
published in Journal of Computational and Applied Mathematics (JCAM) 199(2): 199–206, 2006

SUPER-FAST VALIDATED SOLUTION OF LINEAR SYSTEMS

SIEGFRIED M. RUMP∗ AND TAKESHI OGITA†

Abstract. Validated solution of a problem means to compute error bounds for a solution in finite precision. This includes

the proof of existence of a solution. The computed error bounds are to be correct including all possible effects of rounding

errors. The fastest known validation algorithm for the solution of a system of linear equations requires twice the computing

time of a standard (purely) numerical algorithm. In this paper we present a super-fast validation algorithm for linear systems

with symmetric positive definite matrix. This means that the entire computing time for the validation algorithm including

computation of an approximated solution is the same as for a standard numerical algorithm. Numerical results are presented.

1. Introduction. Standard methods for the computation of rigorous error bounds for the solution of a
linear system Ax = b are based on the Krawczyk operator K(X) := x̃+R(b−Ax̃)+(I−RA)X. Here x̃ ∈ Rn

denotes an approximate solution of the linear system, R denotes an approximate inverse of A, and X ∈ IRn

an n-dimensional interval vector supposed to be a potential inclusion of the solution A−1b. If ‖I −RA‖ < 1
for some norm, then [5] K(X) ⊆ X implies A−1b ∈ X. The computational effort is 2n3 operations1 to
compute R and 2n3 operations each to compute a lower and upper bound for I −RA, respectively.

Possibly some iterations Xk+1 := K(Xk) are necessary to find some X := Xk with K(X) ⊆ X. In practice
this either happens after few iterations, or the verification process fails. This implies a total computing time
of 6n3 +O(n2) operations, 9 times as much as for Gaussian elimination with 2

3n3 +O(n2) operations. We
mention that in practice the measured factor is about 6 to 7 because matrix-matrix multiplication is faster
than 3 times LU -decomposition.

Recently, a validation method was presented in [9] based on an LU -decomposition. The additional amount
of work for the validation process is the computation of approximate inverses of L and U . This implies
a total computing time of 2 · 2

3n3 + O(n2) operations, or twice the time of Gaussian elimination. We call
an algorithm with this property fast, i.e. the validation process costs as much as the computation of an
(approximate) solution by a standard numerical algorithm.

One may ask whether it is possible to compute rigorous error bounds in the same (total) computation time
as a standard numerical method, so that validation comes essentially for free. We call an algorithm with
this property super-fast.

There are such algorithms for some classes of matrices. For example, for A being an M -matrix, the following
was presented in [6]. Denote the n-vector of all 1’s by e, and let ỹ ∈ Rn. Then A−1 > 0 implies ‖A−1‖∞ =
‖A−1e‖∞ = ‖ỹ + A−1(e−Aỹ)‖∞, and a standard estimation yields

‖A−1b− x̃‖∞ ≤ ‖A−1‖∞‖b−Ax̃‖∞ ≤ ‖ỹ‖∞
1− ‖e−Aỹ‖∞ ‖b−Ax̃‖∞.(1)

The computational effort to evaluate the right hand side of (1) is O(n2) and therefore negligible compared
to a factorization of A. The latter can be used to compute ỹ as an approximation of the solution of Ay = e,
which requires O(n2) operations as well. So this is a super-fast algorithm for bounding the solution of Ax = b

in case A is an M -matrix. Clearly, the approach can be used when the signs of the entries of A−1 are known,
for example for totally positive matrices and others.

∗ Institute for Realible Computing, Hamburg University of Technology, Schwarzenbergstraße 95, Hamburg 21071, Germany

(rump@tu-harburg.de)
† Graduate School of Science and Engineering, Waseda University, 3-4-1 Okubo Shinjuku-ku, Tokyo 169-8555, Japan
1addition, subtraction, multiplication, division or square root are counted as one operation

1

In this paper we will present a super-fast algorithm for the solution of a system of linear equations with
symmetric positive definite matrix. We assume an arithmetic according to IEEE 754 which is available
nowadays on many if not most computers. Moreover, to compute narrow bounds, accumulation of inner
products in some higher precision is used.

