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Abstract. In this note we consider common matrix factorizations such as LU decomposition of3
a square and rectangular matrix, Cholesky and QR decomposition, singular value decomposition for4
square and rectangular matrices, eigen-, Schur and Takagi decomposition. We first note that well-5
conditioned factors tend to be sensitive to perturbations of the input matrix, while ill-conditioned6
factors tend to be insensitive. It seems that this behaviour has not been recognized in numerical7
analysis. We develop a formula for the relation between condition number of the factor and its8
sensitivity with respect to input perturbations, and give reasons for that.9

Our main focus is to describe verification methods for the factors of the mentioned decompo-10
sitions. That means to prove existence of the factorization together with rigorous entrywise error11
bounds for the factors. Our goal is to develop algorithms requiring O(Pp2) operations for an m× n12
matrix with P := max(m,n) and p := min(m,n). Moreover, bounds of high quality are aimed for,13
often not far from maximal accuracy. A main tool to achieve that is accurate dot products based on14
error-free transformations. Since preconditioning based on approximate inverses is used, our methods15
are restricted to full matrices.16
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1. Introduction. Verification methods are mathematical theorems the assump-21

tions of which can be verified on a digital computer. The assumptions are verified22

with mathematical rigor including all procedural, rounding and other sources of error,23

thus the assertions are true with mathematical rigor. The error bounds are computed24

together with the proof of existence and often uniqueness of the solution. Problems25

cover systems of linear and nonlinear equations, eigenproblems or ordinary and partial26

differential equations. For the theoretical foundation and algorithms see [26, 32, 28].27

Verification methods aim to formulate the assumptions in such a way that they28

can be rigorously verified on a computer, and that it is likely that they are satisfied29

for not too ill-conditioned problems. The computing time should be of the same order30

as that of a standard numerical algorithm. The bounds should be narrow.31

There is a general limit to verification methods, namely, they are not applicable to32

ill-posed problems. That is the price we have to pay by using floating-point operations33

combined with error estimates rather than computing exactly like in computer algebra.34

For example, it is possible to verify that a matrix is nonsingular, even for very large35

condition numbers. However, it is not possible to verify that a matrix is singular36

because that problem is ill-posed in the sense of Tikhonov [40, 41]: An arbitrarily37

small change of the input data may change the answer. Similarly, even for a symmetric38

matrix it is not possible to compute narrow error bounds for an individual eigenvector39

to a double eigenvalue, see (6.1). However, verified bounds are possible for a basis of40

the invariant subspace.41

In this note we are interested in fast verification methods for the factors of stan-42
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2 S. M. RUMP, AND T. OGITA

dard matrix decompositions with emphasis on the complete matrix decomposition.43

For example, methods are known [18, 4] to compute error bounds for a single eigen-44

pair. For an n×n matrix those methods might be applied to each individual eigenpair,45

however, resulting in totally O(n4) operations. In contrast, [25, 24] give methods to46

compute error bounds for the complete eigendecomposition in O(n3) operations in-47

cluding the treatment of clustered and/or multiple eigenvalues.48

In [34] fast methods are described to compute error bounds for the complete49

singular value decomposition of an m× n matrix with special emphasis on clustered50

and/or multiple singular values. Here “fast” means O(Pp2) operations with P :=51

max(m,n) and p := min(m,n).52

However, no verification methods are known for other standard matrix decompo-53

sitions. We close this gap by giving fast algorithms for the LU, Cholesky, QR, and54

Schur decomposition. In addition to “fast” in terms of O(Pp2) operations we aim on55

inclusions being accurate for all solution components, i.e., the entrywise relative error56

between lower and upper bound should be close to the relative rounding error unit u57

of the floating-point arithmetic in use.58

Let K ∈ {R,C}. We use the notation Mm,n for the set of matrices in Km×n, and59

shortly Mn if m = n. For A ∈ Mm,n we denote by Ak ∈ Mk the upper left k × k60

principal submatrix of A. We adopt the convention that inverses are assumed to exist61

if used. The n×n identity matrix is denoted by In, where the index is omitted if clear62

from the context. Moreover, Im.n ∈Mm,n is the matrix with Ip for p := min(m,n) in63

the upper left corner and zero elsewhere.64

Any method to compute rigorous error bounds for scalar, vector and matrix op-65

erations is suitable for the algorithms to be presented. We use interval arithmetic66

[26] because it is simple and intuitive to use, in particular in INTLAB [31], the MAT-67

LAB/Octave toolbox for reliable computing. We use the interval notation [15], where68

in particular boldface letters indicate interval quantities.69

Not much knowledge about verification methods and/or interval arithmetic is70

necessary to follow this note, basically familiarity with MATLAB notation. The rep-71

resentation of intervals like infimum-supremum or midpoint-radius is not important:72

throughout this note we only use the inclusion property, namely, that interval opera-73

tions ◦ ∈ {+,−, ·, /} are defined such that for compatible interval quantities A,B74

(1.1) ∀A ∈ A ∀B ∈ B : A ◦B ∈ A ◦B75

is satisfied. For details see [26, 32, 28]. For M ∈ Mn(K) and non-negative R ∈76

Mn(R) the command midrad(M,R) is a superset of {A ∈ Mn(K) : |A − M | 6 R}77

with entrywise comparison and absolute value. Moreover, X = f(A) for an interval78

quantity A and the induced function f implies that f(A) ∈ X for all A ∈ A.79

For an interval X, the magnitude is defined by mag(X) := max{|x| : x ∈ X} > 0.80

The definition applies entrywise to vectors and matrices, so that B = mag(A) satisfies81

|Aij | 6 Bij for all i, j, cf. [26]. The result B is a non-negative vector/matrix.82

Throughout this note we use the new definition [35] of the relative error of an83

interval quantity X, which is basically diam(X)/mag(X) for diam(X) denoting the84

diameter of X. The definition applies to vectors and matrices entrywise.85

We use some notations in MATLAB-style, in particular86

A[`] the strictly lower triangular part ofA

A[u] the upper triangular part ofA

max(A) the row vector of columnwise maxima ofA

sum(A,2) the column vector of rowwise sums ofA

87
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for square A. For the maximum and sum we use the typewriter font to avoid confusion88

with the mathematical terms. The MATLAB notation for A[`] and A[u] is tril(A,-1)89

and triu(A), respectively. We introduce this short notation because we use them90

frequently when developing the algorithms for the LU decomposition. The maximum91

and sum apply to A ∈Mm,n as well, and also the triangular parts apply to A ∈Mm,n92

in the sense that, for example, B = tril(A) is the lower triangular part of A. That93

means for matrices of any dimension A = A[`] +A[u].94

For A,B,C ∈ Mn we note entrywise upper bounds for |ABC|. Denote by µ :=95

max(|C|) the row vector of columnwise maxima of |C|, and by σ := sum(|A|,2) the96

column vector of rowwise sums of |A|, i.e., µ` = max16k6n |Ck`| and σi =
∑n
j=1 |Aij |.97

Then98

(1.2)
|ABC|i` =

∑n
j=1

∑n
k=1 |AijBjkCk`| 6

∑n
j=1

∑n
k=1 |AijBjkµ`|

6 ‖B‖∞µ`
∑n
j=1 |Aij | 6 σiµ`‖B‖∞ ,

99

so that entrywise upper bounds100

(1.3) |ABC| 6 sum(|A|,2) max(|C|)‖B‖∞ and |AB| 6 sum(|A|,2) max(|B|)101

by outer products follow. Note that the computational cost is O(n2). With the same102

complexity the bounds103

|ABC| 6 sum(|A|,2) max(|B|) · |C| and |ABC| 6 |A| · sum(|B|,2) max(|C|)104

follow; however, in our applications B = (I + F )−1 is a perturbation of the identity105

matrix, so that the entries of B are not available but an upper bound for ‖B‖∞ is.106

These estimates are true for real and complex matrices, as well as for any compatible107

matrix dimensions of A,B, and C.108

All computational results use MATLAB [22] and double precision (binary64), i.e.,109

some 53 bits in the mantissa with the relative rounding error unit u = 2−53 ≈ 10−16.110

We use directed rounding which is part of the IEEE 754 arithmetic standard [1]. The111

statement setround(-1) implies that from now on until the next call of setround112

the rounding mode is downwards, i.e., towards −∞. As a consequence the result of113

every subsequent single floating-point operation is the largest floating-point number114

being less than or equal to the true real result. Similarly, setround(1) switches the115

rounding upwards so that the smallest floating-point number being greater than or116

equal to the true real result is computed. Let floating-point numbers a,b and an117

operation o ∈ {+, -, *, /} be given. Then the code sequence118

setround(-1), cinf = a o b;119

setround(+1), csup = a o b;120

flpt = isequal(cinf,csup)121

produces the result flpt = true if, and only if, the real value a o b is a floating-point122

number. A similar statement applies to the square root. For compatible floating-point123

matrices A,B consider the following code for their matrix product:124

setround(-1), Cinf = A*B;125

setround(+1), Csup = A*B;126

In the computation of Cinf each single product and sum is less than or equal to the127

respective real operation. It follows that each entry of Cinf is a lower bound of the128

corresponding entry of the real product P := AB. A similar consideration applies129

to Csup and implies Cinf 6 P 6 Csup with entrywise comparison. The bounds are130

usually not best possible as for single floating-point operations, but they are, under131

any circumstances, mathematically correct.132
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4 S. M. RUMP, AND T. OGITA

