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FAST COMPUTATION OF ERROR BOUNDS FOR ALL EIGENPAIRS
OF A HERMITIAN AND ALL SINGULAR PAIRS OF A
RECTANGULAR MATRIX WITH EMPHASIS ON
EIGEN- AND SINGULAR VALUE CLUSTERS

SIEGFRIED M. RUMP* AND MARKO LANGEf

Abstract. We present verification methods to compute error bounds for all eigenvectors of a
Hermitian matrix as well as for all singular vectors of a rectangular real or complex matrix. In case
of clusters these are bounds for an orthonormal basis of the invariant subspace or singular vector
space, respectively. Individual error bounds for all eigenvalues and singular values including clustered
and/or multiple ones are computed as well. The computed bounds do contain the true result with
mathematical certainty, and the algorithms apply to interval data as well. In that case the computed
bounds are true for every real/complex matrix within the tolerances. The computational complexity
to compute inclusions of all eigen/singular pairs of an n X n matrix or m x n matrix is O(n?) or
O(mn?) operations, respectively.

Key words. Verification method, eigenvalue, singular value, eigenvector, invariant subspace,
all eigenpairs, all singular pairs, symmetric matrix, Hermitian matrix, unitary matrix, INTLAB

AMS subject classifications. 65G20, 65F15

1. Introduction and notation. In this note we derive a verification method to
compute bounds for all eigenvalues and -vectors of a Hermitian matrix. The principles
of that method are then used to compute error bounds for all singular values and
vectors of a rectangular matrix. The total computing time for an n x n or m x n
matrix is O(n3) or O(mn?) operations, respectively.

Readily applicable bounds for all eigenvalues of a Hermitian n X n matrix fol-
low directly from perturbation theory [8, 9]. There are many aspects of perturbation
bounds for the spectrum of self-adjoint operators, in particular based on the Rayleigh
quotient and Rayleigh/Ritz bounds. Indeed, some of the most well known pertur-
bation results for eigenvalues of Hermitian matrices can be traced back to Temple’s
famous inequality on Rayleigh quotients [35, 14]. A short review over a priori, a pos-
teriori and mixed type bounds on eigenvalues of self-adjoint operators is given, for
instance, in [37].

The famous works by Davis and Kahan yield generalized bounds for multiple
eigenvalues and their eigenvectors [11, 6]. Naturally, many subsequent related works
introduced further improvements. In particular we want to mention the generalization
of quadratic residual bounds for multiple eigenvalues [34, 38] similar to Kato-Temple’s
inequality [14].

In this note we are concerned with verification methods [26, 31, 27], i.e., meth-
ods to compute completely rigorous error bounds for the solution of a problem in
floating-point arithmetic. The correctness of the bounds includes all procedural and
in particular all rounding errors due to the use of finite precision floating-point arith-
metic. In regard to the problem of computing bounds for all eigenpairs of a Hermitian
matrix, this leads to two major limitations.

One limitation is that, although eigenvalues of self-adjoint operators are always
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2 SIEGFRIED M. RUMP AND MARKO LANGE

perfectly well conditioned, eigenvectors may be ill-posed. For instance, a double
eigenvalue corresponds to a 2-dimensional invariant subspace X, but for any x € X
there is an arbitrary small perturbation of the input matrix such that x is a unique
eigenvector. As a consequence, in the presence of rounding errors, it is therefore not
possible to compute tight verified bounds for eigenvectors to numerically inseparable
eigenvalues. Instead, in that case our algorithm will compute verified bounds for the
invariant subspace corresponding to a cluster of eigenvalues. A similar statement is
true for singular vectors.

The second limitation is about the applicability of the respective perturbation
bounds. Some majorization bounds for the given eigenvalue bounds have to be evalu-
ated in floating-point arithmetic. As a consequence, a mathematically provably tighter
bound might not lead to a better inclusion when used in the context of verification
methods. We will elaborate on this further in the respective sections.

This note is organized as follows. We first give some historical remarks and a very
brief overview of verification methods for computing rigorous bounds for eigenpairs of
Hermitian matrices. Subsequently we discuss some auxiliary routines for computing
an upper and lower bound of the singular values of a Hermitian or a rectangular ma-
trix, and for a given subspace we estimate the distance to a matrix with orthonormal
columns spanning that space. In Section 4 our method to compute error bounds for
all eigenvalues is given. The next section presents a method to improve eigenvalue ap-
proximations beforehand and to refine the computed bounds. Both improvements are
based on Rayleigh quotients and will also be applied to singular values. The usage of
other known bounds is discussed as well. Next, our method to compute error bounds
for all eigenvectors and/or invariant subspaces of a Hermitian matrix is presented.
At the end of Section 6 we give some comparisons between the presented method for
symmetric/Hermitian matrices with the methods in [33] for general matrices.

Finally, we present our fast method for computing error bounds for all singular
values and vectors of a general rectangular matrix. The note is closed by an appendix
showing how to accelerate the Matlab code.

2. Short history and notation. The first verification method for the algebraic
eigenproblem is presented by Krawczyk [16] who applies his method for nonlinear
systems [17] to Az — Az = 0 with some normalization of z. Krawczyk’s method,
however, is a refinement of initially provided bounds. Moore [25] proposed to use
Brouwer’s fixed point theorem and proof of nonsingularity of some matrix to derive
an existence test. Krawczyk’s operator and Moore’s ansatz are already contained in
[12, p. 12].

One might apply that method n times, but besides the complexity O(n?) it fails
for multiple eigenvalues and cannot guarantee that all eigenvalues are covered. Several
publications concentrate on verified error bounds on one eigenpair, for example [7, 36];
in [1] a method is introduced for double eigenvalues.

Historically, the next step are verification methods for multiple eigenvalues and
corresponding invariant subspaces introduced in [30]. Bounds are computed regardless
of the Jordan structure, but for only one cluster. Based on that a verification method
for computing bounds for all eigenpairs including multiple eigenvalues and clusters
of a general real or complex matrix is introduced in [33]. It uses a simultaneous
preconditioning technique for all eigenvalues reducing the total computational effort
to O(n?®) operations.

An efficient algorithm to compute tight error bounds for all simple eigenpairs of
a symmetric positive definite matrix is given in [23], extending the work in [22]. How-
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ever, the method works only for simple, not for clusters and/or multiple eigenvalues.
Moreover, bounding techniques for the respective invariant subspaces are missing. In
this note we fill these gaps. In addition we prove similar bounds for singular values
and vectors of rectangular matrices as well.

Recently another method has been published in [10] for computing inclusions of
a few eigenvalues in some region together with their eigenvectors of the generalized
Hermitian eigenproblem. The method works for clusters and uses complex moments
and the Rayleigh-Ritz procedure. However, according to the authors it is not suitable
to compute inclusions of all eigenvalues and -vectors.

This note presents fast verification methods for the computation of error bounds
for all eigenvalues and eigenvectors of a general symmetric or Hermitian matrix, and
error bounds for all singular values and vectors of a general real or complex rectangular
matrix, both with special emphasis on clustered eigenvalues and/or singular values.
The presented methods are stable, the bounds are tight. They are based on a general
estimation of the distance of a nearly orthogonal/unitary basis of a subspace to a
truly orthogonal /unitary basis together with perturbation bounds for invariant and /or
singular subspaces.

The methods apply to real or complex interval matrices as well. In that case the
bounds are valid for each individual symmetric or Hermitian matrix within the given
tolerances. The method in [33] covers the first case, i.e., computes bounds for all
eigenpairs of a general real or complex matrix. However, the methods to be presented
take advantage of the orthogonality /unitarity of the eigenvectors and outperform the
general algorithm in [33] in case of not so well separated clusters. Moreover, they are
faster and apply to singular pairs as well.

Denote by K € {R,C} the field of real or complex numbers. We use the short
notation M, ;, for the set of (real or complex) n x k matrices, and use M, if k = n.
The n x n identity matrix is denoted by I,,, where the subindex is omitted if clear
from the context. The singular values of a matrix A € M, ,, with m > n are denoted
by 01(A) > ... > 0,(A), and throughout this note || - || denotes the spectral norm,
i.e., the largest singular value. For brevity, we use [n] :={1,...,n} for n € N.

An introduction to verification methods can be found in [26, 31, 27]. Error bounds
are computed using interval arithmetic, and we will use boldface letters for interval
quantities. Not much knowledge about verification methods and/or interval arith-
metic is necessary to follow the exposition, only familiarity with Matlab notation.
Also, the representation of intervals, for example infimum-supremum or midpoint-
radius, is not important: throughout this note we only use the inclusion property,
namely, that interval operations op € {+, —, -, /} are defined such that for compatible
interval quantities A, B

(2.1) VA€ AVB € B: AopBeAopB

is satisfied. For details see [26, 31, 27]. We will use Matlab notation [21] and INTLAB
[29], the Matlab/Octave toolbox for reliable computing. For M € M, (K) and nonneg-
ative R € M, the command midrad(M,R) is a superset of {A € M,,(K): |[A—M| < R}
with entrywise comparison and absolute value. Moreover, X = f(A) for an interval
quantity A and the induced function f implies that f(A) € X for all A € A.

For a scalar interval X, the magnitude is defined by max{|z| : z € X} > 0. The
definition applies entrywise to vectors and matrices so that B = mag(A) satisfies
|A;;| < Byj;, and similarly, the mignitude B = mig(A) satisfies 0 < B;; < |A;;]| for all
A€ A and all 4,7, cf. [26]. In both cases B is a nonnegative vector/matrix.