Denote the floating point result of a computation by fl(·). This means especially that a relative rounding
error unit u and an underflow constant η are given such that

fl(a± b) = (a± b)(1 + δ1) = (a± b)/(1 + δ2),
f l(a ◦ b) = (a ◦ b)(1 + δ1) + η1 = (a ◦ b)(1 + δ2) + η2 for ◦ ∈ {·, /},
f l(a1/2) = a1/2(1 + δ1) = a1/2/(1 + δ2)

(2)

for all floating numbers a, b with constants |δi| ≤ u and |ηi| ≤ η. For double precision and rounding to nearest
we have u = 2−53 and η = 2−1074. Note that the underflow correction is only necessary for multiplication
and division. This is because the square root cannot underflow, and addition and subtraction is exact in
case of underflow.

The paper is organized as follows. Following we derive some refined analysis for Cholesky decomposition.
Based on that, we present a super-fast algorithm for symmetric positive definite linear systems in Section 3,
prove its correctness and discuss its behavior. We finish the paper with computational results.

2. Some error estimates. We first proceed as in standard error analysis. Assume a symmetric matrix
A = (aij) to be given and consider the following algorithm.

for j = 1 : n

for i = 1 : j − 1

rij = (aij −
i−1∑
k=1

rkirkj)/rii

end

rjj = (ajj −
j−1∑
k=1

r2
kj)

1/2

end

Algorithm 2.1. Cholesky decomposition

This is Cholesky’s decomposition which is, up to order of evaluation, identical to any library implementation.
We do not assume A to be positive definite; this will follow from later considerations. We say Algorithm
2.1 runs to completion if all square roots are real. In this case and in exact arithmetic an upper triangular
matrix R is produced with RT R = A.

When executed in finite precision, and if Algorithm 2.1 runs to completion, then approximate R̃ is produced
with R̃T R̃ = A + ∆A. The residual ∆A satisfies the error estimates [3, (10.4)f.]

∣∣∣∣aij −
i∑

k=1

r̃kir̃kj

∣∣∣∣ ≤ γi

i∑
k=1

|r̃ki| |r̃kj | for i < j and

∣∣∣∣ajj −
j∑

k=1

r̃2
kj

∣∣∣∣ ≤ γj+1

j∑
k=1

r̃2
kj .

(3)

As usual, define γk := ku/(1 − ku). Those estimates are valid, no matter what the order of evaluation in
Algorithm 2.1 is, barring overflow and underflow. Using the symmetry and (3) implies

R̃T R̃ = A + ∆A with |∆A| ≤ diag(γ2, . . . , γn+1)|R̃T | |R̃|.
It does not necessarily imply A to be positive definite. If Algorithm 2.1 runs to completion, then ajj ≥ 0.
So following the analysis in [1], see also [3, Theorem 10.5], we obtain

‖r̃j‖22 = r̃T
j r̃j ≤ ajj + γj+1|r̃T

j | |r̃j |,
2

where r̃j denotes the j-th column of R̃. So we have a rigorous estimation of the growth factor of Cholesky
decomposition, although all computations are performed in floating point. It follows

‖r̃j‖22 ≤ (1− γj+1)−1ajj =: dj .

Define the vector d by dj := (γj+1(1− γj+1)−1ajj)1/2. Then, with k = min(i, j),

|∆aij | ≤ γk+1|r̃T
i | |r̃j | ≤ γ

1/2
i+1‖r̃i‖2γ1/2

j+1‖r̃j‖2 ≤ didj ,

so that

‖∆A‖2 ≤ ‖ |∆A| ‖2 ≤ ‖dd
T ‖2 = d

T
d =

n∑

j=1

γj+1(1− γj+1)−1ajj =
n∑

j=1

γj+1dj .