We aim on producing accurate bounds, i.e., the lower and upper bound often differ133

by few bits. Our main tool to achieve this are accurate dot products, either purely134

approximate or with error bound. To that end there are many techniques. Some135

of the early references are [42, 23, 21]. Later so-called “error-free transformations”136

[16, 7] were used to transform a pair (a, b) of floating-point numbers into a new pair137

(x, y) such that, e.g., x is the floating-point product ab and y is the error in the sense138

ab = x+y and similarly for sum, quotient, and square root. That technique was used139

in [27] to introduce “error-free vector transformations” where a vector v of n floating-140

point numbers is transformed into a vector w of the same length such that wn is the141

floating-point sum of the vi and
∑
vi =

∑
wi. In that paper the term “error-free142

transformations” was coined which was the start of a revival of such methods. Using143

error-free vector transformations, sums and dot products of arbitrarily large condition144

number can be computed with maximal precision [27].145

The mentioned error-free transformations are based on a relative splitting of the146

input data. Yet a completely different method was introduced in [43] where an ab-147

solute splitting of vectors was introduced. That method was analyzed in [36] and148

is also used for reproducible results [3]. Moreover, this method was used to develop149

very efficient algorithm for accurate matrix multiplication [29], with or without error150

bounds. In our note we use such algorithms. They work in ordinary double preci-151

sion floating-point arithmetic but produce a result “as if” computed with doubled152

precision, i.e., some 32 decimal digits, or more. That allows to store the result of a153

matrix product in two terms, a higher and a lower order part. We use that technique154

occasionally. To that end some double-double arithmetic as in [5] or [19] could be155

used as well.156

To be more precise the function prodK computes matrix products in (1 + k
2 )-fold157

precision and rounds the result into working precision. In fact prodK is a very versatile158

function, but we need only few functionalities. For example, for a given square matrix159

A the code160

k = 2;161

[L,U,p] = lu(A,’vector’);162

R = prodK(L,U,-1,A(p,:),k);163

computes the residual LU −A(p, :) in two-fold precision and rounds the result into R164

in working precision. The call165

[R,E] = prodK(L,U,-1,A(p,:),k);166

produces the same R but in addition an error matrix E such that167

|LU −A(p, :)−R|ij 6 Eij .168

for all indices i, j. Larger values of k are possible, but not used in this note. When169

calculating triple products ABC it may be useful to compute the first product in170

two-fold precision but also store it as an unevaluated sum P1 + P2. For example,171

P = prodK(A,B,k,’OutputTerms’,2);172

X = prodK(P,C,k);173

stores P as a cell array, and the second call of prodK computes P1 ∗ C + P2 ∗ C in two-174

fold precision and stores the result in X in working precision.175

The key to our verification methods will be to transform the problem into the176

problem for a perturbed identity matrix. In particular in combination with extra-177

precise dot products that technique turns out to be effective. The transformation178

uses approximate inverses of approximate factors. These are usually full, also for179

sparse input matrix. Therefore applying our methods to sparse matrices is prohibitive180

This manuscript is for review purposes only.



VERIFIED ERROR BOUNDS FOR MATRIX DECOMPOSITIONS 5

because of expected fill-in. For some factorizations such as LU and at least the R-181

factor of QR are usually sparse for sparse input. Verified inclusions for these cases182

are open problems.183

We begin with an investigation of the sensitivity of matrix factors. In particular184

the fact that, in case of an ill-conditioned input matrix A, well-conditioned factors185

tend to be sensitive to perturbations of A seems unknown in numerical analysis. In186

the following sections verification methods for the factors of the LU decomposition187

of a square and rectangular matrix, Cholesky- and QR decomposition, singular value188

decomposition for square and rectangular matrices, eigen- and Schur decomposition189

are presented, accompanied by numerical results. As an application of the symmetric190

eigendecomposition we show how to compute inclusions for the Takagi factors.191

Throughout the note random matrices A ∈ Fm×n with specified condition number192

cond(A) ≈ 10k are generated by193

mn = min(m,n); s = logspace(0,k,mn); S = diag(s(randperm(mn)));194

if m~=n, S(m,n)=0; end; A = orth(randn(m)) * S * orth(randn(n));195

which is for square matrices equivalent to MATLAB’s gallery/randsvd.196

We present numerical evidence that mostly our method compute error bounds197

with an accuracy close to the relative rounding error unit u of the floating-point198

arithmetic in use. All our algorithms are given and implemented in pure MATLAB199

code, therefore suffering from interpretation overhead. Therefore we restrict timing200

information to the QR decomposition in Section 5 together with accuracy information201

of the built-in (approximate) MATLAB routines; the time ratio of other verification202

methods is similar.203

2. Sensitivity of factors in a decomposition. For any of the matrix decom-204

positions under investigation we made a general observation which seems to be known205

in the literature [13, 12, 8] but not so much in numerical analysis. Some perturbation206

bounds for LU, Cholesky, and QR decompositions can be found in [37], see also [11],207

however they overestimate the sensitivity of ill-conditioned factors.208

Let X be a factor of some decomposition of a matrix A. Denote by A + ∆A a209

small perturbation of A such that ‖∆A‖‖A‖ ∼ u for some matrix norm, and let X̃ be the210

corresponding factor of A+ ∆A. Then numerical evidence (cf. Tables 1–10) suggests211

that often the sensitivity of X satisfies212

(2.1) sensitivity(X) :=
‖X̃ −X‖
‖X‖

∼ u
cond(A)

cond(X)
,213

where cond(B) := ‖B‖ · ‖B−1‖ for a nonsingular square matrix B.214

For example, suppose A = LU with L being unit lower triangular. Then the215

U -factor of the LU decomposition has usually the same condition number as A. Al-216

though the L-factor is usually well conditioned by the widely accepted rule of thumb,217

numerical evidence (cf. Tables 1–4) suggests that its sensitivity grows with the con-218

dition number of A. That can be seen as follows. Let A+ ∆A = (L+ ∆L)(U + ∆U),219

then to first order220

(2.2) L−1 ·∆A · U−1 = L−1 ·∆L+ ∆U · U−1 .221

The matrices ∆L and L−1 · ∆L are strictly lower triangular, whereas ∆U · U−1 is222

upper triangular. Thus, taking the strictly lower triangular and upper triangular part223

from matrices of both sides of (2.2) implies224

∆L = L
[
L−1 ·∆A · U−1

][`]
and ∆U =

[
L−1 ·∆A · U−1

][u]
U .225
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Numerical evidence suggests that the elements of each row of (the upper triangular226

part of) U are often of similar magnitude1, so that U ≈ DX for diagonal D with227

elements decreasing in magnitude with ‖D−1‖ ∼ ‖A−1‖ and well-conditioned X with228

the upper triangular part of entries close to 1 in magnitude. Hence229

L−1 ·∆A · U−1 ≈ L−1 ·∆A ·X−1D−1 =: Y D−1
230

for some Y with entries of the size of those of ∆A, i.e., ‖Y ‖ ∼ ‖∆A‖. Then231

∆L = L
[
L−1 ·∆A · U−1

][`] ≈ L [Y D−1
][`]

= LY [`]D−1
232

and233

∆U =
[
L−1 ·∆A · U−1

][u]
U ≈

[
Y D−1

][u]
DX = Y [u]X .234

Now ‖L‖ and ‖X‖ are small because both are usually well conditioned, so that235

‖D−1‖ ∼ ‖A−1‖ and ‖Y ‖ ∼ ‖∆A‖ ∼ u‖A‖ imply236

‖∆L‖ ∼ ‖∆A‖ · ‖A−1‖ ∼ u · cond(A) and ‖∆U‖ ∼ ‖∆A‖ ∼ u‖A‖237

and explain (2.1) for the LU decomposition.238

For the QR decomposition (2.1) is mentioned in [20]. Let A = QR and A+∆A =239

(Q+ ∆Q)(R+ ∆R), so that to first order240

M := Q∗ ·∆A ·R−1 = Q∗ ·∆Q+ ∆R ·R−1 and [Q∗ ·∆A ·R−1][`] = [Q∗ ·∆Q][`] .241

Using (Q+ ∆Q)∗(Q+ ∆Q) = I implies that C := Q∗ ·∆Q is skew-Hermitian, so that242

M [`] = C [`] yields243

C = C [`] −
(
C [`]

)∗
= M [`] −

(
M [`]

)∗
and ∆Q = Q

[
M [`] −

(
M [`]

)∗]
244

and explains (2.1) for the Q-factor. The perturbation of the R-factor satisfies245

(2.3) ∆R = [Q∗ ·∆A][u] −
[
M [`]R

][u]

+
[(
M [`]

)∗
R
][u]

.246

The first summand support (2.1), i.e., that R is not very sensitive to perturbations of247

A, the second and third one need some extra consideration. In a similar way to the248

LU decomposition, numerical evidence suggests that R ≈ DX for diagonal D with249

elements decreasing in magnitude and well-conditioned X with entries close to 1 in250

magnitude. Hence251 [
M [`]R

][u]

≈
[[
Q∗ ·∆A ·X−1D−1

][`]
DX

][u]

=
[[
Q∗ ·∆A ·X−1

][`]
X
][u]

252

which is of the order ‖∆A‖. For the third summand of (2.3) we have253 [(
M [`]

)∗
R
][u]

