The change of rounding mode slows down the computational speed significantly.

• For the operation c = fl(a◦b) for a, b ∈ F, ◦ ∈ {·, /}, if c is a subnormal number (0 
= |c| < Fmin),
it requires much more computing time than an ordinary case where c is a normalized number.

On the other hand, following are remarks on the GPU environment:

• The change of rounding mode does not affect the computational speed, since every rounding
mode can explicitly be specified with the arithmetic itself, for example, a floating-point ad-
dition fl(a + b) for a, b ∈ F in rounding to nearest, rounding upwards, rounding downwards,
and rounding towards zero can be executed by the instructions _dadd_rn(a, b), _dadd_ru(a, b),
_dadd_rd(a, b), and _dadd_rz(a, b), respectively.

• No slowdown in the speed of floating-point arithmetic occurs in the presence of subnormal
numbers.
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Table III. Measured computing times (sec) for computing the successor on
the CPU environment, 106 elements, 1000 iterations.

Case SuccChop1 SuccChop2 SuccChop3 SuccChop4

Case 1: ci ≈ 1 1.35 1.47 1.36 1.35
Case 2: ci ≈ 2−1000 1.34 1.46 25.98 1.34
Case 3: ci ≈ 2−1030 13.34 1.42 13.29 13.15

Table IV. Measured computing times (sec) for computing the successor on
the GPU environment, 106 elements, 1000 iterations.

Case SuccChop1 SuccChop2 SuccChop3 SuccChop4

Case 1: ci ≈ 1 0.34 0.33 0.34 0.31
Case 2: ci ≈ 2−1000 0.34 0.33 0.34 0.31
Case 3: ci ≈ 2−1030 0.34 0.33 0.34 0.31

Before evaluating the range of functions, we compare Algorithms 6–9 (SuccChop1–SuccChop4) for
computing the successor of a floating-point number as summarized in Table I. We generate pseudo-
random numbers ci, 1 ≤ i ≤ 106, with three specified ranges:

Case 1. ci ≈ 1 for all i (normalized floating-point numbers)

Case 2. ci ≈ 2−1000 for all i (normalized floating-point numbers, but near underflow range)

Case 3. ci ≈ 2−1030 for all i (subnormal floating-point numbers)

The results are displayed in Tables III and IV.
From Table III, we can observe the significant slowdown in the methods except the method

SuccChop2 for near underflow range (Cases 2 and 3) on the CPU environment, namely, they are
about 10 times slower than the method SuccChop2 in some cases. On the GPU environment, there
are not so much differences among the methods. Since there is no branch nor maximum in the method
SuccChop4, it is slightly faster than the others. In any case, the method SuccChop1 is faster than or
as fast as SuccChop3 on both environments. Therefore, we omit the results for SuccChop3 in the rest
of this section.

Now we start to evaluate the range of functions. First, we evaluate the following multivariate Shekel
function [5]:

f(x) = −
m∑

j=1

[
n∑

i=1

(xi − aji)2 + cj

]−1

, x ∈ R
n.

This function is frequently used to define the so-called STU (Standard Unit Time) in order to compare
the performance of optimization methods. We choose some standard setting for the Shekel function,
that is n = 10 and m = 4 with the following parameters:

A =

⎛
⎜⎜⎜⎝

4 1 8 6 3 2 5 8 6 7
4 1 8 6 7 9 3 1 2 3.6
4 1 8 6 3 2 5 8 6 7
4 1 8 6 7 9 3 1 2 3.6

⎞
⎟⎟⎟⎠

and
c =

1
10

(1, 2, 2, 4, 4, 6, 3, 7, 5, 5).

We use the standard search domain as 0 ≤ xi ≤ 10 for 1 ≤ i ≤ 4. Then the global minimum of f is
f(x∗) = −10.536283726219 · · · at x∗ = (4, 4, 4, 4). Note that we take into account the rounding errors
when constructing A and c, which are represented as interval data in the experiments.

We first compute the verified range of f(x) with an input interval vector [xi] = [0, 10], 1 ≤ i ≤ 4.
The result is displayed in Table V. We also measure the diameter of the result interval for the global
minimum of f(x) with an input interval vector [xi] = [pred(4), succ(4)], 1 ≤ i ≤ 4. Computing times
in both cases are displayed in Tables VII and VIII.
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Table V. Verified range of the Shekel function f(x) with an input interval
vector [xi] = [0, 10], 1 ≤ i ≤ 4.