Lemma 2.2. Let A = AT be given, and suppose Algorithm 2.1 runs to completion when executed in finite
precision. Then, barring overflow and underflow, the computed matrix R̃ satisfies

R̃T R̃ = A + ∆A with ‖∆A‖ ≤
n∑

j=1

ϕj+1ajj ,

where ϕk := γk(1− γk)−1.

To avoid bad scaling it is preferable to replace A by D−1AD−1, where D := diag(A)1/2 [12, 1]. Van der
Sluis proved this scaling to be nearly optimal (up to a factor n). To avoid rounding errors one may replace
D by a diagonal matrix D̃ with suitable powers of 2 on the diagonal. This improves a theorem by Demmel
[1].

Theorem 2.3. Suppose Algorithm 2.1 is applied to a symmetric matrix A with ajj ≥ 0, and set ϕk :=
γk(1−γk)−1. Then for execution in finite precision and barring overflow and underflow the following is true:

i) If λmin(A) ≥
n∑

j=1

ϕj+1ajj, then Algorithm 2.1 runs to completion.

ii) If λmin(A) < −
n∑

j=1

ϕj+1ajj, then Algorithm 2.1 ends prematurely with an imaginary square root.

Proof. To i) assume r̃jj ≥ 0 for 1 ≤ j ≤ k−1 and r̃kk to be purely imaginary. Then the previous estimates
are still true for

R̃H
k R̃k = Ak + ∆Ak with real symmetric ∆Ak and ‖∆Ak‖2 ≤

k∑

j=1

ϕj+1ajj ,

where the subindex k refers to the upper left k×k submatrix. So standard perturbation theory of eigenvalues
of symmetric matrices and λmin(R̃H

k Rk) < 0 implies

λmin(Ak) ≤ λmin(R̃H
k R̃k) + ‖∆Ak‖2 <

k∑

j=1

ϕj+1ajj ≤
n∑

j=1

ϕj+1ajj ,

and the interlacing theorem yields a contradiction.

To ii) assume Algorithm 2.1 runs to completion. Then R̃T R̃ = A + ∆A and

λmin(A) ≥ λmin(R̃T R̃)− ‖∆A‖2 ≥ −
n∑

j=1

ϕj+1ajj .

3

3. Super-fast verification for symmetric positive definite matrices. Our method computes a
Cholesky decomposition of a shifted matrix A − cI rather than A itself, where the shift c will be based on
Theorem 2.3. If the floating point decomposition runs to completion, this will imply a lower bound on the
smallest singular value of A and thereby proves positive definiteness of A.

For a given linear system Ax = b with symmetric matrix define α :=
n∑

j=1

ϕj+1ajj . Suppose α > 0. If

Algorithm 2.1 applied to A− 2αI runs to completion, then Theorem 2.3 implies

λmin(A)− 2α = λmin(A− 2αI) ≥ −
n∑

j=1

ϕj+1(ajj − 2α) ≥ −
n∑

j=1

ϕj+1ajj = −α.

This implies λmin(A) ≥ α and A to be symmetric positive definite. Therefore σmin(A) = λmin(A) =
‖A−1‖−1

2 ≥ α. Hence, for any x̃ ∈ Rn,

‖A−1b− x̃‖∞ ≤ ‖A−1(b−Ax̃)‖2 ≤ ‖A−1‖2 ‖b−Ax̃‖2 ≤ α−1‖b−Ax̃‖2.(4)

That means that (4) is valid for any x̃ ∈ Rn provided that the Cholesky decomposition of A− 2αI, executed
in pure floating-point, runs to completion. This leaves us with the problem of computing an approximate
solution x̃ based on a given (approximate) Cholesky decomposition of A− 2αI.

Denote B := A−2αI and assume x̃ is computed by forward and backward substitution using the factorization
of B. If as previously mentioned, diagonal scaling is applied, then ajj ∼ 1 and α is of size

∑
ϕj+1 ∼ n2/2 ·u.