≈
[([

Q∗ ·∆A ·X−1D−1
][`])∗

DX
][u]

≈
[
(D−1)∗Y DX

][u]
254

1That is true due to our practical experience, and it is also satisfied for matrices generated by
randsvd from MATLAB’s matrix gallery in any of the 5 modes. However, for ill-conditioned matrices
generated by sprand with densitity 1, i.e., full matrices, it is sometimes not true.
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for some Y with entries of the size of ‖∆A‖. Since the Dii decrease in magnitude,255

that supports (2.1) for R as well. For the Cholesky decomposition A = RTR the256

ansatz257

R−T∆A ·R−1 = R−T∆RT + ∆R ·R−1 implies ∆R = [R−T∆A ·R−1][u]R258

and explains (2.1) along the same lines as well. The condition number of the Cholesky259

factor is cond(A)1/2, and numerical evidence suggests indeed that the sensitivity is260

always of the order u cond(A)1/2 in accordance with (2.1). Similarly, for the QR261

decomposition cond(Q) = 1 and cond(R) = cond(A), so that (2.1) suggests that Q is262

sensitive to perturbations of A while R is not. Numerical evidence supporting these263

statements will be presented in the following sections.264

As a consequence and from a numerical standpoint of view to our surprise, we265

may expect that accurate inclusions are more demanding for well conditioned factors.266

3. LU decomposition. If all upper left principal minors det(Ak) of A ∈Mm,n267

are nonzero, then there is a unique LU decomposition of A. That is true for square as268

well as for rectangular matrices. If the first m−1 minors are nonzero but det(Am) = 0,269

then the decomposition exists but is not unique [11, Theorem 9.1].270

A verification method for computing inclusions of the L- and U -factor of a matrix271

A asserts, with mathematical certainty, that the decomposition exists and is unique.272

Thus, a necessary condition is that A has full rank.273

Given a matrix A ∈Mm,n, the following MATLAB code in Algorithm 3.1 (getL)274

computes the L-factor of A, cf. [10, p. 35], [11, (9.2a)].

Algorithm 3.1 Computation of the L-factor

function L = getL(A)

[m,n] = size(A);

mn = min(m,n);

L = eye(m,mn);

for k=1:mn-1

v = 1:k;

w = k+1:m;

Bv = inv(A(v,v)); % last column of inv(A(v,v)) needed

L(w,k) = A(w,v)*Bv(:,end);

end

275
For square A ∈ Mn, this requires to compute the last column of the inverse of Ak276

for 1 6 k 6 n − 1. To that end we see no other way than to compute the inverses277

individually at the cost of O(k3) operations each, so that totally prohibitive O(n4)278

operations are necessary.279

Let A ∈ Km×n be given and denote P := max(m,n) and p := min(m,n). Our280

goal is to compute verified and sharp error bounds for the factors L and U of A with a281

total computing time of O(Pp2) operations. This will be achieved by preconditioners282

XL, XU such that XLAXU is a perturbed identity matrix IE .283

We first show how to compute the LU decomposition of a perturbed identity284

matrix, followed by the cases m = n, m > n, and m < n for the LU decomposition of285

a general matrix.286

3.1. LU decomposition of a perturbed identity matrix. Let A ∈ Mm,n287

with m > n be given, denote E := A − Im,n and assume that En is convergent. Fix288
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8 S. M. RUMP, AND T. OGITA

k with 1 6 k 6 n, let i satisfy k + 1 6 i 6 m, and denote B := A−1
k = (Ik + Ek)−1.289

Then, according to Algorithm 3.1 (getL), using (I + Ek)−1 = I − (I + Ek)−1Ek and290

Aiν = Eiν for i > k and ν 6 k yields291

Lik =

k∑
ν=1

AiνBνk =

k∑
ν=1

Eiν [Ik − (Ik + Ek)−1Ek]νk .292

Hence, denoting the k-th column of Ik by e(k) and using i > ν gives293

Lik − Eik = −
k∑
ν=1

(E[`])iν [(Ik + Ek)−1Eke
(k)]ν .294

Using (1.2) it follows295

|Lik − Eik| 6
k∑
ν=1

∣∣∣E[`]
∣∣∣
iν
‖(Ik + Ek)−1Eke

(k)‖∞ 6
k∑
ν=1

∣∣∣E[`]
∣∣∣
iν

‖Eke(k)‖∞
1− ‖Ek‖∞

.296

The k-th component of the row vector max(|E[u]
n |) is equal to ‖Eke(k)‖∞, so that the297

strictly lower triangular part of the difference between L and E is bounded above by298

the outer product299

(3.1)
∣∣∣L[`] − E[`]

∣∣∣ 6
(
sum(|E[`]|,2) · max(|E[u]

n |)
)[`]

1− ‖En‖∞
=: ∆ = ∆[`] ,300

and there exists a strictly lower triangular matrix C = C [`] with301

(3.2) L = I + E[`] + C [`] and |C [`]| 6 ∆[`] .302

In other words, the strictly lower triangular part of L is essentially equal to the strictly303

lower triangular part of E. The computational cost is O(mn) operations. For m < n304

the factor L is square, and along the same lines we deduce305

(3.3)
∣∣∣L[`] − E[`]

m

∣∣∣ 6
(
sum(|E[`]

m |,2) · max(|E[u]
m |)

)[`]

1− ‖Em‖∞
.306

If L is square, i.e., m 6 n, an inclusion of L−1 can be obtained using verification307

methods [32], however, we may proceed directly by using the Neumann expansion308

(I + F )−1 = I − F (I + F )−1 = I − (I + F )−1F = I − F + F (I + F )−1F .309

Then (1.3) implies310

|(I + F )−1 − I + F | 6 sum(|F |,2) max(|F |)
1− ‖F‖∞

311

provided that ‖F‖∞ < 1. Using (3.2), F := E[`] + C [`] and G := |E[`]|+ ∆[`] yields312

(3.4) L−1 = I − E[`] + δ with |δ| 6 ∆[`] +

[
sum(G,2) max(G)

1− ‖G‖∞

][`]

.313
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Note that G = |L− I| and δ = δ[`], and error bounds are only needed for the strictly314

lower triangular part. The estimate may be improved by using more terms of the315

Neumann expansion, however, it seems hardly worth the effort.316

In order to compute an inclusion of U we may use, regardless whether m > n or317

m < n, the L-factor of the upper left square matrix of I + E, an inclusion of which318

can be computed as described before. For the case m > n we have (I + E)n = LnU ,319

and the uniqueness of the LU decomposition, (3.2) and (I+F )−1x = x−(I+F )−1Fx320

imply that321

U = (In + E
[`]
n + C

[`]
n )−1(In + En)

= (In + E
[`]
n + C

[`]
n )−1(In + E

[`]
n + C

[`]
n + E

[u]
n − C [`]

n )

= In + (In + E
[`]
n + C

[`]
n )−1(E

[u]
n − C [`]

n )

= In + E
[u]
n − C [`]

n − (In + E
[`]
n + C

[`]
n )−1(E

[`]
n + C

[`]
n )(E

[u]
n − C [`]

n ) .

322

Note that the rightmost factor E
[u]
n − C [`]

n is a composition into upper and strictly323

lower part. Now (C [`])[u] = O because U = U [u] is upper triangular, and similar to324

the estimate for the L-factor it follows325

(3.5)
∣∣∣U − (In + E[u]

n )
∣∣∣ 6

(
sum(|E[`]

n + C
[`]
n |,2) · max(|E[u]

n − C [`]
n |)

)[u]

1− ‖E[`]
n + C

[`]
n ‖∞

.326

For the case m < n we identify the matrix dimensions by adding subscripts. For327

example, Em denotes the left upper m ×m principal submatrix of E and indicates328

the dimension as well. For A ∈ Mm,n we have A = Im,n + Em,n = LmUm,n, so that329

C
[`]
m = Cm with (3.2) for Lm, and for P ∈ Mm,n1

, Q ∈ Mm,n2
with matrix block330

notation [P,Q] ∈Mm,n1+n2 it follows331

Um,n = (Im + E[`]
m + C [`]

m )−1(Im,n + Em,n)332

= (Im + E[`]
m + C [`]

m )−1
(
Im,n + [E[`]

m + C [`]
m , Om,n−m] + [E[u]

m − C [`]
m , Em,n−m]

)
333

= Imn,n + (Im + E[`]
m + C [`]

m )−1[E[u]
m − C [`]

m , Em,n−m]334

= Imn,n + [E[u]
m − C [`]

m , Em,n−m]335

+ (Im + E[`]
m + C [`]

m )−1(E[`]
m + C [`]

m )[E[u]
m − C [`]

m , Em,n−m] .336

Since U ∈Mm,n is upper triangular we obtain, similar to the previous estimate,337

∣∣∣U − (Im,n + E[u]
m,n

) ∣∣∣ 6
(
sum(|E[`]

m + C
[`]
m |,2) · max(Bm,n)

)[u]

1− ‖E[`]
m + C

[`]
m ‖∞

=: ∆338

using Bm,n := [|E[u]
m | + |C [`]

m | , |Em,n−m|] which is |E| with E
[`]
m replaced by |C [`]

m |.339

The computational cost is again O(mn) operations.340

If m 6 n we may derive an inclusion of U−1 as well. We rewrite (3.5) into341

(3.6) U = I + E[u] + C [u] and |C [u]| 6 ∆[u] = ∆342

analogously to (3.2), and for G := |E[u]|+ ∆[u], similar to (3.4), it follows343

(3.7) U−1 = I − E[u] + δ with |δ| 6 ∆[u] +

[
sum(G,2) max(G)