This manuscript is for review purposes only.
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4 SIEGFRIED M. RUMP AND MARKO LANGE

3. Routines for verified singular value bounds. In the sequel we need upper
bounds for the spectral norm of Hermitian H € M,, and of general B € M, as well
as a lower bound on the smallest singular value of X € M, ;. In the latter case the
matrix X has usually nearly orthonormal columns.

For general B € M,, we may use ||B|| < /||B|1]|Bl|co- A slightly better bound
is obtained as follows. For Hermitian H € M, and every positive vector &, Perron-
Frobenius Theory [9] and a theorem by Collatz [5] give

(3:-1) | < ] = r(H]) < o L

1<i<n &

where |H| denotes the matrix of absolute values and r denotes the spectral radius. A
good choice for Z is obtained by few power iterations for |H|. For general B € M,, we
use |B||? = r(B*B). Executable Matlab/INTLAB code for general and Hermitian,
point or interval matrix is as follows.

function N = NormBnd(A,herm)
% |IAll <= N for point or interval matrix A
% if herm=true, then A is Hermitian
x = ones(size(A,1),1);

M= [12];
iter = 0;
A = mag(A);

while ( abs(diff(M)/sum(M))>.1 ) && ( iter<10 )
iter = iter+i;

y = Axx;
if “herm, y = A’*y; end
X =y./x;

M = [min(x) max(x)];
scale = max(y);
x = max( y/scale , le-12 );

end
if herm
N = mag((intval (A)*x)./x);
else
N = mag(sqrt( (A’*(intval(A)*x)) ./ x ));
end

Basically, the code is self-explanatory. The upper bound of ||A]| is computed based
on an approximation x of the Perron root of mag(A) € M,,. An operation is executed
as an interval operation if at least one operand is of type intval. Therefore, the
type cast intval(A) in the final computation of N ensures that interval operations
are used before taking the magnitude of the interval result.! As a consequence, N is a
true upper bound for || A||2 for all A € A. The last statement in the while-loop ensures
that the components of x do not become too small. We mention that the performance
can be improved by using directed roundings rather than interval operations, see the
appendix. That is because the interpretation overhead, in particular for user-defined
data types, is significant. For better readability we refrain from doing this here and
leave it at giving comments in the appendix.

IThe type cast intval(A) does not change A if already of type intval.
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X

Fic. 1. Distance to orthonormal subspace.

For smaller dimension the bound computed by Algorithm NormBnd is some 20%,
for larger dimensions some 8% better than /|| B||1]|Bl/cc. The latter bound is usually
faster to compute, so if not critical we recommend this simple bound. However,
Algorithm NormBnd may be useful to separate clustered eigenvalues.

Let X € My, , with m > n be given. Then || X*X — I|| < a < 1 implies [32] the
singular value bounds

1
< O'i(XJ'_) <

1
V1+ao TVl -«

for 1 <i < n where X' denotes the pseudoinverse. Note that /1 — « is a very good
lower bound for the smallest singular value if X has nearly orthonormal columns.
Executable Matlab/INTLAB code for a point or interval input matrix is as follows.

(3.2) Vi—a<o(X)<vV1l+a and

function s = singmin(X)
% s <= sigma_min(X) for rectangular X
alpha = min( 1 , NormBnd( eye(size(X,2))-X’*intval(X) , true ) );
s = mig( sqrt(l-intval(alpha)) );

Using the minimum in the computation of alpha implies the trivial lower bound s = 0
in case a > 1. In our applications the input matrix has always nearly orthogonal
columns so that likely the computed lower bound by Algorithm singmin is very close
to 1. For general matrices, also methods in [31, Section 10.8] may be used.

To estimate the distance to an orthonormal subspace of eigenvectors and singular
vectors we use the following lemma.

LEMMA 3.1. Let X,Y € M,y,,, with m > n be given. Define o := ||I — X*X||
and § := || X =Y. Let V be an n-dimensional subspace of the R™ that contains all
columns of Y. Then there exists QQ € M, , with Q*Q = I whose columns span V and

1Q — X|| < o + V20

Proof. Let P be the projection onto V, and denote Z := PX, see Figure 1. The
columns of Z span a subspace of V. Let Z = UXV* with U € M, ,,%,V € M,
be an economy size singular value decomposition of Z. As usual, we assume the
singular value ordered decreasingly. If Z has full rank, then U spans V and we choose
@ = UV™*. Otherwise, if some singular values of Z are zero, still suitable columns of
U span V, and we choose again Q = UV*.

The columns of 7 — X = PX — X lie in the orthogonal complement to V such

This manuscript is for review purposes only.
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6 SIEGFRIED M. RUMP AND MARKO LANGE
that Q*(Z — X) =0= Z*(Z — X). Together with ||Z — X|| <[]V — X|| = J and
IC+ DI = [(C + D)*(C + D)|| < |C|I* + | D|I* + |IC*D + D*C|l,
this implies
1@ - XI* < 11Q = Z|* + 1Z = X|I* < lU(I = )V*||* + 6% =[] - Z|* + 62

Denote the diagonal matrix of singular values of X by S. Then ||S —X| < | X — Z||
by [8, Corollary 8.1.6]. Hence

=% < [I=S[I+[5S=%<[I-S]+]X—-Z]|
< I=Sl+6=I+87 -8+
< MH=-8%+6=|I -X*X||+5=a+4d

A

and a computation finishes the proof. 0

The bound remains true if & > 1 but may not be useful. In our practical applications,
« is of the order of the relative rounding error unit and thus negligible, so that the
bound is essentially v/25. For o = 0, the bound is sharp as by X = (v/1 — €2, z,¢)7
and Y = (0, z,¢)T with 2z depicting arbitrarily many zeros, for which Q = (0, z,1)7

and [|Q — X|| = 2(1—¢) = JI/%IIX ~ Y.

4. Eigenvalue bounds. Throughout this section let A € M,, be a Hermitian
matrix with eigenvalues Aq,...,\,. Let AX ~ XA be an approximate eigendecom-
position of A, for example, computed by the Matlab command [Ls,Xs] = eig(A).
Numerical experience suggests that we can expect X to be nearly unitary, and the ei-
genvalue approximations to be accurate of the order u||A|| for u denoting the relative
rounding error unit.

Assume || X*X — I|| < a < 1. Then X has full rank and the spectra of X 1AX
and A coincide. In order to avoid the computation of X~ we use (3.2) to see

(A1) JKAK - XAK| = (XK - X A% < YY) s

V-«

By using Gershgorin circles we then conclude that the spectrum of A, which is real,
is in the union of G; with

Gi ::{x:|x—Bii|§Z|Bij|—|—ﬁ} for B:= X*AX.
J#i
The radii of the Gershgorin circles depend on the 1-norm of the off-diagonal elements

of B=X *AX . Wilkinson showed [34] that the spectrum of A differs from the diagonal
elements of A by not more than

|AX ~ XA| _ |AX - XA|
O’min(X) - Vi-a

The factor of the radii by Gershgorin circles over 100 random matrices compared to
Wilkinson’s bound is displayed in Table 1.

(4.2)
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TABLE 1
Factor of improvement of Wilkinson’s bound over Gershgorin circles

‘min mean median max

10 | 24 3.3 3.0 4.8
100 | 5.6 8.9 8.7 14.9
1000 | 24.2  27.7 27.2 33.8

The union of the Gershgorin circles contains the spectrum of A, but not every
circle needs to contain an eigenvalue. In contrast, each interval [B;; —d, B;;+4] contains
an eigenvalue of A, and the spectrum is contained in the union of the intervals.

Define E := AX — XA. The bound in (4.2) needs an upper bound on the norm
| E|l, adding another O(n?) operations. That can be improved for subsets of eigenval-
ues using [4], which removed the factor v/2 in Kahan’s well known result [8, Theorem
8.1.8].

THEOREM 4.1. Let the Hermitian matrizc A € M, have eigenvalues A1,..., \,,
and let the Hermitian matriv H € My, have eigenvalues &1,...,&,. Let X € My,
have full column rank. Then there exist k eigenvalues \;,, ..., \;, of A such that

|IAX — X H||
A WA I ittt
26 A=

This covers Wilkinson’s bound (4.2) for k = n. For k = 1 it means that each interval

- . . Fe;
(4.3) L;:=[A;; —d;,Aj; +0;] with §; := H = il
[ X

contains an eigenvalue of A. Here only the norms of the columns of E and X are
necessary avoiding the extra O(n?) effort to bound the matrix norm || E||.

The union of Gershgorin circles contains the spectrum of A, however, the union
of the L; may not. Consider

5 0 - 0 -1 ~ 2 0
(3 0) k(2 ) maie(20).
ThenE::Af(—)N(f\:(g _;1),51=Oand52=\/%/\/5:2,suchthat

Ll = [2,2] and LQ = [71,3]

The eigenvalue 2 is contained in both intervals, the eigenvalue 5 in none.

