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On a quality measure for interval inclusions
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Abstract Verification methods compute intervals which contain the solution
of a given problem with mathematical rigor. In order to compare the quality
of intervals some measure is desirable. We identify some anticipated properties
and propose a method avoiding drawbacks of previous definitions.
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1 Main result

Verification methods produce mathematically rigorous error bounds for the so-
lution of a numerical problem including the proof that the problem is solvable.
For an overview of verification methods cf. [4l[7] and [in Japanese] [5].

When developing a new verification method, it is desirable to have some
measure for the quality of an inclusion. We consider an inclusion interval X
as error bounds for an unknown real quantity Z, i.e., £ € X. Depending on the
situation, we use synonymous notations for an inclusion interval, namely

X=[z,7] ={zeR:z<ax <z} =
myry:={zeR:m—-r<z<m+r}.
A colloquial notation is {(m,r) = m £ r. Consider

X::=[-1,2], Xy:=[-1,1], and X3:=][1,2].
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All three intervals may be considered as not giving much information, only
X3 proves at least that Z is positive. Now let A be a symmetric matrix with
|A|l = 10 and let the X, be inclusions of an eigenvalue. Then all three
inclusions X, reveal that the condition number of A is at least 5 - 10°.

It follows that the quality of an interval inclusion depends on the context.
Having said that, it may nevertheless be desirable to define a measure for the
quality of an interval, knowing the pros and cons of such an attempt. There
is some folklore about such measures, however, to that end we found only one
paper in the literature, see below.

Let 0 : RxRso — Rxq be such a function for the quality o(m, r) of (m,r).
The letter ¢ may remind of “relative error”, however, we prefer the wording
“quality” because mathematically ¢ may be interpreted as relative error, but
only in a certain sense (seee below). Note that o(m,r) = 0 means best quality.
We first list some desirable properties of such a function:

I) non-negativity  o(m,r) =0
11
111
v
A%

zero value o(m,r) =0 < r=0
scaling invariance o(X) = p(aX) for 0 #aeR

monotonicity for fixed m ' >r = o(m,r') > o(m,r)

)
)
)
) monotonicity for fixed r |m/| > |m| = o(m/,r) < o(m,r)

The rationale is as follows. Properties I) and II) are clear. As for III), the
quality of an inclusion interval X may well depend on the scaling for different
settings, see the above example. However, without knowing any setting, invari-
ance with respect to scaling seems the only option. For the monotonicity, an
interval with constant midpoint but increasing radius gives less information,
and with constant radius but increasing absolute value of the midpointﬂ the
interval contains, in some sense, more information.

Moreover, we may demand g to be continuous in m and r exept for m = r =
0 because for r > 0 it follows 0(0,0) < (0,7) = 0(0,1). As for differentiability
note that o(m,r) = o(—m,r) would imply ;—i(o,r) = 0 for all » > 0, but then
V) and I) lead to a contradiction. Therefore

VI) continuity  o(m,r) is everywhere continuous except for m =r =0

VII) differentiability o(m, ) is everywhere differentiable except for m = 0

Having listed the desired properties, we look for possible candidates. An ob-
vious choice is to use the midpoint m of X = (m,r) as an approximation and
define p(X) to be the largest relative error of x € X with respect to m:

xr—m T—x

(1.1)

o1(m,r) := max

implyin, X) =
' plying  01(X) P
All properties I) to VII) are satisfied, however, there is an obvious problem for
zero midpoints. If our unknown real quantity & is equal to zero, then p;(0,7)
is infinite no matter how small the radius r is.

1 Note that III) implies o(m,r) = o(—m, 7).
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A remedy is to use the maximum over the minimal relative error against
some T € X, i.e.,

r—x

(1.2)

X) := mi
02(X) = minmax

T

That is the definition in [3], the only reference we found. It is shown that

L if |m|—r=0
_ ) Im
02(m, ) = 2r

max(|m —r|,m +r)

otherwise .