1− ‖G‖∞

][u]

.344
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10 S. M. RUMP, AND T. OGITA

Fig. 1. Norm of error bound for the L- and U-factor of I + E

In Figure 1 the norm of the right hand side of (3.1) and (3.5) together with
√
n‖E‖2345

is displayed for dimensions (m,n) = (100, 200) and (m,n) = (200, 100) for different346

norms of E. As can be seen the norm of the error of the bounds for L and U grow with347 √
n‖E‖2. Hence, for ‖E‖ . 10−8 the inclusions of the factors are maximally accurate,348

with errors of the size of the relative rounding error unit u ≈ 10−16. Actually Figure 1349

displays results for complex input matrix; the results for real input are similar.350

The graph of the norm of the error as in (3.4) and (3.7) of L−1 and U−1, re-351

spectively, looks exactly like Figure 1, so the error for the inclusions of L−1 and U−1352

grows with
√
n‖E‖2 as well.353

We close this subsection with giving executable MATLAB/INTLAB code in Al-354

gorithm 3.2 for the computation of inclusions of the L- and U -factor as well as of355

their inverses for a perturbed identity matrix I+E. Input is the perturbation E, and356

inclusions are stored as perturbations of the identity matrix as well, i.e., I +E = LU357

implies L ∈ I + LE, U ∈ I + UE, L−1 ∈ I + LinvE, and U−1 ∈ I + UinvE.358

Throughout the code we use from line 2 rounding upwards, i.e., the computed359

floating-point result is always an upper bound of the true result (see Section 1). That360

holds true for vector and matrix operations as well. Thus, for example, the sum in361

the computation of DeltaL in line 4 is an upper bound of the row sums of absolute362

values of the strictly lower triangular part of E. The code is simplified in the sense363

that in lines 5, 9, 13, and 17 it is assumed that the upper bounds for the norms are364

strictly less than 1. Then the denominator in line 5 is negative and larger or equal365

to ‖E‖∞ − 1, so that the negative of the division produces a correct upper bound366

DeltaL. Similar arguments show the correctness of the code in lines 9, 13, and 17. For367

an interval matrix E, real or complex, the assertions hold true for every I+Ẽ ∈ I+E.368

For given A, the product U = L−1A can be enclosed by (I+LE)\A or A+LinvE·A,369

and similarly L = AU−1 can be enclosed2 by A/(I + LU) or A + A · LinvU. For not370

2Recall that A/B is the MATLAB notation for AB−1.
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VERIFIED ERROR BOUNDS FOR MATRIX DECOMPOSITIONS 11

Algorithm 3.2 Inclusion of L- and U -factor of I + E and their inverses

1 function [LE,UE,LinvE,UinvE] = LU_E(E)

2 setround(1)

3 magE = mag(E);

4 DeltaL = tril(sum(tril(magE,-1),2)*max(magE),-1);

5 DeltaL = - ( DeltaL/(norm(magE,inf)-1) );

6 LE = tril(E,-1) + midrad(0,DeltaL);

7 GL = mag(LE);

8 delta = tril(sum(tril(GL,-1),2)*max(GL),-1);

9 delta = DeltaL - delta/(norm(GL,inf)-1);

10 LinvE = -tril(E,-1) + midrad(0,delta);

11 B = triu(magE) + tril(DeltaL,-1);

12 DeltaU = triu(sum(GL,2)*max(B));

13 DeltaU = - ( DeltaU/(norm(GL,inf)-1) );

14 UE = triu(E) + midrad(0,DeltaU);

15 GU = mag(UE);

16 delta = triu(sum(triu(GU),2)*max(GU));

17 delta = DeltaU - delta/(norm(GU,inf)-1);

18 UinvE = -triu(E) + midrad(0,delta);

19 setround(0)

too large ‖E‖ the latter formulation is advantageous. To that end we compare the371

relative error of the former and the latter method. For different values of ε we choose372

perturbations I + E with ‖E‖ = ε and A ∈ M100 with fixed condition number 108.373

The results are shown in Figure 2 for L and U in the left and right graph, respectively.374

Fig. 2. Relative error of L\A vs. A + Linv ·A and A/U vs. A + A · Uinv

375

As can be seen both the results for L−1A and AU−1 improve for perturbations E of376
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12 S. M. RUMP, AND T. OGITA

the identity matrix up to 10−9. For larger E there is not much difference.377

3.2. LU decomposition of general A ∈ Mm,n with m = n. Let A ∈ Mn be378

given. We first compute approximate factors L̃ and Ũ by an LU decomposition with379

partial pivoting and permute the rows of A accordingly.380

Let X̃L ≈ L̃−1 and X̃U ≈ Ũ−1 be approximate preconditioners, so that IE :=381

X̃LAX̃U is a perturbed identity matrix. In MATLAB we may compute X̃L by inv(Ls)382

as a left inverse, however, use eye(n)/Us to compute X̃U as a right inverse, cf. [11].383

Then the uniqueness of the LU decomposition and IE = LEUE imply384

L = X̃−1
L LE and U = UEX̃

−1
U .385

Note that in Algorithm 3.2 (LU E) the offsets LE and UE of LE and UE to the identity386

matrix are computed, respectively. The computational effort is O(n3) operations.387

Table 1
Condition number and sensitivity of the LU-factors for n = 100 and different condition numbers

cond(A) 102 105 108 1011 1014

cond(L) 1.4 · 102 1.4 · 102 1.4 · 102 1.4 · 102 1.4 · 102

cond(U) 2.7 · 102 4.8 · 104 2.4 · 107 1.7 · 1010 1.3 · 1013

sensitivity(L) 5.2 · 10−15 7.7 · 10−13 3.4 · 10−10 2.0 · 10−7 1.4 · 10−4

sensitivity(U) 3.3 · 10−15 5.2 · 10−15 6.9 · 10−15 8.1 · 10−15 9.4 · 10−15

It is well known that the condition number of A moves into the U -factor, i.e.,388

the factor L will be well conditioned whereas cond(U) ∼ cond(A). Thus we might389

expect the factor U to be sensitive to perturbations in A whereas L is not so sensitive.390

However, the opposite is true, see Table 1 for square matrices of dimension n = 100.391

As can be seen the condition number of L is small, that of U is of the order of cond(A).392

For the sensitivity displayed in the last two rows we perturb the matrix A into Ã by393

changing each entry of A randomly by 1 bit in the mantissa and display ‖L̃−L‖/‖L‖,394

and for U correspondingly. As can be seen, both L and U are insensitive for small395

condition number, however, for ill-conditioned A a perturbation of the last bit of A396

changes L relatively by about 10−4, whereas U changes only about in the last bit.397

This is in accordance with our rule of thumb (2.1). The numbers are the median of398

1000 samples.399

The reasoning for this rule of thumb (2.1) in Section 2 relied on the relation of400

the magnitude of the elements of U . It was also mentioned in a footnote that this401

relation is often not true for ill-conditioned matrices generated randomly by sprand402

with density 1, i.e., dense matrices. All entries of the factor U of such matrices403

are often not far from 1 in magnitude except one or two very small entries on the404

diagonal, often not Unn. We measured the sensitivity of L and U for square matrices405

of dimension n = 100 similar to Table 1 and display the results in Table 2.406

As before the input matrices were perturbed entrywise and randomly by one bit, and407

the decompositions were performed using the multiple precision package [2] to avoid408

distortion of the sensitivity by rounding errors. For the median of the sensitivities of409

L and U there is not too much difference to Table 1. The mean and median of the410

sensitivity of L are similar3, so that seems to support (2.1). However, the mean of the411

sensitivities of U is larger than the median. Thus a few entries of U seem sensitive412

3All medians and means in Table 1 are all similar, so only the medians are displayed.
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Table 2
Condition number and sensitivity of the LU-factors for n = 100 and matrices generated by sprand

cond(A) 102 105 108 1011 1014

cond(L) 7.0 · 101 7.2 · 101 7.3 · 101 7.4 · 101 7.6 · 101

cond(U) 5.4 · 102 4.1 · 105 3.9 · 108 3.8 · 1011 4.0 · 1014

sensitivity(L) median 2.0 · 10−15 1.7 · 10−13 2.4 · 10−10 3.4 · 10−8 2.3 · 10−4

sensitivity(L) mean 2.3 · 10−15 6.0 · 10−13 5.7 · 10−10 4.3 · 10−7 6.9 · 10−4

sensitivity(U) median 1.5 · 10−15 3.5 · 10−15 5.9 · 10−15 7.5 · 10−15 7.9 · 10−15

sensitivity(U) mean 1.7 · 10−15 1.5 · 10−13 5.6 · 10−11 1.2 · 10−7 1.4 · 10−4

to perturbations, but the majority is not. So basically the rule of thumb (2.1) seems413

still applicable, but we don’t have an explanation for that behavior.414

The quality of the bounds depend on how close IE is to the identity matrix, i.e., for415

I+E := IE we want ‖E‖ to be as small as possible. The median of the relative errors416

of all inclusion components of L and of U is displayed in Figure 3 from left to right,417

respectively, for condition numbers from 1 to 1015. We first use interval arithmetic for418

the computation of IE := X̃LAX̃U and for L and U and display the relative errors in419

red. As expected, the error grows with the condition number. For condition numbers420

close to 1015 the inclusions are still accurate to about 8 to 10 decimal figures. The421

spikes for very large condition number indicate that the verification failed.422

Fig. 3. Norm of error bounds for the L- and U-factor for different condition numbers