A remedy might be to collect potential clusters of eigenvalues. The connected
components of Gershgorin circles contain exactly as many eigenvalues of A as circles
form the component, but that is not true for the L;. Consider

-3 —-10 2 3 -2 11 1 3 0 0 O
A=| -10 -8 6 , X = 2 -8 =3 andA=| 0 6 O
2 6 13 -3 1 —11 0 0 23
. o -20 -—-17 -18
Then F (= AX — XA = —14 8 17 , and d; =~ 9.57,05 ~ 1.96 and

-31 —-19 94
03 ~ 8.49, such that

L; C [-9.58,9.58], Ly C [4.04,7.96] and Lg = [14.50,31.50)].
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8 SIEGFRIED M. RUMP AND MARKO LANGE

The spectrum of A is A = (=17, 4.38, 14.62), so that Ay € L1 NLy and A3 € L. The
eigenvalue A\; = —17 is not contained in any L;. Collecting the intervals L; and Lo

to a cluster p := {1,2} gives ¢§,, := % ~ 16.47 and new inclusion intervals

L =040, C [-16.47,16.47] and L = 6+6,, C [—10.47,22.47]. Again the eigenvalue
A1 = —17 is not included in any interval L}, Lj or Lg.

Another choice is to adapt the eigenvalue approximations of the cluster, namely
replacing the diagonal of A using the mean of the clustered eigenvalues, in our example
by (3, 3, 23). That changes J,, into 13.58 and the cluster inclusions into L] = Lj =
3+4, C [—10.59,16.59], so that again A; = —17 is not contained in any interval.

Our remedy is to collect eigenvalue clusters recursively. This is done by the
following executable Matlab/INTLAB code for a given real or complex, point or
interval input matrix. The function NormBnd(Y) is applied only to matrices with
nearly orthonormal columns, therefore we use the simple bound +/[|Y||1]|Y ] co-

function [L,mu] = verifyeigall(A)
n = size(A,1);
mA = mid(4);
[Xs,Ls] = eig(mh);
E = A*intval(Xs) - Xs*intval(Ls);
lambdas = diag(Ls);
singXsmin = mig( vecnorm(intval(Xs)) );
normE = vecnorm(E);
delta = mag( ( normE ./ singXsmin )’ );
num_mu = n;
while 1
L = midrad(lambdas,delta);
Linf = repmat(L.inf,1,n); Lsup = repmat(L.sup,1,n);
dist = ( Linf<=Linf’ ) & ( Lsup>=Linf’ );
dist = dist | dist’;
[mu,binsizes] = conncomp(graph(dist),’OutputForm’,’cell’);
J = find(binsizes>1);
if any(J) && ( numels(mu) “=num_mu )
num_mu = numels(mu);
for j=J
v = mu{j};
singXsmin(v) = singmin(Xs(:,v));
normE(v) = NormBnd(E(:,v));
delta(v) = mag( normE(v)/singXsmin(v(1)) );
end

else
break
end
end

We add a few comments. The code works for interval input A, in which case the results
are true for every symmetric or Hermitian A € A. Therefore approximate numerical
computations use mA, a matrix close? to the midpoint of A. For non-interval input, A
and mA coincide. For the eigenapproximations (X, A) := (Xs,Ls) the matrix F is an

2We cannot expect mA to be the exact midpoint because that needs not be representable.
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inclusion of AX — XA, so that before the while-loop

AX — XA)e,
H(~—)6j” <05 for all j € [n].
[ Xe;ll
According to (4.3) each interval L; contains an eigenvalue. In the while-loop dist is
computed such that

dist;j = true & L;NL; #0,

and p are the connected components of the distance matrix dist. If all L; are initially
mutually disjoint, i.e., all connected components contain only one element, then each
L; contains a unique eigenvalue of A and Algorithm verifyeigall stops. That
situation corresponds to an empty index set J. Note that this statement is true for
each symmetric or Hermitian A € A in case of an interval input matrix A.
Otherwise, some eigenvalues of A may not be contained in any L; and the while-
loop continues until the maximal connected components p are determined. The cor-
responding elements of ¢ are recomputed such that at the end of the while-loop

) IECml_

Tmin (X (35 115))
holds true for all p; and j € J. The algorithm stops when all connected components
£ 1= Usep,; L; are mutually disjoint. Thus, Theorem 4.1 implies that each £; contains
exactly |u;| eigenvalues of A, and, setting k := |u| and because ),y [1;] = n, the
spectrum is included in Ujep£;. Note that in the extremely unlikely event that the
lower bound® singXsmin(v(1)) of opmin(X(:,v)) is zero, all eigenvalue inclusions L;
become +oc.

If there are no clusters, then k = n and the result of Algorithm verifyeigall are
mutually disjoint intervals containing exactly one eigenvalue of A. In case of clusters
and for point matrix A we did not encounter cases where the while-loop was executed
more than once - unless we searched for that. In contrast, for an interval matrix A
it may happen that the final cluster size is determined by several executions of the
while-loop.

The main computing time of Algorithm verifyeigall goes into the computation
of E = AX — XA requiring O(n?) operations. If there are no or few clusters, the
additional time for the while-loop is limited by O(np?) operations for the lower bounds
on Tunin (X (3, 1)) with p := |j;]. In the worst case, that is one big cluster, that may
cost another O(n?) operations.

For simplicity we presented Algorithm verifyeigall in a way that the total com-
puting time might be O(n*). Indeed, the while-loop might start with a single cluster
of two eigenvalues and increase that one by one until one big cluster of n eigenvalues.
The way the algorithm is presented the computing time of singmin (Xs(:,v)) is np?
for a cluster v of p eigenvalues, which means in total n E;:l p? = O(n*) operations.
In an efficient implementation one would compute the diagonal of X*X and then, if
necessary, step by step the missing entries of the diagonal blocks.

Another way to treat this problem is as follows. We guess a lower bound S for the
smallest singular value of E. Based on that we compute the clusters in one step, and it
remains to certify 8 < omin(E,) for all E,, = EC: ,mu{j}) with j € J, i.e., for clusters

3Note that singXsmin(v) is a vector with identical elements being a lower bound t0 o (X (:, v)).
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F1G. 2. Eigenvalue inclusions by Algorithm verifyeigall [red] compared to taking the mean of
eigenvalue approzimations of a cluster [blue].

with at least two elements. For k clusters of sizes p; denote w := (p1,...,px) € R*.
Then ||w||; < n and the total effort is at most nZ?le? = n|lw||3 < n3. Numerical
evidence suggests that in double precision the guess 1 — 10n - 27°3 never fails, but the
guess for B may be much more generous such as, for example, 5 := 1 — 107° without
changing the final result significantly.

THEOREM 4.2. Let a real or complex, point or interval matriz A be given, and let
(L, ) be the result of Algorithm verifyeigall applied to A. Then for each symmetric
or Hermitian A € A the following is true. There is a numbering of the eigenvalues
A, .. Ay of A such that A\; € Lj for all j € [n]. Moreover, p = (p1,...,15) is @
partition of [n] into k sets pu; such that £ := Uie, Lj is a set of k mutually disjoint
intervals, and for all j € (k] each £; contains exactly |u;| eigenvalues of A.

In Algorithm verifyeigall the midpoints A;; do not change, also if clusters are
determined in the while-loop. As has been mentioned, another strategy is to use the
mean (3_,¢,, - Aii)/|1;] as new midpoint if a cluster 4; is discovered. As a drawback, for

each newly formed cluster p; the submatrix E(:, ;) = AX(:, pg) — X (5, 115) A1, 115)
has to be recomputed.

Numerical experience suggests that the computed eigenvalue inclusions of the pre-
sented Algorithm verifyeigall are better for clustered eigenvalues when not chang-
ing the midpoints Ay; of the L;. By numerical evidence, the eigenvector inclusions are
generally better for simple eigenvalues, but worse for clusters.

Moreover, sometimes the strategy not to change the original approximations A;;
leads to fewer clusters. As an example consider

6 7 0 3 7
7 -4 -1 -2 1
(4.5) A= 0 -1 -6 5 1 |=£05.
3 -2 5 —6 3
7 1 1 3 -2

The eigenvalue inclusions L; computed in INTLAB are as follows, left the result of
Algorithm verifyeigall as presented, and right when taking the mean of eigenvalue
approximations of a cluster in the while-loop, see Figure 2.

intval ans =
[ -15.0571, -8.1235] [ -21.1455, 9.7633]
[ -10.4787, -3.5451] [ -21.1455, 9.7633]
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F1a. 3. Improvement of the bounds by correction of the singular value approximations.

[ -8.7632, -1.8295] [ -21.1455, 9.7633]
[ -1.1711, 3.4393] [ -21.1455, 9.7633]
[ 18.9542, 22.5746] [ 18.9542, 22.5746]

As can be seen, for verifyeigall the first three eigenvalues are collected into one
cluster with different midpoints and constant radius 3.47, where the alternative com-
putes a cluster of the first four eigenvalues with identical inclusions, each of radius
15.45. We come to that example again in the section for eigenvector inclusions.

5. Improvement of eigenvalue approximations and inclusions. We will
improve our eigenvalue inclusions in two ways. First, the initial eigenvalue approxi-
mations in A will be corrected to obtain smaller residuals. Second, after inclusions of
all eigenvalues are known, those can be sharpened. Both improvements are based on
Rayleigh quotients. The same principle is used to improve singular value inclusions.

The quality of the verified bounds for simple eigenvalues depend on the spectral
norm of the columns of AX — XA, i.e., on residuals |AZ — AZ||. So first we improve
a given approximation A into A + ¢ by minimizing f(¢) := ||AZ — (X + £)&||?. Setting
y := A% — A% we obtain
T*y
2 )

f(e) = |yl* — 2e3*y + £%||#||*> which is mimimal for & = 7]

so that A + & becomes the Rayleigh quotient. For singular values the quality of the
inclusions depend on residuals y := Av — 6w and lead to the corrected singular value

approximation
u*y

c = o0+

[ V)

]

For condition numbers up to 10!, Figure 3 shows the minimum (solid line), mean
(dotted line) and median (dashed line) ratio of the improvement of all residual bounds
for the singular values for a set of 100 random 100 x 100 real matrices (left) and 100
random 100 x 100 complex matrices (right). As can be seen the best ratio is up to
0.3 for larger condition number. That means that the relative error of the improved
bounds is up to a factor 3 smaller than the original bounds.