Hence, x̃ and A−1b differ by approximately cond(A)α. For ill-conditioned matrix A we need some iterative
refinement. Consider

xk+1 := xk + B−1(b−Axk)(5)

with x0 := x̃. In practical application, multiplication of B−1 is, of course, replaced by forward and backward
substitution using the Cholesky factors of B. Assuming ‖2αA−1‖ < 1, a standard computation yields

xk+1 = xk + (I − 2αA−1)−1A−1(b−Axk)
= xk + (I + 2αA−1(I − 2αA−1)−1)A−1(b−Axk)
= A−1b + 2αA−1(I − 2αA−1)−1(A−1b− xk).

Abbreviating c := ‖2αA−1‖ shows

‖xk+1 −A−1b‖ ≤ c

1− c
‖xk −A−1b‖ ≤

(
c

1− c

)k+1

‖x̃−A−1b‖.

So the residual iteration (5) with perturbed iteration matrix B = A − 2αI instead of A behaves similar to
the usual residual iteration provided ‖2αA−1‖ < 1, which means α < 1

2σmin(A).

Estimation (4) will in general be very poor because α is small. Indeed, α is of order ‖b‖u, and ‖b− Ax̃‖ of
order ‖b‖u, so the right hand side of (4) is of order 1. To improve the quality of (4) we store the approximate
solution in two parts x̃ and ỹ. This approach was used in [10] and later called “staggered correction”. The
technique makes only sense when a more accurate dot product is available. Then

A−1b− x̃ = ỹ + A−1(b−Ax̃−Aỹ),

and so (cf. [7])

|A−1b− x̃| ≤ |ỹ|+ ‖A−1‖2‖b−Ax̃−Aỹ‖2e
≤ |ỹ|+ α−1‖b−Ax̃−Aỹ‖2e,

(6)

where e denotes the n-vector of all 1’s. To apply (6), we first improve x̃ by residual iteration, where the
residual Ax̃ − b is computed in higher precision. This can be performed using the algorithms proposed in

4

[8]. For the computation of an error bound for the residual ‖b−Ax̃−Aỹ‖∞ in 6) working precision suffices.
The inclusion algorithm is given in Algorithm 3.1. Here setround(i) switches the rounding mode to nearest
for i = 0, towards +∞ for i = 1 and towards −∞ for i = −1. This implies that all floating point operations
are calculated in that rounding mode until the next call of setround. Based on this is the following INTLAB
[11] implementation. Step 1) is based on van der Sluis’ result on optimal symmetric diagonal scaling.

Input: A = AT ∈ Rn×n with ajj > 0, b ∈ Rn

1) If max ajj/ min ajj > n

D := diag(dj) with dj = 2ˆ(−round(0.5 log2 ajj))
A = DAD; b = Db; scale = 1;

else scale= 0
end

2) setround(+1); α =
n∑

j=1

ϕj+1ajj ;

setround(−1); B = A− 2αI

setround(0)
3) R = chol(B)
4) x = R\(RT \b)

iterate x = x + R\(RT \dot(b−Ax)) until “sufficiently” accurate
[res, res] = dot♦(b−Ax)
y = R\(RT \res)
y = y + R\(RT \dot(res−Ay))

5) xm = x

xr = |y|+ ‖Ay − [res, res]‖2e/α

if scale, xm = Dxm; xr = Dxr; end

Algorithm 3.1. Super-fast validation algorithm for symmetric (positive definite) matrix

All operations in Algorithm 3.1 are pure floating point except the computation of [res, res] in step 4) and the
computation of xr in step 5). The routine “dot” depicts some method to calculate dot products in higher
precision, preferably doubled working precision, “dot♦” calculates an inclusion of the result. An elegant way
to perform this using only working precision is given in [8]. Note A is only assumed to be symmetric; positive
definiteness is shown a posteriori by Algorithm 3.1.