To achieve more accurate bounds we compute IE as X̃L(AX̃U ) and use for both423

products two-fold precision, equivalent to double-double precision. In the legend of424

Figure 3 this is indicated by k = 2. The result is displayed in Figure 3 in black, where425

in the right picture the black curve is identical to the blue curve to be defined. As can426

be seen the accuracy of U is now close to maximal precision equivalent to 16 decimal427

places for all condition numbers, and for L the accuracy is a little bit less. That428

corresponds to Table 1, i.e., we expect better inclusions for U rather than that of L.429
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14 S. M. RUMP, AND T. OGITA

In order to improve the accuracy of the L-factor, we use L = LUX̃UU
−1
E implying430

(3.8) L = AX̃UU
−1
E and U = UEX̃

−1
U431

for the square case m = n. The product AX̃U is computed in doubled precision, the432

result is displayed as the blue curve in Figure 3. Now for all condition numbers and433

all entries of the factors L and U the bounds are of almost maximal accuracy, except434

for cond(A) = 1015 where the verification failed.435

3.3. LU decomposition of general A ∈Mm,n with m > n. Let A ∈Mm,n be436

given with m > n. We first compute an approximate LU decomposition with partial437

pivoting and permute the rows of A accordingly. Thus we may assume that the upper438

square block An has an LU decomposition. Following the approach discussed at the439

beginning of this section440

A = LU =

(
An

An

)
=

(
Ln

Ln

)
U441

so that442

XL :=

(
L−1
n On,m−n

−LnL−1
n Im−n

)
, XU := U−1

443

implies444

XLAXU =

(
In

Om−n,n

)
.445

We compute approximations X̃L ≈ XL and X̃U ≈ XU using an approximate LU446

decomposition A ≈ L̃Ũ , so that IE := X̃LAX̃U is a perturbed identity matrix. Then447

IE = LEUE implies448

X̃L :=

(
P On,m−n

Q Im−n

)
⇒ L =

(
P−1 On,m−n

−QP−1 Im−n

)
LE449

and U = UEX̃
−1
U . The computational effort is O(P 2p) operations for P = max(m,n)450

and p = min(m,n).451

Table 3
Condition number and sensitivity of the LU-factors for m = 200 and n = 100

cond(A) 102 105 108 1011 1014

cond(L) 8.6 · 101 8.5 · 101 8.6 · 101 8.6 · 101 8.5 · 101

cond(U) 3.4 · 102 9.1 · 104 5.5 · 107 4.1 · 1010 3.5 · 1013

sensitivity(L1) 6.4 · 10−15 1.3 · 10−12 6.6 · 10−10 4.3 · 10−7 3.1 · 10−4

sensitivity(L2) 1.3 · 10−14 3.6 · 10−12 2.3 · 10−9 1.8 · 10−6 1.5 · 10−3

sensitivity(U) 2.7 · 10−15 4.5 · 10−15 5.9 · 10−15 7.1 · 10−15 8.5 · 10−15

In Table 3 we show the sensitivity of the upper square block Ln, the remaining452

part Ln of L and of the U -factor, again the median over 1000 samples. Similar453

to the square case and as predicted by (2.1), with increasing condition number the454

components of the L-factor are getting sensitive to perturbations in A, while those of455

U are not. Hence, as for square A, we expect less accurate inclusions of L.456
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Fig. 4. First methods: Norm of error bounds for the L- and U-factor based on A

The median of the relative errors of all inclusion components of the upper square457

part Ln of L, the remaining part Ln = L(n+ 1 : m, :) and of U is displayed in Figure458

4 from left to right, respectively, for condition numbers from 1 to 1015. As before we459

first use interval arithmetic for the computation of IE := X̃LAX̃U and to compute460

L and U and display the relative errors in red. As expected, the error grows with461

the condition number. For condition numbers close to 1015 the inclusions are still462

accurate to about 8 to 10 decimal figures.463

To achieve more accurate bounds we compute IE as X̃L(AX̃U ) and use for both464

products two-fold precision, equivalent to double-double precision. The result is dis-465

played in Figure 4 in black. As can be seen the accuracy of U is now close to maximal466

precision equivalent to 16 decimal places for all condition numbers, for the upper part467

of L it improved significantly, and for the lower part of L the accuracy decreases from468

condition number 109.469

In order to obtain flat curves in all three pictures, i.e., close to maximal accuracy470

for all components of the L- and the U -factor, we compute the product AX̃U again in471

doubled precision but store it in two parts C1 +C2, and then compute X̃LC1 + X̃LC2472

in doubled precision but store it in one matrix IE . The result displayed in blue in473

Figure 4 is better than before, however, there is still a growth of the errors of the474

lower part of L from condition number 109.475

The following alternative approach is faster and better. To that end we use an476

approximate LU decomposition An ≈ L̃nŨ of the upper left square block of A. For477

approximations X̃Ln ≈ L̃−1
n and X̃U ≈ Ũ−1 let IE = X̃LnAnX̃U = LEUE . Then478

(3.9) U = UEX̃
−1
U and L = AX̃UU

−1
E479

using L = LUX̃UU
−1
E . Thus, for m > n we use the same formula as (3.8) for the480

square case. The computational effort is O(Pp2) operations.481

As before display the median of the relative errors of all components of the upper482

square part Ln of L, the lower part of L and of U in Figure 5. The red curves are483
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16 S. M. RUMP, AND T. OGITA

Fig. 5. Second methods: Norm of error bounds for the L- and U-factor based on An

the results when using interval arithmetic to compute IE := X̃LAX̃U , L and U and484

are similar to those before. Using extra precision to compute X̃L(AX̃U ) is shown in485

black and is for both parts of L better than before. Finally, for the blue curve we used486

doubled precision to compute AX̃U and stored the result in two parts, which are then487

multiplied by X̃L. That last method yields for all condition numbers and all entries488

of the factors L and U bounds of almost maximal accuracy.489

3.4. LU decomposition of general A ∈ Mm,n with m < n. Let A ∈ Mm,n490

with m < n be given. Now the partial pivoting of an approximate LU decomposition491

may take only the left square block Am into account. Therefore, we first compute an492

approximate LU decomposition with partial pivoting of AT and permute the columns493

of A accordingly, followed by the computation an approximate LU decomposition of494

A with partial pivoting and permute the rows of A accordingly. We may assume that495

the left square block Am has an LU decomposition. Then496

A = LU =
(
Am Am

)
= L

(
Um Um

)
497

and498

XL := L−1, XU =

(
U−1
m −U−1

m Um

On−m,m In−m

)
499

implies XLAXU =
(
Im Om,n−m

)
. We compute approximations X̃L ≈ XL and500

X̃U ≈ XU using an approximate LU decomposition A ≈ L̃Ũ , so that again IE :=501

X̃LAX̃U is a perturbed identity matrix. Then IE = LEUE implies502

X̃U :=

(
P Q

On−m,m In−m

)
⇒ L = X̃−1

L LE503
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and504

U = UE

(
P−1 −P−1Q

On−m,m In−m

)
.505

The computational effort is O(P 2p) operations for P = max(m,n) and p = min(m,n).506

Table 4
Condition number and sensitivity of the LU-factors for m = 100 and n = 200

cond(A) 102 105 108 1011 1014

cond(L) 1.4 · 102 1.4 · 102 1.4 · 102 1.4 · 102 1.4 · 102

cond(U) 2.7 · 102 4.8 · 104 2.4 · 107 1.7 · 1010 1.3 · 1013

sensitivity(L) 1.2 · 10−14 2.5 · 10−12 1.3 · 10−9 8.4 · 10−7 6.0 · 10−4

sensitivity(U1) 3.8 · 10−15 5.4 · 10−15 7.0 · 10−15 8.3 · 10−15 9.6 · 10−15

sensitivity(U2) 9.4 · 10−15 1.3 · 10−14 1.7 · 10−14 1.9 · 10−14 2.2 · 10−14

The sensitivity of the L-factor, the left square block Um and the remaining of the507

U -factor is displayed in Table 4 and is, as predicted in (2.1), similar to square A or508

the case m > n. Again we expect it to be more difficult to obtain narrow inclusions509

of L.510

Fig. 6. First methods: Norm of error bounds for the L- and U-factor based on A

Computational results are shown in Figure 6. The median of relative errors of all511

components of the L-factor, the left square part Um and the remaining of the U -factor512

are shown from left to right. The color coding is as in the previous subsections, i.e.,513

for the red curve only standard interval arithmetic was used and the expected growth514

with the condition number can be seen.515

For the black curve the two products in X̃L(AX̃U ) are computed in doubled516

precision. Supposedly, the results are better than for the case m > n because we517

performed initially two approximate LU decompositions to identify the permutations518

of columns and rows.519
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In order to obtain flat curves close to maximal accuracy for all components of520

both the L- and the U -factor, we compute C1 + C2 = AX̃U in doubled precision and521

use two matrices to store the result, and then compute X̃LC1 + X̃LC2 in doubled522

precision but store the result in one matrix IE .523

Now the results are close to maximal accuracy, shown in blue, but the computing524

time of O(P 2p) operations can be improved into O(Pp2) operations. Similar as before525

we use an approximate LU decomposition Am ≈ L̃Ũm of the left square block of A.526