In Figure 4 the same ratios are shown for the improvement of the eigenvalue
bounds. Here the improvement is up to a factor 1.5 for all condition numbers. The
median is close to 1 which means that only a few corrections are significant. Mainly the
singular values and eigenvalues of largest absolute value enjoy the best improvement
because a correction of a small eigen- or singular value has small impact on the
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Fia. 4. Improvement of the bounds by correction of the eigenvalue approzrimations.

residual, and in order to save computing time the correction may be restricted to the
former.

Second, once inclusions of all eigenvalues are at hand, we sharpen those of simple
eigenvalues. Once the gap of ¢ to the remaining spectrum is known, the distance to
its nearest eigenvalue can be estimated by [13, Theorem 5]:

THEOREM 5.1. For Hermitian A € M,, and nontrivial x € K™ let X be the closest

*

eigenvalue to o(x) := Tx, and € be the separation of o to the next closest eigenvalue.
T*r
Then
| Az — ox|?
(5.1) \)\ — ,Q| <
el|a|?

The authors note that this residual bound, which also follows by Kato-Temple’s in-
equalities [14], gives considerable insight but is not readily computable because € is not
known. Fortunately, we have bounds for the eigenvalue gaps and can apply Theorem
5.1.

For a given eigenvector approximation T of a Hermitian matrix, the Rayleigh
quotient g is the best eigenvalue approximation. Both the improvement of the initial
approximations in A and the eigenvalue bounds by Theorem 5.1 are based on p, where
we first need an approximation and second an inclusion of the Rayleigh quotient p.

Therefore, we compute inclusions rho of the Rayleigh quotients at the beginning
of Algorithm verifyeigall and replace A by the diagonal matrix of midpoints of
rho. After having inclusions of all eigenvalues at hand we improve the inclusions of
the simple eigenvalues by Theorem 5.1 based on the inclusion of rho.

For an interval input matrix A the assertions of Theorem 4.2 are true for all
matrices A € A. The computation of the Rayleigh quotient g is based on approximate
eigenvector approximations, and to that end it seems suitable to use the midpoint
matrix mA = mid(A) of A as in Algorithm verifyeigall. To achieve tight bounds
for the eigenvectors and/or invariant subspaces it is important that the computed
eigenvector approximation matrix is close to unitary. But that may not be true if the
input matrix is numerically but not mathematically symmetric or Hermitian.

To describe the problem, we generate a numerically symmetric matrix A with
a double eigenvalue and calculate the residual I-X’*X of the computed eigenvector
approximation X.

n =5;

d = randn(n,1); d(1) = d(2);

Q = orth(randn(n));
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A = Q’*diag(d)*Q;
normA = norm(A’-A)
[X,L] = eig(A); resl
B = (A’+A)/2;

normB = norm(B’-B)
[X,L] = eig(B); res2

norm(eye (n)-X’*X)

norm(eye (n)-X’*X)

Typical results are
normA =
2.1999e-16
resl =
0.1414
normB =
0
res2 =
1.7760e-15

In other words, the eigenvector approximation without symmetrization is far from
being orthogonal. The initial matrix A is numerically symmetric, but not mathe-
matically. Therefore Matlab uses an algorithm for general matrices, and this leads
typically to numerically linear dependent eigenvector approximations for the clustered
eigenvalue.

For an interval input matrix A, the midpoint matrix computed by mA = mid(A)
need not be symmetric or Hermitian, even if the bounds are. Therefore we compute
eigenvector approximations of the symmetrized matrix B = (A’+A)/2 which must be
symmetric or Hermitian, also in the presence of rounding errors because floating-point
addition is commutative, symmetric to zero and division by 2 is exact.

Another strategy is to use the Schur decomposition A = UTU*. Since the input
matrix is expected to be numerically symmetric or Hermitian, i.e., very close to nor-
mal, the Schur matrix T is close to diagonal. The problem described before is solved
because the transformation matrix U is intended to be unitary.

In order to fully use the remarkable quadratic approximation property (5.1) of
the Rayleigh quotient it is important to compute it using some increased precision as,
for example, described in [24, 20, 2, 28]. This should be used to implement routines

(5.2) norm X2(x), norm xAx(A,x) and norm Axrhomid2(A,x,rho.mid)

which give vectors of inclusions of ||x[|?, 2* Az and ||Ax — rz||? for each column x of
Xs, respectively, where r := rho.mid is the midpoint of the Rayleigh quotient inclusion
rho. Then, for  denoting the i-th column of X, the i-th entry of rho is an inclusion
of the Rayleigh quotient of Z. In order to use the Rayleigh quotient to compute the
eigenvalue approximations we then replace the line

[Xs,Ls] = eig(mA);

in Algorithm verifyeigall by the lines
[Xs,”] = eig((mA’+mA)/2);
norm2x = norm_X2(Xs);

rho = norm_xAx(A,Xs)./norm2x; % inclusion of Rayleigh quotient
Ls = diag(rho.mid);

Note that only the eigenvector matrix Xs of eig is needed, the eigenvalue approxima-
tions are computed using the Rayleigh quotients based on Xs. To improve the already
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14 SIEGFRIED M. RUMP AND MARKO LANGE

computed eigenvalue inclusions L we append the call
L = refineeig(A,Xs,L,rho,norm2x)
after Algorithm verifyeigall using the following code:*

function L = refineeig(A,Xs,L,rho,norm2x)
n = size(4,2);
LL = repmat(L,1,n);
e = mig(LL-LL*);
e(1:n+1:n"2) = inf;
e = min(e); % gaps between eigenvalues
index_s = find(e>0); % indices of simple eigenvalues
res = norm_Axrhomid2(A,Xs,rho.mid) ./norm2x;
res sqrt(max(0,res)) + rho.rad;
Lnew = ( rho + midrad(0,mag(sqr(res)./e)) )’;
L(index_s) = intersect(L(index_s),Lnew(index_s));

Let j € index_s be fixed but arbitrary. The set index_s comprises only of clusters of
size 1, so that the eigenvalue A; of A in L; is unique and simple. In order to avoid
extensive index computations, the bounds in Lnew are computed for all indices 1...n
but are valid only for the indices in index_s. That is taken into account in the last
statement computing the refined L.

Denote L; = [S\J — §j,5\j + 0;] based on the approximate eigenpair S\j,ij and
§; := ||A% — X\;&||/||Z]|. The Rayleigh quotient of Z is an element of L; as by

< (A= NDi

AF — N7
(5.3) o— 3] A7 — 23] _

— <| =
N

;.
The distance vector e satisfies min{|§; —&;|: & € L, & € Lj,i # 4, } < ej, so that for

the eigenvalues \; of A in particular

inl\ — ol < e
rg;glz o| < e;

because A\; ¢ L; for ¢ # j. Thus Theorem 5.1 is applicable and yields

| Az — ou|”
e;x[1>

(5.4) A — o] <

Then Lnew is computed according to (5.4) using

|4z — gzl] _ || Az~ ra]

+ rad(rho).
[l ]

The final value of res uses sqrt (max(0,res)) to cure possible interval overestimation,
and the intersection of the entries of L and Lnew is only necessary for interval input.

For Hermitian A = A; +iA5 and z = x+ 1y it is advisable to use z* Az = x* A x +
y*Aqy —2x* Agy and z*z = x*x + y*y because the imaginary part vanishes. Moreover,
if complex midpoint-radius arithmetic is used as in INTLAB, that is superior to taking
the real part of the interval products. As has been mentioned it is better to calculate

4For brevity we use the Matlab notation rho.mid and rho.rad, where rho.mid is an approximation
of the midpoint of the interal rho and rho.rad an upper bound for its radius rad(rho). The quantities
are computed such that midrad(rho.mid,rho.rad) contains rho.
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Az in the computation of the Rayleigh quotient and the residual Ax — rx with some
extra precision.

We next provide some computational results. For dimension n = 1000 we generate
symmetric and Hermitian matrices randomly and calculate the eigenvalue inclusions
by Algorithm verifyeigall and using refineeig. Then we calculate the minimum
mq, median msy and maximum mg of the relative errors of both inclusions. This is
done for 100 sample matrices and the median of the m; is displayed together with
their ratio in Table 2.

TABLE 2
Improvement of eigenvalue inclusions by Algorithm refineeig

symmetric matrix Hermitian matrix
relerr minimum median max minimum median max

initial  2.0-107'* 7.7-1074 78.10" 28.107" 95.107!* 7.1-10"11
refined 9.5-1071% 1.1-107'%4 1.2-107% 95.10715 1.1-10~' 4.0-10713
ratio 2.2 7.3 6612 2.9 8.8 178

As can be seen there is often a considerable refinement of the eigenvalue bounds, and
there seems not too much difference between the symmetric and Hermitian case.

Next, for e := 107!, we generate a symmetric matrix with 10 random eigenvalues
in a circle of radius e around 0.1, another 10 random eigenvalues in a circle of radius e
around 0.2, and another 980 random eigenvalues in [—1, —0.3] U [0.3, 1], and similarly
for a Hermitian matrix. Since there is no improvement for the clustered eigenvalues,
we consider only the relative errors of the simple eigenvalues. Again, the median of
the results of 100 samples is taken and shown in Table 3.