Method Verified range of f(x) Diameter
UpDown, Up [−35.428571428571438,−0.05009857005084622] 35.37847285852060
Near1, Near2 [−35.428571428571481,−0.05009857005084614] 35.37847285852064
Chop1, Chop2, Chop4 [−35.428571428571460,−0.05009857005084619] 35.37847285852062

Table VI. Inclusion of the global minimum of the Shekel function f(x) with
an input interval vector xi = [pred(4), succ(4)], 1 ≤ i ≤ 4.

Method Diameter
UpDown, Up 2.31 × 10−14

Near1, Near2 4.27 × 10−14

Chop1, Chop2, Chop4 2.67 × 10−14

Table VII. Measured computing times (sec) for the Shekel function f(x) for
an input interval vector on the CPU environment, 106 iterations.

Case UpDown Up Near1 Near2 Chop1 Chop2 Chop4

[xi] = [0, 10] 31.91 0.13 1.85 0.37 1.85 0.41 1.84
[xi] = [pred(4), succ(4)] 34.69 0.13 0.59 0.41 0.49 0.32 0.46

Table VIII. Measured computing times (sec) for the Shekel function f(x)
for an input interval vector on the GPU environment, 105 iterations.

Case UpDown Up Near1 Near2 Chop1 Chop2 Chop4

[xi] = [0, 10] 3.00 2.96 3.27 4.56 5.92 6.17 5.46
[xi] = [pred(4), succ(4)] 2.75 2.76 2.96 4.29 4.96 5.17 4.62

Table IX. Verified range of the Rosenbrock function g(x) with an input
interval vector [xi] = [pred(1), succ(1)], 1 ≤ i ≤ n, n = 1000.

Method Verified range of g(x)
UpDown, Up [0, 6.038602039569747 × 10−26]
Near1, Near2 [0, 6.038602039570732 × 10−26]
Chop1, Chop2, Chop4 [0, 6.038602039570731 × 10−26]

Table X. Measured computing times (sec) for the Rosenbrock function g(x)
for an input interval vector [xi] = [pred(1), succ(1)], 1 ≤ i ≤ n, n = 1000 on
the CPU environment, 105 iterations.

UpDown Up Near1 Near2 Chop1 Chop2 Chop4

198.93 0.63 2.16 1.82 2.05 1.94 1.92

Table XI. Measured computing times (sec) for the Rosenbrock function g(x)
for an input interval vector [xi] = [pred(1), succ(1)], 1 ≤ i ≤ n, n = 1000 on
the GPU environment, 103 iterations.

UpDown Up Near1 Near2 Chop1 Chop2 Chop4

0.63 0.64 0.89 1.62 2.09 2.19 1.80

The next test function is the extended Rosenbrock function

g(x) =
n−1∑
i=1

[
(1 − xi)2 + 100(xi+1 − x2

i )
2
]
, x ∈ R

n,

which is a non-convex function also widely used for optimization methods [6]. The trivial global
minimum of g is g(x∗) = 0 at x∗ = (1, . . . , 1).

We measure the verified range of g(x) with an input interval vector [xi] = [pred(1), succ(1)], 1 ≤
i ≤ n for n = 1000, which should contain the global minimum. The result is displayed in Table IX.
Moreover, computing times are displayed in Tables X and XI
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From the results, we can confirm the following facts:

• As by the theory, the methods Up and UpDown always give the narrowest results, and the methods
Chop1, Chop2 and Chop4 do the second narrowest ones, though there are not so much differences
among all the methods in terms of the width of result intervals.

• All the methods that can be performed with fixed rounding mode are much faster than the
traditional approach UpDown on the CPU environment, especially the method Up is considerably
faster than the others, while there are not so much differences among all the methods in terms
of computational speed on the GPU environment.

It turns out that interval arithmetic with fixed rounding mode is useful in terms of computational
speed, if the change of rounding mode slows down it. Since the quality of the result with every rounding
mode is comparable, we can adapt the implementation of interval arithmetic to the computational
environment for any purpose as long as it supports correct rounding.
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