For approximations X̃L ≈ L̃−1 and X̃Um
≈ Ũ−1

m let IE = X̃LAmX̃Un
= LEUE . Then527

(3.10) L = X̃−1
L LE and U = L−1

E X̃LA528

using U = L−1
E X̃LLU for the latter equality. Now the computational effort is O(Pp2)529

operations.530

Fig. 7. Second methods: Norm of error bounds for the L- and U-factor based on Am

Computational results are shown in Figure 7. Using the same color coding the531

main difference is in the black curve, computing the two products X̃L(AX̃U ) in dou-532

bled precision but storing either result in one matrix. The results in Figure 6 are533

better due to the use of the right part Um in the computations.534

The third and best method, shown in blue in Figure 7, is to store AX̃U in two535

matrices and proceed as before. The resulting curves are flat and close to the relative536

rounding error unit 10−16 for all condition numbers and all components of the L- and537

the U -factor.538

4. Cholesky decomposition. As for the Cholesky decomposition of a sym-539

metric positive definite matrix A ∈ Mn we have all necessary ingredients. We would540

like to stress that A being positive definite is not an assumption, because if so, it541

would have to be verified before starting the computation. In contrast, the property542

is verified a posteriori, i.e., if successful the matrix has been proved to be positive543

definite.544
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To compute bounds for the Cholesky factor, we first use an approximate Cholesky545

factor G̃ to preconditionA into IE := XT
GAXG forXG ≈ G̃−1. We discussed in Section546

3.1 how to obtain verified inclusions for the LU decomposition IE = LEUE . That547

includes in particular the diagonal D of UE . The uniqueness of the LU and Cholesky548

decomposition implies that GE = D1/2LTE is the Cholesky factor of IE . Hence, an549

inclusion of the Cholesky factor may be computed by550

(4.1) GTEGE = IE = XT
GAXG ⇒ G = GEX

−1
G = D1/2LTEX

−1
G .551

The computational effort is O(n3) operations.552

We first show the median of the sensitivity of the Cholesky factor for 1000 samples553

in Table 5. The condition number of G is, of course, the square root of that of A,554

and the sensitivity corresponds to that predicted in (2.1). In some way it seems the555

geometric mean between the sensitivity of the L- and the U -factor.556

Table 5
Condition number and sensitivity of the Cholesky factor for different condition numbers

cond(A) 102 105 108 1011 1014

cond(G) 1.0 · 101 3.2 · 102 10.0 · 103 3.2 · 105 10.0 · 106

sensitivity(G) 6.8 · 10−16 1.8 · 10−14 4.9 · 10−13 1.4 · 10−11 4.0 · 10−10

Fig. 8. Norm of error bounds for the Cholesky factor for different condition numbers

The computational results for (4.1) are shown in Figure 8. We display the median557

of the relative errors of all components of the inclusion of the Cholesky factor for558

different condition numbers. The color coding is similar to the previous sections. For559

the red curve we use interval arithmetic to compute inclusions of IE = XT
GAXG and560

for the inclusion of G according to (4.1). As expected, errors grow with the condition561

number but still guaranteeing some 8 correct decimal figures up to condition number562

3 · 1014 and failure above.563

The black curve shows the results for computing XT
GAXG in doubled precision.564

The quality of the inclusion is better and there is no failure.565

Finally, we compute C1 + C2 = AXG in doubled precision with two results and566

XT
GC1 + XT

GC2 again in doubled precision but with one result IE . Now, shown in567

blue, for all condition numbers all components of the Cholesky factor are enclosed568

with almost maximal accuracy.569

This manuscript is for review purposes only.



20 S. M. RUMP, AND T. OGITA

5. QR decomposition. Assume A ∈ Mm,n with m > n to be given with full570

rank. Then there is a unique QR decomposition with orthonormal columns and upper571

triangular R with non-negative diagonal entries [14, Theorem 2.1.14]. Consider572

A :=

(
1 e

1 e+ ϕe2

)
573

with574

Q :=
1√
2

(
1 −ϕ
1 ϕ

)
and R :=

1√
2

(
2 (2 + ϕe)e

0 e2

)
.575

Then A = QR for e, ϕ ∈ R, and for ϕ = −1 and ϕ = 1 this is the unique QR decom-576

position of A(ϕ) for any e ∈ R. Hence, the computation of the QR decomposition is577

ill-posed at e = 0 because an arbitrary small perturbation causes a finite change in578

Q. As a consequence, a verification method is only applicable to matrices with full579

rank.580

Let A ≈ Q̃R̃ be an approximate “economy-size” QR decomposition, i.e., Q̃ ∈581

Mm,n and R̃ ∈ Mn. For X̃R ≈ R̃−1 we expect C := AX̃R to be close to unitary, so582

that CTC will be a small perturbation of the identity matrix In.583

In fact, CTC ≈ X̃T
RA

TAX̃R =: I + E is the same as preconditioning ATA by584

the inverse of the approximate Cholesky factor R̃ of ATA. However, the formulation585

CTC ≈ (X̃T
RA

T ) · (AX̃R) avoids to form the matrix ATA with squared condition586

number cond(A)2.587

We use the method described in the previous section to compute an inclusion588

GE of the Cholesky factor of I + E, so that X̃T
RA

TAX̃R = I + E = GTEGE . Hence589

R := GEX̃
−1
R is the Cholesky factor of ATA, which in turn is the R-factor of the QR590

decomposition of A. An inclusion of the economy-size Q-factor is obtained by Q1 =591

AR−1 provided that R is non-singular. A second possibility is to use Q1 = AX̃RG
−1
E .592

For the full-size QR-factors note that Q = (Q1 Q2) where Q2 is the orthogonal593

complement of Q1 and, provided that A has full rank, a basis for the null space of A∗.594

In [17] several methods are discussed to compute an inclusion of a basis of the null595

space of a rectangular matrix. For Q̃2 denoting an approximation of the orthogonal596

complement of Q1, the solution X of the square linear system597

(5.1)

(
A∗

αQ̃∗2

)
X =

(
On,m−n

αIm−n

)
598

does the job [17], i.e., X spans the orthogonal complement Q2 of Q1. If A is an599

interval matrix, then this is true for every A ∈ A. We choose α within [σn(A), σ1(A)]600

to ensure that the condition number of the system matrix in (5.1) is equal to that of601

A.602

We can expect X to be numerically unitary, but not mathematically. The follow-603

ing lemma from [34] estimates the distance to an orthonormal basis.604

Lemma 5.1. Let X,Y ∈Mm,n with m > n be given. Define α := ‖I−X∗X‖ and605

δ := ‖X − Y ‖. Let V be an n-dimensional subspace of Km that contains all columns606

of Y . Then there exists Q ∈Mm,n with Q∗Q = I whose columns span V and607

‖Q−X‖ 6 α+
√

2δ.608
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The bound is sharp. Note that the bound remains true even if α > 1, although that609

may not be very useful. In our practical application α is of the order of the relative610

rounding error unit u ≈ 10−16.611

The application of Lemma 5.1 is as follows. A very good approximate solution to612

(5.1) is X := Q̃2, for which also α := ‖I−X∗X‖ is close to the relative rounding error613

unit. Define Y to be the true solution of (5.1). An inclusion of Y is computed by614

verification methods. In fact, the inclusion will be of the form Q̃2 + ∆ for an interval615

matrix ∆ with small norm [32], so that δ = ‖∆‖. It follows that Q̃2±δ is an inclusion616

of the orthogonal complement Q2 to Q1. Hence, (Q1 Q2) is the full Q-factor of the617

QR decomposition of A, where the full R-factor is

(
R

Om−n,n

)
.618

For A ∈Mm,n with m < n we compute inclusions of the (full) QR decomposition619

of the square matrix Am, so that Am = QRm implies R = Q∗A. The computational620

effort for the inclusion is the same as to compute an approximate decomposition.621

To judge the computational results we first check on the median of the sensitivity622

of R and the two parts of the factor Q of A ∈M200,100 for 1000 samples. The results623

are displayed in Table 6. The factor Q is perfectly conditioned, however, sensitive624

to perturbations in A. The factor R has the same condition number as A, but is625

insensitive to small perturbations in A in accordance with (2.1). The corresponding626

data for m < n is completely similar, only Q is sensitive to perturbations in A. Thus627

we may expect more problems in the computation of narrow bounds of Q.628

Table 6
Sensitivity of the two parts of the factors Q and R for different condition numbers

cond(A) 102 105 108 1011 1014

sensitivity(Q1) 1.2 · 10−14 6.0 · 10−12 4.5 · 10−9 3.7 · 10−6 3.3 · 10−3

sensitivity(Q2) 1.7 · 10−14 8.2 · 10−12 6.1 · 10−9 5.0 · 10−6 4.5 · 10−3

sensitivity(R) 4.8 · 10−16 5.6 · 10−16 6.2 · 10−16 7.0 · 10−16 7.8 · 10−16

Next we show the median of the relative errors of all entries of the inclusions of Q629

and R. We start with a square matrix A ∈ Mn. We first compute C = AX̃R as well630

the inclusions GEX̃
−1
R and Q = AR−1 in standard interval arithmetic. The result for631

different condition numbers is the red curve in Figure 9. We observe an increase of the632

relative errors proportional to the condition number, and as predicted less accurate633

bounds for Q.634

Secondly, we compute an inclusion C = AX̃R with doubled precision with one635

output result. The product C∗C is computed in doubled precision as well, otherwise636

we use standard interval arithmetic. The result is the black curve in Figure 9. It is637

much better than before, in particular the inclusion of R.638

Finally, we use the second possibility Q1 = AX̃RG
−1
E for the inclusion of Q1,639

where the first product Q1 = AX̃R is computed in doubled precision. The result is640

shown as the blue curve in Figure 9, where the black and blue curves are practically641

identical for R.642

The results for A ∈ Mm,n with m > n are shown in Figure 10. They look quite643

similar to those in Figure 9 for square A. In particular the quality of the two parts of644