TABLE 3
Improvement of eigenvalue inclusions in the presence of clusters by Algorithm refineeig

symmetric matrix Hermitian matrix
relerr minimum median max minimum median max
initial 1.8-107"% 58.107% 1.6-107%¥ 6.9-107 1.3-10713 4.1-10713
refined 2.0-107% 1.0-107' 24.107% 95.107® 1.1-107'4 1.2.-107™
ratio 9.2 5.6 6.6 7.2 12.6 34

Although the comparison is for the simple eigenvalues, there seems some influence of
clusters to the eigenapproximations. Therefore the improvement is more moderate,
and maybe slightly better for Hermitian matrices.

One might think about the application of mathematically provable tighter bounds
for even better accuracy. For example, in [37] the authors proved a bound similar to
that in (5.1). They showed that the residual can be replaced with its projection onto
a smaller subspace V provided that V contains x as well as the eigenvector to .
However, V is not given since we do not know the respective eigenvector. By applying
the method described in Section 6 it is possible to derive an inclusion of V from
which then a verified inclusion of the respective projection matrix can be computed.
Nevertheless, the introduction of additional rounding errors may outweigh the benefit
from the tighter bound.

This issue is even more present when applying the quadratic residual bounds from
[34] or [38] to a cluster of eigenvalues. All computations would need to be done in
higher precision to compensate the additionally introduced floating-point rounding
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16 SIEGFRIED M. RUMP AND MARKO LANGE

errors. However, the additional computational effort might be better spent on more
accurate eigenpair approximations. A further investigation of these possibilities is
surely of interest but lies outside of the scope of this note.

6. Eigenvector bounds. Let (L, ) be the results of Algorithm verifyeigall
applied to Hermitian A € M,, with eigendecomposition AX = XA. The eigenvalue
inclusions are L; = [\; — J;,A; + §;,] for j € [n], and p = (p1, ..., px) is a partition
of [n]. Moreover, the cluster inclusions £y := Uj¢,,L; are mutually disjoint for ¢ €
[k]. Applying Theorem 4.1 to each cluster separately shows that there is a suitable
numbering Ay, ..., A, of the eigenvalues of A such that \; € L; for all j € [n]. To
obtain bounds for the respective eigenvectors or invariant subspaces, we exploit the
following lemma which is closely related to Davis’ and Kahan’s celebrated sin(©)
theorem [6]. Indeed, for its short proof we borrowed from the original work.

LEMMA 6.1. Let Hermitian A € M, be given, denote its eigendecomposition by
AX = XA, and let X € My, , and Hermitian = M, with p < n be given. Let
A = diag(\1, ..., A\n) and denote the eigenvalues of A by Ay, ..., \,. Let pu C [n] with
|| = p be given and assume that there exists positive & with
(6.1) e< min |\ — Al

i¢p,jEn
Then there exists Y € M, , whose columns lie in the invariant subspace V of A to the
eigenvalues {\;: j € p} with

(6.2 % -y < AEEAL

Proof. For B € M, denote by B,, € M, , its submatrix with columns in y, and set
7t == [n]\p. Then X, spans the invariant subspace of A to the eigenvalues {\;: j € u},
and X7 is its orthogonal complement. Denote by L := [mini<;<) S\J,max1<]<p 5\j]
the convex hull of the eigenvalues of A, by \ its midpoint and by r its radius, so that
L = [A\—r,A+7]. The assumption (6 1) and & > 0 give |\; — A| > & +r for all
i ¢ p. Then, borrowing from the proofs of [19, Lemma 3.1] and the celebrated sin(©)
theorem [6] and using 7 = ||A — AL, it follows

JAX — XA = ou(Xp)IXAXX — KA > [AG7) XX - X3 XA
= | (A( 1) — A p) X:X - X:X (A A ) I
> (e+ r)”XﬁX” - THXHXH = 5||XﬁX||
= | XpXaX| =¢l| (I - X, X}) X||.
Since Y := XMXZ)N( is a subspace of X, that finishes the proof. 0

We use the notation of the previous section. Let £ € [k] be fixed but arbitrary,
and set p := |pg|. Define S := X(:,pue) € My, and L := A(pe, o) € M,. Then
AS — SL = E(:, i) and Theorem 4.1 yield

5 [E, pe) :
|)‘j_/\j|§m§5j for all j € .
The quantity
(6.3) gg:= min |\ — /\ | > min |/~\Z — ;\j| -4

i e, JE e i e, JE e
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can be computed in O(n?) operations, and ¢, is positive because the cluster inclusions
are mutually disjoint. Thus, Lemma 6.1 is applicable and proves that there exists
Y € M, whose columns lie in the invariant subspace V of A to its eigenvalues
{A\j:j € pe} with

(64) HS_YH < ||E(:7M€)H —
e

Note that Y may be rank-deficient, it might even be the zero matrix if X is orthogonal
to X,. Although that seems hardly possible in practice, the result (6.2) remains true
and allows to compute an inclusion of a matrix with orthonormal columns spanning
V using Lemma, 3.1. For ¢,r in the same partition u, the radii 7, = 7, are the same.

In order to compute mathematically correct error bounds for an invariant sub-
space to corresponding eigenvalue clusters belonging to the partition u the first line

function [L,mu] = verifyeigall(A)
is changed into
function [L,mu,X] = verifyeigall(A)

where the corresponding columns in X contain an orthonormal basis of the invariant
subspaces. The following executable Matlab/INTLAB code is appended to Algo-
rithm verifyeigall. It includes the refinement of the eigenvalues as described in the
previous section.

L = refineeig(A,Xs,L,rho,norm2x);
if numels(mu)== % only one cluster
if isinf(delta(1)) || isnan(delta(l))
rX = inf(1,n);
else
rX = zeros(1,n);
end
else
lam = intval( repmat(L.mid,1,n)’ );
e = mig(min( abs(lam-Linf) , abs(lam-Lsup) ));
e(1:n+1:n"2) = inf;
for j=J
v = mu{j};
e(v,v) = inf;
end
tau = normE ./ min(e);
alpha = mag( 1 - sum(intval(Xs).*conj(Xs)) );
rX = mag( alpha + intval(’sqrt2’)*tau );
for j=J
v = mu{j};
Ip = eye(length(v));
alpha = NormBnd(Ip - Xs(:,v)’x*intval(Xs(:,v)));
rX(v) = mag( alpha + intval(’sqrt2’)*tau(v) );
end
end
X = midrad( Xs , repmat(rX,n,1) );

If numels (mu)==1 that means that there is only one cluster collecting all eigenvalues
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18 SIEGFRIED M. RUMP AND MARKO LANGE

and that exceptional case is handled first. Otherwise, the distance matrix of the
eigenvalue inclusions is computed such that the entries of the vector min(e) are the
quantities as in (6.3). Note that the eigenvalue inclusions L have been refined and lam
uses the new midpoints L.mid. If the index set J is empty, then there are no clusters,
exclusively simple eigenvalues and the elements of rX bound the norm distance of the
columns of Xs to a true eigenvector normed to 1. Otherwise, the radii are corrected
according to (6.4) such that, for all j€J and v=mu{j}, X(:,v) contains an orthonormal
matrix spanning the invariant subspace of A to its eigenvalues.

THEOREM 6.2. Let a real or complex, point or interval matriz A be given, and let
(L, 1, X) be the result of Algorithm verifyeigall applied to A. Then for each sym-
metric or Hermitian A € A the following is true. For the partition p = (1, ..., pg)
of [n] into k sets pg, each X(:,ug) contains an orthonormal basis of the invariant
subspace to the eigenvalues in Ujc,,L;.

Denote by A the matrix (4.5) and consider A := A + r for different radii . The
following Table 4 shows the clusters for taking the mean of eigenvalue clusters as mid-
point of the inclusions as described before, and the original Algorithm verifyeigall.
As can be seen the cluster sizes are the same except for radius 0.45 where eigenvalues

TABLE 4
Cluster sizes for mean of eigenvalue clusters and original Algorithm verifyeigall.

radius  mean of eigenvalues  Algorithm verifyeigall

0.10 1,2,3,4,5 1,2,3,4,5
0.20 1,2,3,4,5 1,2,3,4,5
0.25 1,{2,3},4,5 1,{2,3}, 4,5
0.30 1,{2,3},4,5 1, {23}, 4,5
0.35 1, {23}, 4,5 1, {23}, 4,5
0.40 1,{2.3},4,5 1, {23}, 4,5
0.45 {1,2,34}, 5 1,{2,3}, 4,5

1...4 form a single cluster when using the mean of eigenvalue clusters as midpoint.
Next we show in the rows of Table 5 the median of the radii of the inclusions of
the invariant subspaces of A := A + r for different radii r, left taking the mean of
eigenvalues for clusters and right Algorithm verifyeigall.

TABLE 5
Radii of the inclusions of the invariant subspaces of A := A £ r for different r.