The calculation of the residual Ay− res is performed in working precision, so the size is of order ‖res‖u ≈ u2

and small enough for a good overall error bound for the solution A−1b. We have to prove that Algorithm
3.1 computes a validated error bound.

Theorem 3.2. Let symmetric A ∈ Rn×n with aii > 0 and b ∈ Rn be given. Assume Algorithm 3.1 runs to
completion. Then, barring overflow and underflow, the matrix A is positive definite and the solution A−1b

of the linear system Ax = b satisfies

|A−1b− xm| ≤ xr

for the computed vectors xm and xr.

Proof. Any computation with the matrix D in steps 1) and 5) is exact since the dj are powers of 2.
Therefore we may assume without loss of generality D = I for the following analysis. Denote the quantities
computed by Algorithm 3.1 by α̃, B̃ etc. Then, due to the rounding in use,

λmin(A)− 2α̃ = λmin(A− 2α̃I) ≥ λmin(B̃)

because α̃ ≥ ∑
ϕj+1ajj > 0. Therefore, because Cholesky decomposition applied to B̃ runs to completion,

5

Table 4.1

Results for A = diag(−1, 2,−1)

n cond(A) iter ratio ratio’ max rel err X

500 1.3e5 3 56 13 3.3e-16
1000 5.0e5 4 67 14 3.3e-16
2000 2.0e6 5 77 16 3.3e-16
5000 1.3e7 9 119 23 3.3e-16

10000 5.0e7 29 326 58 9.0e-15

Table 4.2

Matrices NOS* from structural engineering

name n p cond(A) iter ratio ratio’ max rel err X

NOS2 957 4.3 6e9 12 94 18 6.8e-10
NOS3 960 16.5 7e4 4 1.90 1.36 3.2e-16
NOS6 675 4.8 8e6 4 2.07 1.58 1.1e-13
NOS7 729 6.3 4e9 7 1.39 1.27 1.8e-14

Lemma 2.2 implies

λmin(A)− 2α̃ ≥ λmin(B̃) ≥ −∑
ϕj+1b̃jj ≥ −∑

ϕj+1(ajj − α̃)
≥ −∑

ϕj+1ajj ≥ −α̃,

so that

λmin(A) ≥ α̃ > 0.

Hence, λmin(A) = σmin(A) = ‖A−1‖−1
2 ≥ α̃ > 0, and by (6) and proper use of directed rounding it follows

x̃m − x̃r ≤ x̃ + d̃ ≤ x̃m + x̃r.

4. Numerical results. A standard model problem is the 3-point second difference operator diag(-
1,2,-1). For various dimensions n we generate right hand sides such that the approximate solution is
e = (1, . . . , 1)T . In the following Table 4.1 “ratio” denotes the ratio of the total number of floating point
operations (flops) of our Algorithm 3.1 and the number of flops for Cholesky decomposition (Algorithm 2.1,
chol in Matlab). Note that

• our flop count takes sparsity into account, and
• we use Algorithm 5.3 (Dot2) in [8] for Dot requiring 25k flops for quadruple precision evaluation of

a dot product of length k.

So “ratio” is the ratio in computing time which is achieved when only working precision is available. Note that
the used algorithm from [8] is the fastest available (for example, XBLAS [4] requires 37k flops). The following
column ratio’ displays the ratio in computing time when quadruple precision is available. Furthermore,
cond(A) denotes the estimated condition number by Matlab routine condest, iter the number of iterations
in step 4) of Algorithm 3.1, and max rel err X the maximum relative error over all inclusion components
X = [xm − xr, xm + xr].

The comparison in Table 4.1 is not really fair because the matrix has only bandwidth 2 so that the Cholesky
decomposition requires less than 6n flops. Hence the residual iterations become very expensive. We tuned
the iteration in step 4) of Algorithm 3.1 for high precision error bounds. For less accurate inclusions the
ratios look a little better.