Q shows no surprises. That is also true for the case m < n, so we omit to show that645

graph.646

Until now we refrained from giving computing times of our inclusion methods,647

mainly because those are essentially dominated by the interpretation overhead in648
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Fig. 9. Norm of error bounds for the Q- and R-factor for different condition numbers for m = n

Fig. 10. Norm of error bounds for the Q- and R-factor for different condition numbers for m > n

MATLAB. At least for one example, the QR decomposition, we show the ratio of649

computing time compared to the built-in MATLAB routine. For most problems we650

gave three inclusion methods, as for example in Figure 9. However, the timing is not651

too different, therefore we give only the time ratio for our best method compared to qr.652

As has been said this ratio is biased by the interpretation overhead, and in particular653

by the fact that our inclusion methods aim on highly accurate results. Therefore we654

also show the median relative error of the MATLAB result.655
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For the following Table 7 we generated real and complex square random matrices656

with condition number 1010. From left the dimension and ratio of computing time of657

our best inclusion method together with the median relative error of all components658

of the floating-point approximation produced by [Q,R] = qr(A); are displayed, for659

real matrices on the left and for complex matrices on the right.660

Table 7
Ratio of computing times to MATLAB’s qr for different condition numbers

real input complex input

n time ratio Q R time ratio Q R

100 49.3 1.2 · 10−11 6.8 · 10−14 47.1 1.2 · 10−11 6.8 · 10−14

200 33.5 1.4 · 10−11 8.3 · 10−14 44.2 1.3 · 10−11 7.9 · 10−14

500 64.6 6.9 · 10−10 4.5 · 10−11 61.4 1.2 · 10−11 1.1 · 10−13

1000 58.3 2.6 · 10−9 1.7 · 10−8 48.2 1.4 · 10−11 1.8 · 10−13

As can be seen the verification method (in pure MATLAB code) is significantly661

slower than the built-in qr, but, according to Figure 9 and Table 7 also more accurate.662

Note that the accuracy of the MATLAB approximation is different from the sensitivity663

as displayed in Table 6.664

We finally show the same table for rectangular matrices A ∈ Mm,n. We set665

m := 2n and display the results in Table 8.666

Table 8
Ratio of computing times to MATLAB’s qr for different condition numbers

real input complex input

n time ratio Q R time ratio Q R

100 50.5 1.7 · 10−8 4.4 · 10−14 63.3 2.3 · 10−8 5.6 · 10−14

200 45.0 1.2 · 10−8 5.2 · 10−14 67.3 1.9 · 10−8 6.6 · 10−14

500 66.9 9.6 · 10−9 3.5 · 10−11 52.3 1.8 · 10−8 1.0 · 10−13

1000 52.3 8.5 · 10−9 3.0 · 10−8 56.6 2.1 · 10−8 1.7 · 10−13

The median relative error of Q computed by qr is slightly weaker than for square667

matrices, more according to Table 6. Otherwise there is not too much difference in668

the ratio of computing times or accuracy.669

6. Eigendecomposition. A verified inclusion of an individual eigenvector to a670

multiple eigenvalue matrix is out of the scope of verification methods because the671

problem is ill-posed. In case of a non-trivial Jordan block of size k, there may be only672

one eigenvector which, after an arbitrarily small perturbation, changes into up to k673

individual eigenvectors.674

Hence, the problem of computing a verified error bound for an individual eigen-675

vector is ill-posed, as well as to certify that an eigenvalue is not simple. However, an676

inclusion of a cluster and/or multiple eigenvalue becomes well posed if it is separated677

from the remaining spectrum. Then computing a basis for the corresponding invariant678

subspace is well posed as well.679

There are approaches to compute error bounds for one cluster of eigenvalues680

together with invariant subspace [32, Theorem 13.9], however, the computing time for681

the complete eigendecomposition by applying that method to each cluster is O(n4)682

operations.683

There are papers for computing inclusions of all eigenvalues and -vectors in O(n3)684

operations [25] for the symmetric positive definite case and [24] for general matrices.685
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However, the given practical implementations face some problems. The algorithms686

in [33] for general and [34] for Hermitian matrices for the complete eigendecomposi-687

tion also require O(n3) operations and are numerically stable. Of course, there are688

natural limitations for many large clusters. General matrices in [33] are, similar to689

the methods in this paper, transformed into a perturbed identity matrix, whereas the690

symmetric and Hermitian case in [34] is treated by generalized perturbation bounds.691

Both algorithms handle multiple or clustered eigenvalues as follows.692

The output of either algorithm is an interval vector L, an interval matrix X and a693

cell array µ. If a cell element consists of a single element {k}, then Lk is an inclusion694

of a simple eigenvalue and X(:, k) an inclusion of a corresponding eigenvector. A695

challenge for both algorithms is to identify clusters. To that end a threshold κ can be696

specified accepting eigenvalues with distance below κ to be a cluster. For κ = 0 the697

algorithms try, if possible, to produce individual inclusions for all eigenvalues.698

If a cell element is a set µ` of indices, then the Lk for k ∈ µ` are identical and699

contain exactly |µ`| eigenvalues, where the set of columns Xk for k ∈ µ` span the700

corresponding invariant subspace. For symmetric or Hermitian matrix, Lemma 5.1 is701

used to ensure that X contains a unitary eigenvector basis.702

There is a difference between the results for symmetric/Hermitian and for general703

matrices. In the former case the matrix is diagonalizable so that there exist L ∈ L and704

X ∈ X with AX = XL. Thus L and X are inclusions of eigenvalues and eigenvectors.705

A general matrix A may not be diagonalizable. If a cell element µ` consists of more706

than one index, i.e., m := |µ`| > 1, then the identical elements Λ := Lk for k ∈ µ`707

contain m eigenvalues. That may be an m-fold or m distinct eigenvalues or any708

combination. In any case, the set of columns {Xk : k ∈ µ`} contains a basis Y of an709

invariant subspace of A. That implies existence of a matrix M ∈Mm with AY = YM ,710

but there may be no diagonal M with this property.711

However, the methods in [33] allow to compute a block diagonal interval matrix712

D with the property that there exist D ∈ D and X ∈ X with AX = XD. For the713

Schur decomposition discussed in Section 8 it would be important to include upper714

triangular T with the property that there exist T ∈ T and X ∈ X with AX = XT .715

However, that is not possible as eigenvectors of multiple eigenvalues need not be716

continuous, even for symmetric matrices. It was shown in [30] that the local behavior717

of an eigendecomposition of a matrix depending on several parameters may be quite718

different from the case of one parameter. The following example is adapted from [38]:719

A(e, f) :=

(
1 + f e

e 1

)
.(6.1)720

The two matrices A1 := A(e, e) and A2 := A(e, 2e) have eigenvalues 1 + e/2± e
√

5/2721

and 1 + e± e
√

2, respectively. So the eigenvalues depend continuously on e at e = 0.722

However, the corresponding orthogonal eigenvectors do not depend on e and are723 (
(1−

√
5)/2

1

)
,

(
(1 +

√
5)/2

1

)
and

(
1 +
√

2

1

)
,

(
1−
√

2

1

)
724

for A1 and A2, respectively. In other words, the computation of eigenvectors for725

multiple eigenvalues, even for symmetric matrices, is an ill-posed problem and outside726

the scope of verification methods.727

The inclusion of the eigendecomposition offers a simple way to compute the matrix728

exponential and other matrix functions, however, only for non-defective matrices.729
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For detailed computational tests of inclusions for the eigenproblem see [33] and730

[34]. Here we only mention that error bounds of high quality are computed for a731

general real or complex, or symmetric or Hermitian matrix. The algorithms are732

applicable to interval matrices A as well, where the inclusions are true for every733

A ∈ A. The total computational effort is O(n3) operations.734

7. Singular value and polar decomposition. As for the eigendecomposition,735

the computation of singular vectors becomes ill-posed for multiple singular values, see736

example (6.1). Hence, as for the eigenproblem, inclusions for the subspaces span-737

ning the singular vectors corresponding to a multiple or cluster of singular values is738

computed.739

For square matrices the perturbation bounds for symmetric/Hermitian matrices740

can be adapted without too much difficulty. For A ∈ Mm,n with m > n this is still741

true for the right singular vectors. However, the left singular vectors to the m − n742

extra zero singular values need some special attention. If 0 or a numerical zero is a743

singular value, the singular vectors cannot be distinguished from those of the extra744

m−n trivial singular values. They have to be clustered in order to obtain a basis for745

a singular subspace.746

Table 9
Sensitivity of the singular value decomposition for different condition numbers

cond(A) 102 105 108 1011 1014

sensitivity(U) 9.7 · 10−14 1.5 · 10−11 5.9 · 10−9 3.2 · 10−6 2.0 · 10−3

sensitivity(Σ) 7.5 · 10−16 7.2 · 10−16 6.5 · 10−16 6.0 · 10−16 3.6 · 10−16

sensitivity(V ) 9.7 · 10−14 1.5 · 10−11 5.9 · 10−9 3.2 · 10−6 2.0 · 10−3

As before we verify the rule of thumb (2.1) for the sensitivity of the singular values747

and -vectors, the results are displayed in Table 9. In the 1000 test cases we generated748

matrices with separated singular values because otherwise the problem to compute749

singular vectors becomes ill-posed. Again, the orthogonal/unitary factors become750

more and more sensitive for increasing condition number, whereas the singular values751

seem insensitive, even for large condition numbers. So extra attention seems necessary752

for the singular vectors.753

To our knowledge [34] is the only paper for computing verified bounds for the754

complete singular value decomposition of A ∈ Mm,n in O(Pp2) operations for P :=755

max(m,n) and p := min(m,n). Detailed computational results can be found in [34].756