0.10 0.20 0.25 0.30 0.35 0.40 0.45

0.10 0.10 0.21 0.21 0.35 0.32 0.46 0.42 0.60 0.54 0.78 0.69 0.17 0.88
0.30 0.30 0.84 0.84 0.32 0.39 0.40 0.50 0.49 0.62 0.58 0.75 0.17 0.91
0.30 0.30 0.84 0.84 0.32 0.39 0.40 0.50 0.49 0.62 0.58 0.75 0.17 0.91
0.08 0.08 0.16 0.16 0.24 0.23 0.31 0.29 0.38 0.36 0.47 0.44 0.17 0.53
0.02 0.02 0.04 0.04 0.05 0.05 0.06 0.06 0.07 0.07 0.08 0.08 0.14 0.09

For increasing values of r the radii of the original Algorithm verifyeigall become
slightly superior though there is not too much difference, but become worse for the
cluster {2,3}. The radii in the last column are not really comparable because only
the original Algorithm verifyeigall is able to separate the eigenvalues.

A typical computational result for larger dimension is displayed in Table 6. First,
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we take a 1000 x 1000 random symmetric matrix and show the minimum, mean,
median and maximum of the relative error of the inclusions of eigenvalues and eigen-
vectors, where for eigenvectors we first take the median of relative errors so that
outlayers of small eigenvector components do not dominate the result. The minimum

TABLE 6
Relative error of eigenvalue and eigenvector inclusions for a random symmetric matrix.
rel. error ‘ minimum mean median maximum

eigenvalues | 1.9-107* 1.5-107'2 79107 1.3-107°
eigenvectors | 2.3-107'2 3.8-107!1 2.7-1071 4.0-1071'°

distance, i.e., gap between the eigenvalues is about 4.6 - 1073 corresponding to the
accuracy of the eigenvector inclusions.

The picture changes for clusters. For e := 107! we generate a symmetric matrix
with 10 random eigenvalues in a circle of radius e around 0.1, another 10 random
eigenvalues in a circle of radius e around 0.2, and another 980 random eigenvalues in
[-1,-0.3] U [0.3,1]. The results are shown in Table 7. There is not much difference

TABLE 7
Relative error of eigenvalue and eigenvector inclusions for two 10-fold clusters.
rel. error ‘ minimum mean median  maximum

eigenvalues | 1.7-107™ 6.9-10~ 6.3-107* 89.10713
eigenvectors | 6.7-107'2 3.8-1072 7.8-107'" 7.3.107!

in the eigenvalue inclusions, and generally the eigenvector inclusions are of similar
quality. However, the mean and maximum relative error is much worse. The reason
is that the clusters could be separated by Algorithm verifyeigall so that only one
cluster of size 2 remained rather than 2 clusters of size 10, all other eigenvalues have
unique intervals and the bounds become poor due to the small gap. As an advantage,
individual bounds for almost all eigenvectors are computed, as a disadvantage the
bounds of the clustered eigenvectors are of less quality.

If it is sufficient to collect the clustered eigenvectors into invariant subspaces, a
cure is to define a threshold kappa so that eigenvalues with distance below kappa
are considered as a cluster. To that end the computation of dist in Algorithm
verifyeigall is changed into

dist = ( Linf-kappa*abs(Linf)<=Linf’ ) & ...
( Lsup+kappa*abs(Lsup)>=Linf’ );
Using kappa = 107! the results are shown in Table 8. Now inclusions of two clusters
TABLE 8
Relative error of eigenvalue and eigenvector inclusions for two 10-fold clusters with threshold
on the cluster size.
rel. error ‘ minimum mean median  maximum

eigenvalues | 1.7-107' 6.9-10"'% 6.3-107'% 89-.10713
eigenvectors | 1.1-10712 9.2.1071° 75.10711  2.2.1077

of 10 eigenvalues each with corresponding 10-dimensional invariant subspace are com-
puted. The remaining inclusions cover the simple eigenvalues and eigenvectors, and
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20 SIEGFRIED M. RUMP AND MARKO LANGE

all inclusions are of reasonable quality. These results are typical for other dimensions
and cluster sizes, so that additional test results do not give much more information.

We close this section with some comparison between our presented methods for
symmetric/Hermitian matrices and those in [33] for general real or complex matrices.
First we look at the necessary separation of clusters. To that end we use the matrix in
(4.5) with different radii R, i.e., apply the algorithms to midrad (A,R). For each value
of R, the median relative error of all eigenvalue inclusions computed by Algorithm
verifyeigall and the general algorithm in [33] is displayed in Table 9, followed by
the median relative error of all eigenvector/orthogonal subspace inclusions. The last
column gives the size of the eigenvalue clusters detected by Algorithm verifyeigall.

TABLE 9
Median of relative errors by Algorithm verifyeigall and [33] for large tolerances

eigenvalues eigenvectors/orthogonal subspaces  clusters
R verifyeigall  [33] verifyeigall [33]
0.006 3.4-107% 2.7.1073 2.4-1072 3.2-1072 1,23,4,5
0.007 3.9.1073 - 2.8-1072 - 1,2,3.4,5
0.1 5.6-1072 - 2.8-1071 - 1,2,3.4,5
0.3 2.4-1071 - 5.9-107! - 1,{2,3},4,5
0.5 4.9-1071 - 84-1071 - {1,2,3},4,5
0.6 7.5-1071 - 3.4-1071 - {1,2,3,4},5

For a radius R = 0.006 both algorithm can separate the eigenvalues, the cluster
size for both is always 1. The quality of the inclusions is comparable, however, it
is weak due to the large radius of all matrix components. The dimension of the
matrix is 5, so the spectral norm of the radius matrix is 5R. Hence, the maximum
relative perturbation of the eigenvalues is of the order 5R/||A| and, for example in
the first row, we cannot expect an error much better than 5R/||A|| ~ 1.4-1073. That
means the inclusions computed by Algorithm verifyeigall are wide, but without
much room for improvement. From radius R > 0.007, the clusters are too close
and the algorithm in [33] cannot compute any inclusion at all. One reason is the
simultaneous preconditioning technique. In contrast, Algorithm verifyeigall treats
the eigenvalues individually and can separate all of them until R < 0.1. For even
larger radii, clusters appear, but still inclusions are computed.

Finally we present some accuracy and timing comparisons between Algorithm
verifyeigall and the algorithm in [33] for random symmetric matrices of dimen-
sion n. As before the median relative error of all eigenvalue inclusions computed by
Algorithm verifyeigall and the general algorithm in [33] is displayed in Table 10,
followed by the median relative error of all eigenvector/orthogonal subspace inclu-
sions. The last column displays the time ratio of the algorithm in [33] divided by that
for Algorithm verifyeigall.

As can be seen the algorithm in [33] produces inclusions with smaller relative
errors than Algorithm verifyeigall, in particular for the eigenvector/invariant sub-
space inclusions. However, the * indicates that in 20% of the test cases the algorithm
in [33] failed to compute an inclusion because the eigenvalues were not sufficiently
separated.

There are two reasons for the better inclusions of the algorithm in [33]. First, the
algorithm in [33] is based on [30] and computes inclusions of the error with respect
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TABLE 10
Median of relative errors by Algorithm verifyeigall and [33] for large dimension

eigenvalues eigenvectors/orthogonal subspaces time ratio
n verifyeigall [33] verifyeigall [33]

10 1.0-1071 2.4-10716 5.1-10715 5.6 10717 1.2
30 1.4-1071 2.4-10716 2.0-10714 5.6-10717 1.3
100  1.9-1071% 2.4-10716 9.0-10714 4.2-10717 2.0
300 2.3-10715 2.3-10716 3.3-10713 4.2-10717 34
1000 2.4-10715 2.3-10716  1.3.10712 3.5-10717 4.1
3000 3.5-107%° 2.4-10716 5.0-10712 3.5-10717 4.9
10,000 1.4-1074 2.4-10716%  7.2.1071 3.5-10717x 6.6

to approximations of the eigenvalues and -vectors. In turn those approximations are
improved by one Newton step. Generally, an inclusion of the error with respect to a
good approximation is superior to a direct inclusion of the solution. That principle
is the basis of many verification algorithms, cf. [31]. Second, the algorithm in [33]
provides componentwise error bounds rather than the normwise bounds by Algorithm
verifyeigall. The inclusions computed by [33] converted into normwise error es-
timates are still better by almost an order of magnitude, however, the discrepancy
is not that large. Together, that explains the better accuracy, in particular for the
eigenspaces. The drawback is that with increasing dimension the algorithm in [33] for
general real or complex matrices becomes significantly slower than the new Algorithm
verifyeigall and, as we saw before, the necessity of well separated clusters.

7. Singular value and vector bounds. For A € M,, , let A = XXY™ be the
economy size singular decomposition with X € M,, , and X,Y € M,,. Denote the
singular values of A by o1 > ... > 0, the orthogonal complement of X by X', and
set

0 A 1 Y 0 Y
Then Q*BQ = diag(o1,...,0n,—01,---,—0x,0,...,0). Error bounds for the singular

values of a matrix based on residuals are very similar to those given in Theorem 6.2
for eigenvalues of a Hermitian matrix. As in the case of eigenvalues, better bounds
can be derived using Lange’s result [18]:

THEOREM 7.1. Let A € My, ,, and H € My, with m > n > p. Denote the singular
values of H by 01 < ... <0,. For X € My,, andY € M, ,, define the residuals

E:=AY - XH and F:=A"X -YH"

Then there is a subset of singular values o;,,...,0;, of A such that
[E]* + [ F]]?
. R T I ‘A L L Lt |
(7.2) 121]&%2’ ‘O” 9]| Omin(Y)

We note that in [18] the sharper bound

max [ — ;| < max 1B + P2 lEl 1P
1<j<p ' 7= Umin(X)2 + Umin(Y)2 ’ amin(Y) ’ Umin(Y)
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is proved. However, singular value and vector approximations are generally of high
accuracy, so that (7.2) is very tight and more than sufficient for our purposes.