6

Table 4.3

Matrices *BUS from power system networks

name n p cond(A) iter ratio ratio’ max rel err X

662BUS 662 3.7 8.3e5 3 2.17 1.54 3.3e-16
685BUS 685 4.7 5.9e5 3 1.83 1.46 3.3e-16

1138BUS 1138 3.6 1.2e7 4 1.37 1.39 2.2e-16

Table 4.4

Matrices BCSSTK* from static analysis of structural engineering

name n p cond(A) iter ratio ratio’ max rel err X

BCSSTK14 1806 35.1 1.3e10 3 1.28 1.12 1.4e-13
BCSSTK15 3948 29.8 8.0e9 4 1.09 1.06 9.3e-15
BCSSTK16 4884 59.5 7.0e9 3 1.34 1.12 9.4e-15
BCSSTK17 10974 39.1 2.0e10 6 1.24 1.11 2.9e-13
BCSSTK18 11948 12.5 6.5e11 4 1.04 1.03 4.3e-14

We turn to more practical examples. The following matrices are taken from the Harwell-Boing collection
[2]. The first set of examples stem from structural engineering. We now display in addition the average
number p of nonzero entries per row. Except the first row in Table 4.2 the numbers are not so bad. The first
example NOS2 is a band matrix with bandwidth 4 and not too well conditioned. So the increased number
of iterations implies the poor ratio because Cholesky decomposition requires very few flops.

Finally, we show some examples of larger dimension. They arose in power system networks and struc-
tured engineering. The results show the expected behavior that for increasing dimension the ratios (slowly)
approach 1.

REFERENCES

[1] J.B. Demmel. On floating point errors in Cholesky. LAPACK Working Note 14 CS-89-87, Department of Computer

Science, University of Tennessee, Knoxville, TN, USA, 1989.

[2] I.S. Duff, R.G. Grimes, and J.G. Lewis. User’s guide for Harwell- Boeing sparse matrix test problems collection. Technical

Report RAL-92-086, Computing and Information Systems Department, Rutherford Appleton Laboratory, Didcot,

UK, 1992.

[3] N.J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM Publications, Philadelphia, 2nd edition, 2002.

[4] X. Li, J. Demmel, D. Bailey, G. Henry, Y. Hida, J. Iskandar, W. Kahan, S. Kang, A. Kapur, M. Martin, B. Thompson,

T. Tung, and D. Yoo. Design, Implementation and Testing of Extended and Mixed Precision BLAS. ACM Trans.

Math. Softw., 28(2):152–205, 2002.

[5] A. Neumaier. Interval Methods for Systems of Equations. Encyclopedia of Mathematics and its Applications. Cambridge

University Press, 1990.

[6] T. Ogita, S. Oishi, and Y. Ushiro. Fast verification of solutions for sparse monotone matrix equations. volume 15 of

Comput. Suppl., pages 175–187. Springer, Wien, 2001.

[7] T. Ogita, S. Oishi, and Y. Ushiro. Computation of sharp rigorous componentwise error bounds for the approximate

solutions of systems of linear equations. Reliable Computing, 9(3):229–239, 2003.

[8] T. Ogita, S.M. Rump, and S. Oishi. Accurate Sum and Dot Product. SIAM Journal on Scientific Computing (SISC),

26(6):1955–1988, 2005.

[9] S. Oishi and S.M. Rump. Fast verification of solutions of matrix equations. Numer. Math., 90(4):755–773, 2002.

[10] S.M. Rump. Kleine Fehlerschranken bei Matrixproblemen. PhD thesis, Universität Karlsruhe, 1980.

[11] S.M. Rump. INTLAB - INTerval LABoratory. In Tibor Csendes, editor, Developments in Reliable Computing, pages

77–104. Kluwer Academic Publishers, Dordrecht, 1999.

[12] J.H. Wilkinson. A Priori Error Analysis of Algebraic Processes. Proc. International Congress Math. (Moscow: Izdat

Mir,), pages 629–639, 1968.

7