The properties I) to VI) are satisfied for g2, however, differentiability VII) is
not met:

1+e ife<0
02(1,14+¢e) = 1
2 ) e fex0.
1+e/2

As has been mentioned there is some folklore about quality measures, in par-
ticular B
r—x

X)i=—

(1.3)
with 0/0 := 0. That avoids the zero midpoint problem, but for all intervals X
containing zero z < 0 < T implies

T+ |z

0eX: Qg(X)=|x|+|=1.

5]

The properties I) to VI are satisfied, but g3 is not differentiable for one end-
point zero:

1 ife>0

0.¢]) =

w0 e,
e

In order to find a function g sharing all properties I) to VII) but avoiding the
problems for zero midpoint we use, in view of go(m,r) = o(—m,r), the ansatz

for constants «, 3,7, § to be determined. Property II) implies o = 0 and v # 0,
so that using III) and some scaling we can restrict our attention to

r

m,r) =1 ————

o(m,r) =1 I

with a scaling factor ¢ defining the maximum of o. Rewriting o(m,r) =
-1

Y (cp@ + 1) it is easy to verify that this definition satisfies all proper-

ties I) to VII) for any ¢ > 0. In order to find a suitable choice for ¢ we look
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at intervals with fixed left endpoint x = —1 and right endpoints —1 < T < 1,
that is X, :=<{(=1+r,r) for 0 <r < 1. Then
Yr
X)) — 2
o(Xr) o(l=r)+r
A good choice may be ¢ = 1 in which case o(X,) grows linearly. Hence,
Yr
m,r) = )
o(m.) |m| + r

Now it is a matter of taste to fix ¢». We may feel that o([0,1]) = 1 should hold.
That implies ¥ = 2, so that we define
2r

os(m,r) := T (1.4)

implying o4(m,r) < 2 for all m,r. For X = [z, Z] it follows

).

the minimal relative error of the midpoints against each other. In verification
methods mag(X) := max{|z| : z € X} is called the magnitude of an inter-
val. Hence p4(X) = diam(X)/mag(X). An advantage over g3 is that no case
distinction is necessary in the computation. An almost identical formulation

0y (X) =

was suggested by Demmel [1I]. It is equal to g4 except that it is tailored to
IEEE754 [2] arithmetic standard by using the underflow unit n = 271074,

In Figure [I.1] the four definitions g, are compared for fixed midpoint m = 1
and for fixed left endpoint x = —1.

The first function g; [relative error against midpoint, red] shows a linear
behavior for fixed midpoint and growing radius, and tends to infinity if the
midpoint approaches zero. As discussed the second function gy [Kreinovich’s
definition, black with circles] it is not differentiable at m = r. The “folklore”
function g3 [green] is not differentiable for zero endpoint and flat equal to the
maximal value 1 for intervals containing zero, no discrimination in terms of
small or large radius. Finally, the new definition g4 [blue] is, as g1, linear for
fixed midpoint and growing radius, and everywhere differentiable except for
m = 0.

The first three definitions coincide in the left picture for X = (1,r) with
r € [0,1], and in the right picture for X = [—1, —1+d] with d € [0, 1]. In both
pictures Kreinovich’s definition p3 and the proposed ¢4 coincide for r > 1
and d > 1, respectively. So the proposed measure g, differs from the other
definitions for r € [0, 1] and d € [0, 1] in the left and right picture, respectively.
This ensures differentiability everywhere except zero midpoint.

The definition p4(X) = % with the interpretation 3 = 0 can be used

for complex intervals as well. It will replace the function relerr in INTLAB
[6], the Matlab/Octave toolbox for reliable computing.

T—x| |T—x

)

04(X) = min (

xT T

Tz
max(|zl, 7], n)
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Fig. 1.1: The functions p, for fixed midpoint m = 1 (left) and fixed left

endpoint -1 (right)
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