Theorems 4.1 and 7.1 are of similar nature, so Algorithm verifyeigall can be
adapted directly. Now we added, as for eigenvalue clusters, the extra parameter kappa
to collect singular values with distance below into one cluster. If not specified, kappa
is set to zero.

function [S,mu,X,Y] = verifysvdall(A,kappa)
if nargin==1, kappa = 0; end
[m,n] = size(A);
[Xs,Ls,Ys] = svd(mid(A),0);
norm2z = norm_X2([Xs;Ys]);
rho = norm_zBz(A,Xs,Ys)./norm2z; % inclusion of Rayleigh quotient
Ls = diag(rho.mid);
E = Axintval(Ys) - Xs*intval(Ls);
F = A’*intval (Xs) - Ys*xintval(Ls);
sings = diag(Ls);
singYsmin = mig( vecnorm(intval(Ys)) );
normG = vecnorm(intval([E;F]));
delta = mag( normG ./ sing¥smin )’;
num_mu = n;
while 1
S = max( 0 , midrad(sings,delta) );
Sinf = repmat(S.inf,1,n); Ssup = repmat(S.sup,1l,n);
dist = ( Sinf-kappa*abs(Sinf)<=Sinf’ ) & ...
( Ssup+kappax*abs (Ssup)>=Sinf’ );
dist = dist | dist’;
[mu,binsizes] = conncomp(graph(dist),’OutputForm’,’cell’);
J = find(binsizes>1);
if any(J) && ( numels(mu) “=num_mu )
num_mu = numels(mu);
for j=J
v = mu{j};
singYsmin(v) = singmin(Ys(:,v));
normG(v) = sqrt(NormBnd(E(:,v)) "2+NormBnd(F(:,v))"2);
delta(v) = mag( normG(v)/singYsmin(v(1)) );
end
else
break
end
end

We apply the principle of eigenvalue improvements presented in Section 5 to improve
the singular value approximations and inclusions. Here norm_zBz computes an in-
clusion of z*Bz for z := [x;y] similar to norm xAx. Note that the first line of the
while-loop assures that the inclusions of the singular values are nonnegative. As for
eigenvalues, the singular values are refined applying Theorem 5.1 to the matrix B in
(7.1) by appending

L = refinesvd(A,Xs,Ys,S,rho,norm2z) ;

to the code above. The code is very similar to refineeig except that
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if m>n, e(1:n+1:n"2) = S.inf; else e(1:n+1:n"2) = 2%S.inf; end

is used to cover the distance to the negative eigenvalues of B. Otherwise, for given
left and right singular vector = and y, the routines in (5.2) are adapted to compute
inclusions of

R € ik A * Ay—rw
D—||(y)|| and N:=y*A*z+2*Ay and ”(A*:c—ry)l

for the inclusion rho of the Rayleigh quotient N/D and r := rho.mid as before.
Similar to eigenvalues, for complex input A = Ay +iAs, x = 21 +ixe and y = y1 +iys
it is better to use

y A e+ 2" Ay = 2( 21 (ATyr — Aaya) + 22(Ary2 + A2y1) ) .

As for eigenvalues we compare the singular value inclusion without and with refine-
ment. The first test set are real or complex randomly generated 1000 x 200 matrices,
where the median of the minimum, median and maximum of the relative errors of 100
samples is displayed in Table 11.

TABLE 11
Improvement of singular value inclusions by Algorithm refineeig

symmetric matrix Hermitian matrix
relerr minimum median max minimum median max
initial ~ 3.7-107* 55.107'* 9.1-107% 43-.107*% 6.1-107* 9.6-10"
refined 6.0-10"® 6.6-1071 7.2.10"® 96-10"® 1.1-107'* 1.1-107™
ratio 6.1 8.3 12.6 4.5 5.8 8.4

There is still considerable improvement, although not as large as for eigenvalues. In
the presence of clustered singular values the results do not differ too much.

Next we discuss the computation of verified error bounds for the left and right
singular vectors. Let (S, ) be results of Algorithm verifysvdall applied to rectan-
gular A € M,, ,, with economy-size singular decomposition A = X¥Y™*. The singular
value inclusions are S; = [6; — d;,6; + 9;] for j € [n], and p = (p1,..., ) is a
partition of [n]. As for eigenvalues, the cluster inclusions & := U;¢,,,S; are mutually
disjoint for all £ € [k]. Applying Theorem 7.1 to each cluster separately shows that
there is a suitable numbering oy, ..., 0, of the singular values of A such that o; € S;
for all j € [n].

For inclusions of singular vectors, there is the additional problem of zero or close
to zero singular values. We first discuss square, then rectangular input matrices.

We first assume that A is square so that B as in (7.1) has no extra nullspace to
deal with. Let X,%,Y with ¥ := Ls be the approximate singular value decomposition
of A computed by [Xs,Ls,Ys] = svd(A). An approximation of the eigenspace of B

1S
- Y Y
Z7=("1 .
(X _X> ’

where the normalization is omitted. Following our inclusion approach for eigenvectors
of Hermitian matrices, we define

G:< AY — X%

(73) A% VS ) € Mimtnn

This manuscript is for review purposes only.



846

847

849
850
851
852

858

859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876

877

878

879
880

881

882
883

884

24 SIEGFRIED M. RUMP AND MARKO LANGE

Let £ € [k] be fixed but arbitrary and set p := |ug|. Then

(7.4) G(:,pue) = BZ(:, o) — Z(:, pre) S(pae, pre) -

The left and right singular subspaces to the singular values {o;: j € p} are spanned
by X := X (:, pe) and Y = Y (:, o), respectively. As for eigenvalues, we may assume
Jmin(f/) > 0, otherwise the bounds become meaningless. Note that this implies that
Z has full rank as well.

Following our approach for eigenvector inclusion, we define

(75) Eyp 1= min |O’i—6'j| Z min |5’i—6'j| —51‘.
i¢pe,J€me i¢pe,5€me
Suppose ¢ < k. Then the definitions (7.5) for the singular value clusters of A and
(6.3) for the eigenvalue clusters of B coincide, and we apply Lemma 6.1 to B to
show that there exists V' € M,, ;, whose columns lie in the invariant subspace of B to
{A\j:J € pe} with
IG(: pol

(7.6) 1Z(:pe) = VI < =7 =i
€

The matrix Z (:, ¢) approximates an eigenspace of B to the eigenvalues {\;: j € u},
which are positive because £ < k. Since V is composed of the left and right singular
subspaces of A, it follows that both the distance of X (:,pe) to a subspace of the
left singular vectors and the distance of }7(:, 1e) to a subspace of the corresponding
right singular vectors of {o;: j € pe} is bounded by 7. Then an inclusion of matrices
with orthonormal columns spanning the corresponding space of left and right singular
vectors is computed by Lemma 3.1.

For ¢ = k, the singular value cluster py is a special case because the distance to
its negative counterpart may be smaller than the distance to the next larger singular
value inclusion. Hence Lemma 6.1 is not directly applicable. Luckily this does not
require a redefinition of (7.5) because we may use [19, Lemma 3.1] to handle this case:

LEMMA 7.2. Let A€ My, n, HE My, Q € My, 4, P € My, ¢ with m > n be given.
Define the residuals E := AQ — PH, F := A*P — QH™ and let A = XXY™* be an
economy-size singular value decomposition of A with X € My, »,, ¥ € R™*™ Y € M,
and non-increasing order of singular values (with possible ambiguities in the choice
of singular vectors). Furthermore, for some s € {1,...,n}, denote by X the matriz
consisting of the first s columns of X and let Yy be accordingly. If there is a ( such
that o4(A) > 01(H) + ¢, then

(7.7) ¢-max{|[YSQ, | XS P} < max{[|E]], [ F]]}

is satisfied for any unitarily invariant norm || - ||.

We set ¢ = e according to (7.5), s =n — |ux|, H = S (g, p), Q@ = Y (:, pug) and
P = X(:,ug). Then

Os = On—|py| = g.g%f&j +(=H[ +¢

shows that Lemma 7.2 is applicable. The matrices X, and Y span the orthogonal
complements of X = X (i, ug) and Y = Y'(:, ux ), respectively. Thus

(7.8) d = max{|| (I = V)7, i), 111 = XX) X o) [}
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is the maximal distance of P = X(:, ) and Q = Y (:, pg,) to their orthogonal projec-
tion onto X and Y, respectively, and Lemma 7.2 yields, as in (7.6),

d max{|[|Y, Y Q[ [|[ Xs X P} = max{[[Y Q| | XIP|}
(79) max{[|AQ — PH|.|A"P — QH"[} _ |Gl _
Ek o €k

Let us now consider the rectangular case m > n. Now B has additional m — n
zero eigenvalues requiring special attention. The singular vector spaces to a cluster p,
for ¢ < k can be handled using Lemma 6.1 as before. Moreover, since the orthogonal
complement Y to Y'(:, i) is the same as in the quadratic case, Lemma 7.2 is still
applicable as before, and the inclusion for the right singular vectors are derived in
the same way as for quadratic A. Only the left singular vectors corresponding to the
nullspace need some extra consideration.

To that end, we extend the set of singular values by the m — n trivial zeros
On+41ls,---,0m. Naturally, we set 6,41 = ... = 7, = 0. The clustering has now to
be done over the extended set, and we use a new index set . For the definition of 1,
which coincides with g in the first £ — 1 indices, we distinguish two cases.