The quality of the bounds is often close to maximal accuracy, and even for large757

clusters still some 8 decimal figures can be guaranteed.758

Bounds for the factors of the polar decomposition A = QP with unitary Q and759

positive semidefinite P follow by Q = UV ∗ and P = V ΣV ∗ using the singular value760

decomposition A = UΣV ∗.761

8. Schur decomposition. Let A = XJX−1 denote a Jordan decomposition of762

A, and let X = QR be the QR decomposition of X. Then763

(8.1) A = QTQ∗, T := RJR−1
764

is a Schur decomposition because J and R are upper triangular. The eigenvalues in765

T are sorted according to the diagonal of J .766

The real Schur decomposition A = Q′UQ′T for orthogonal Q′ and block upper767
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triangular U becomes ill-posed for double eigenvalues. Consider768

A :=

(
1 0

1 1

)
769

with double real eigenvalue 1. An arbitrary small perturbation of A12 produces two770

simple real or a pair of complex eigenvalues, thus changing the block size of the factor771

U of the real Schur decomposition. Hence we restrict our attention to the complex772

Schur decomposition A = QTQ∗.773

However, for the symmetric parameterized matrix in (6.1), which is normal,774

the Schur decomposition is the eigendecomposition with discontinuous eigenvectors.775

Hence, certified bounds for the Schur decomposition are restricted to matrices with776

simple eigenvalues – otherwise facing the ill-posed Jordan decomposition.777

For diagonalizable A the algorithms discussed in Section 6 yield inclusions of an778

eigendecomposition A = XDX−1. Combining this with the algorithm in Section 5 for779

an inclusion of a QR decomposition of X yields inclusions for a Schur decomposition780

according to (8.1). However, only inclusions X and D of X and D are available,781

so verified error bounds for the QR decomposition of X are to be computed, which782

include those of the true X. The factor T is equal to the solution of the linear783

system TR = RD. We have to replace R and D by their computed inclusions,784

introducing an additional source of overestimation. That is also the reason why only785

for cond(A) . 1014 verified inclusions of the Schur factors can be calculated. That786

does not apply to the other decompositions, including the eigendecomposition needed787

here.788

The Schur decomposition offers the possibility to compute an inclusion of the789

departure from normality of A. To that end, only the inclusion of T = RDR−1 is790

needed.791

Fig. 11. Error bounds for the Schur decomposition for different condition numbers

We show some computational results in Figure 11, where the median relative errors792

of all components of T is the red line and those of Q the black line. As has been793

mentioned, the accuracy of the results suffers severely from the fact that only an794

inclusion X of X is available.795

To see that effect we also show the median relative errors of X and D in blue and796

cyan, respectively. As can be seen the eigenvalues are enclosed with almost maximal797
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accuracy, the eigenvectors for condition numbers up to 1012, beyond condition number798

1012 the quality of the eigenvector inclusions decreases slightly. The errors in R, shown799

in magenta, are close to those of Q for condition numbers up to 1012.800

9. Takagi decomposition. We close this note by an application of the inclu-801

sion of the factors of a symmetric eigendecomposition. A complex symmetric matrix802

A ∈ Mn(C) with AT = A allows for a Takagi factorization A = UΣUT , also called803

Autonne-Takagi or symmetric singular value decomposition [14], with unitary U and804

diagonal Σ with non-negative diagonal elements. The factor Σ comprises of the sin-805

gular values of A and is unique if the diagonal elements are in nonincreasing order.806

The factor U may be replaced by US for diagonal S with S2 = I.807

Although less known, the Takagi factorization is used in several applications in808

physics and chemistry, including for example the diagonalization of mass matrices of809

Majorana fermions, quadratic fermionic Hamiltonians, the Bloch-Messiah reduction,810

cf. [6, 39] and the literature cited over there.811

It is well known that the factor U is not continuous for singular A. Consider812

A :=

(
1 0

0 e

)
813

with814

U :=

(
1 0

0 1

)
and Σ :=

(
1 0

0 e

)
if e > 0 ,815

and816

U :=

(
1 0

0
√
−1

)
and Σ :=

(
1 0

0 −e

)
if e < 0 .817

The discontinuity is forced by the non-negativity of Σ. Hence, as for the QR de-818

composition, the computation of the Takagi factorization is ill-posed at e = 0. As a819

consequence, a verification method is only applicable to matrices with full rank.820

First, we verify the rule of thumb (2.1) for the sensitivity of the Takagi factors,821

the results are displayed in Table 10. Here we use Q = orth(randn(n)) to generate822

a random complex symmetric matrices of size n = 100 with cond(A) ≈ 10k by823

D = diag(logspace(0,k,n)); A = Q.’*D*Q; A = A+A.’;824

where the last statement symmetrizes the matrix taking care of rounding errors.

Table 10
Sensitivity of the Takagi decomposition for different condition numbers

cond(A) 102 105 108 1011 1014

sensitivity(U) 2.3 · 10−13 2.9 · 10−12 9.7 · 10−10 5.3 · 10−7 3.3 · 10−4

sensitivity(Σ) 4.4 · 10−15 3.3 · 10−15 2.4 · 10−15 2.2 · 10−15 1.8 · 10−15

825

As anticipated, the factor U is sensitive to perturbations of the matrix A, while Σ is826

not. Of course, the insensitivity of Σ follows by well known perturbation results for827

singular values.828

There are several methods known in the literature to approximate the Takagi829

factors. For our purposes, the computation of verified bounds, one possibility is the830

following [9]. Let AT = A have full rank and denote the singular value decomposition831
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by A = UΣV ∗. Then D := U∗AUΣ−1 is diagonal, and a computation shows that832

UD1/2 and Σ are the Takagi factors. This is our first method.833

One drawback is that the computation of D involves two matrix multiplications.834

Despite the computational effort this is a source of overestimation because the two835

factors are interval matrices U and V including the true factors U and V , respectively.836

The inclusions U and V may be computed by the methods in the previous section.837

Overestimation can be reduced by using U∗AUΣ−1 = V ∗U which is again diago-838

nal. Now only one multiplication of interval matrices is necessary, and we may expect839

better results. That is our second method.840

We finally transform the problem into a real symmetric eigenproblem, see also841

[14, 4.4.P2]. Let nonsingular AT = A ∈ Mn(C) be given, and denote A = E + iF842

with ET = E,FT = F and E,F ∈ Mn(R). A direct computation shows that the843

eigenvalues of the symmetric matrix844

M :=

(
E F

F −E

)
845

come in ± pairs. If

(
x

y

)
is an eigenvector to λ ∈ R, then

(
y

−x

)
is an eigenvector846

to −λ. After suitable renumbering the eigendecomposition of M is847

M

(
X Y

Y −X

)
=

(
X Y

Y −X

)(
Σ 0

0 −Σ

)
.848

A direct computation verifies that U := X + iY and V := X − iY are unitary and849

AV = UΣ. Hence the diagonal elements of Σ are the singular values of A. Finally850

AU = (E + iF )(X − iY ) = AV = UΣ851

verifies that U and Σ are the factors of the Takagi decomposition. Inclusions of X852

and Y are computed with the methods for symmetric eigendecomposition presented853

in Section 6.854

We show some computational results in Figure 12. The median relative errors of U in855

the left and Σ in the right graph computed by the three methods are the solid lines in856

red, black, and blue, respectively. As for the inclusions of U the third method seems857

best. In any case, as expected by our rule of thumb (2.1), the relative error increases858

with the condition number. The reason for the small peak at cond(A) ≈ 10 is not859

clear to us, it may be due to the construction of the test matrices. For Σ all three860

methods compute bounds of almost maximal accuracy.861

However, the numbers are slightly misleading because, for example, most elements862

of U are enclosed with high accuracy, and only few corresponding to the smallest sin-863

gular values are weaker. Thus the median reflects mostly the relative error of the864

better inclusions. Therefore, we display for both U and Σ the maximum relative865

errors as well, the dashed lines. Figure 12 shows that for the first method and condi-866

tion number beyond about 109 some inclusions have relative error close to 1, for the867

second method beyond 1014, where for the third method even for cond(A) . 1015 the868

inclusions seem to contain some information.869

For the singular values Σ below condition number 109 all bounds are of maximal870

accuracy, with some deterioration for larger condition numbers. The results of all871

three methods are of similar quality.872
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Fig. 12. The Takagi decomposition, solid line median, dashed line maximum relative error
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