First, if 0 € &y, then numerically the singular values {o;: j € px} cannot be
distinguished from zero and we set 7, := pp U N with N :={n+1,...,m}. Second,
if 0 ¢ &y, we set extend i by Ty, := pux and Ty, == N.

The index k shall be k or £+ 1 depending on the separation of the nullspace. The
quantities &, are then defined as in (7.5) but for the new index sets and including the
trivial singular value entries. Using these modified definitions the inclusion of the left
singular vector subspaces can be realized as in the quadratic case.

The inclusion of the left singular vector space corresponding to jij requires the
full singular value decomposition of A. However, if we are not interested in the
nullspace and/or the smallest non-trivial singular value could be separated from zero
i.e., k = k + 1, then we may skip fi; from consideration. The advantage is that it
allows us to use an economy-size approximate singular value decomposition of A. On
the other hand, if we use an economy-size decomposition and cannot separate o,, from
zero, the subspace inclusion derived for py can be any subset of the space spanned by
X)X,

Alternatively, the singular subspace of the additional m — n zero singular values
may be computed as the kernel of A* by one of the methods given in [15]. With
a residual iteration as described in [15] it may be that the additional zero singular
values can be separated from the cluster p,.

In order to compute singular vector inclusions, we append the following code
to Algorithm verifysvdall. This includes the refinement by Theorem 5.1, but for
simplicity the extra treatment of the nullspace, which is straightforward to add, is
omitted.

S = refinesvd(A,Xs,Ys,S,rho,norm2z) ;
if numels (mu)==
if isinf(delta(1)) || isnan(delta(1))
r_left = inf(1,n);
else
r_left = zeros(1l,n);
end
r_right = r_left;
else
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sing = intval( repmat(S.mid,1,n)’ );
e = mig( min( abs(sing-Sinf) , abs(sing-Ssup) ));
e(l:n+1:n"2) = inf;
for j=J
v = mu{j};
e(v,v) = inf;
end
min_e = min(e);
r_right = mag( normG ./ min_e );
r_left = r_right;
if m>n Y, take care of additional zero singular values
r_left(end) = mag( normG(end)/min(min_e(end),S.inf(end)) );
end
end
alphaX = mag(l - sum(intval(Xs).*conj(Xs)));
alpha¥Y = mag(1l - sum(intval(Ys).*conj(Ys)));
rX = mag( alphaX + intval(’sqrt2’)*r_left );

rY = mag( alphaY + intval(’sqrt2’)*r_right );
for j=J
v = mu{j};

Ip = eye(length(v));
alphaX = NormBnd(Ip - Xs(:,v)’*intval(Xs(:,v)));
rX(v) = mag( alphaX + intval(’sqrt2’)*r_left(v) );
alphaY = NormBnd(Ip - Ys(:,v)’*intval(Ys(:,v)));
rY(v) = mag( alphaY + intval(’sqrt2’)*r_right(v) );
end
X = midrad( Xs , repmat(rX,m,1) );
Y = midrad( Ys , repmat(rY,n,1) );
Here sing uses the midpoint of S because the singular value inclusions S have been
refined. Note that for rectangular A the last entry of the radius r_left for the left
singular vectors is adapted. If 0 € &, then S.inf (k)=0 and r_left becomes infinity.

THEOREM 7.3. Let an m xn real or complex, point or interval matriz A be given,
and let (S, u, P, Q) be the results of Algorithm verifysvdall applied to A. Then
for each A € A the following is true. There is a numbering of the singular values
o1,...,0n of A such that o; € S; for all j € [n]. For the partition p = (p1,. .., 1K)
of [n] into k sets py the &y := Ujc,,S; are a set of k mutually disjoint intervals,
each containing exactly |pe| singular values of A, and P(:, g) and Q(:, pe) contain an
orthonormal basis of the corresponding left and right singular value subspaces.

In (7.6) we use |G| as in (7.3), whereas in (7.7) the maximum of ||E|| and ||F]| is
used. For the correctness of the code note that

max(|[ B, [|[F]l) < (|G| -

Otherwise the proof of correctness is similar to that for the eigenproblem.

As for eigenvalue and eigenvector inclusions we show some typical computational
results for larger dimension. We take a 1000 x 200 random matrix and show the
minimum, mean, median and maximum of the relative errors of the inclusions of
singular values and the left and right singular vectors. The results are displayed
in Table 12. The minimum distance, i.e., gap between the singular values is about
5.9-10~3 which corresponds roughly to the accuracy of the singular vector inclusions.
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TABLE 12
Relative error of singular value and singular vector inclusions for a random 1000 x 200 matrix.

rel. error minimum mean median maximum

singular values 4.0-107* 58-107% 56-107 89.10714
left singular vectors | 1.1-1071° 1.5-107° 9.3.107'% 1.4.10°%
right singular vectors | 5.4-10~1 6.8.-1071% 4.3.107 6.7-107°

979 The picture changes for clusters. For e := 10~!! we generate a 1000 x 200 matrix
980 with 10 random singular values in a circle of radius e around 0.1, another 10 random
981 singular values in a circle of radius e around 0.2, and the other 180 randomly in [0.3, 1].

The results are shown in Table 13. There is not much difference in the singular value

TABLE 13
Relative error of singular value and singular vector inclusions for two 10-fold clusters.

rel. error ‘ minimum mean median maximum

singular values 41-107% 7.6-107% 6.2-107 28.10713
left singular vectors | 3.5-10719 3.2.1072 4.2-107° 9.2-107!
right singular vectors | 5.6 -10~'1 3.4.102 7.7-1071% 9.2.107!

982

983 inclusions, and generally the singular vector inclusions are of similar quality as before.

984 However, the mean and maximum relative error become much worse. The reason,

985 similar to eigenvalues, is that Algorithm verifysvdall could separate the clusters

986 into 200 individual intervals for the singular values. Therefore, the gap between the

987 inclusions becomes small resulting in a poor quality of the inclusions. As before we use
the threshold kappa= 107'° and obtain the results shown in Table 14. Now inclusions

TABLE 14
Relative error of singular value and singular vector inclusions for two 10-fold clusters with
threshold on the cluster size.

rel. error minimum mean median maximum

singular values 14-10716 57.107" 57-100% 1.3.10713
left singular vectors |8.9-10"' 1.1-107% 3.1-107° 2.0-10°%
right singular vectors | 1.7-1071 2.1-107° 5.8-107 4.2.10°8

988

989 for two clusters of 10 singular values each with corresponding 10-dimensional invariant
990 subspace are computed, together with the remaining inclusions for simple singular
991 values and singular vectors. As a result, the singular vector inclusions are now of
992 reasonable quality. As for eigenvalues, these results are typical for other dimensions
993 and cluster sizes, and additional test results do not give much more information.

994 8. Appendix. As has been mentioned, Matlab introduces quite some interpre-
995 tation overhead, in particular if user-defined data types such as intval are used.
996  That can be improved significantly by using function calls and/or calculating left
997 and right bounds individually using directed rounding as Florian Biinger did for the
998  Taylor model and AWA toolbox in INTLAB [3]. For our applications we give a few
999 examples.

1000 Directed roundings are used as follows. The INTLAB command setround(-1)
1001 implies that all numerical operations including vector and matrix operations are exe-
1002 cuted using rounding downwards, i.e., the computed result is less than or equal to the
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exact result. That remains true until the next change of the rounding mode. Sim-
ilarly, setround (1) changes the rounding to upwards, and setround(0) to nearest.
The command

singXsmin = mig( vecnorm(intval(Xs)) );

in Algorithm verifyeigall computes a vector of lower bound of the Euclidean norm
of the columns of Xs and can be replaced by

setround(-1)
singXsmin = sqrt(sum(sqr(Xs)));

After changing the rounding mode to downwards, sqr (Xs) yields lower bounds for
the entrywise squares of the elements of Xs, followed by lower bounds for the column
sums and their square roots. That code works for real input Xs and is easily adapted
to complex input. Another example is

E = A*intval(Xs) - Xs*intval(Ls);
which may be replaced by

D = repmat(diag(Ls)’,n,1);
setround(-1)

Einf = AxXs + Xs.*D;
setround (1)

Esup = A*Xs + Xs.*D;

E = intval(Einf,Esup,’infsup’);

Finally we mention
alpha = mag( 1 - sum(intval(Xs).*conj(Xs)) );

which was used for eigenvector and singular vector bounds. It gives a vector of upper
bounds of |1 — z*z| for the columns = of Xs. For real input it may be replaced by

setround(-1)

alpha = abs(sum(X.*conj(X)) - 1);

setround (1)

alpha = max( alpha , abs(sum(X.*conj(X)) - 1) );

Here lower and upper bounds of sum(X.*conj (X)) - 1 are computed, and since the
absolute value and maximum does not cause additional rounding errors, the final
alpha is correct.

These are just a few examples. Following we give some computational results in
Table 15. For each dimension we execute the code for 100 samples and show the ratio
of computing times.

TABLE 15
Ratio of computing time using Matlab’s operator concept vs. directed roundings.

‘ n=10 n=30 n = 100 n = 300 n = 1000

singXsmin| 57.6 55.0 27.3 35.3 22.5
E 11.6 6.8 5.6 3.2 24
alpha 16.1 12.4 4.9 4.7 34

This means quite some improvement. The ratio is larger for small dimensions and/or
if O(n?) operations are to be interpreted.
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