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1. Introduction and notation. In this note we derive a verification method to18

compute bounds for all eigenvalues and -vectors of a Hermitian matrix. The principles19

of that method are then used to compute error bounds for all singular values and20

vectors of a rectangular matrix. The total computing time for an n × n or m × n21

matrix is O(n3) or O(mn2) operations, respectively.22

Readily applicable bounds for all eigenvalues of a Hermitian n × n matrix fol-23

low directly from perturbation theory [8, 9]. There are many aspects of perturbation24

bounds for the spectrum of self-adjoint operators, in particular based on the Rayleigh25

quotient and Rayleigh/Ritz bounds. Indeed, some of the most well known pertur-26

bation results for eigenvalues of Hermitian matrices can be traced back to Temple’s27

famous inequality on Rayleigh quotients [35, 14]. A short review over a priori, a pos-28

teriori and mixed type bounds on eigenvalues of self-adjoint operators is given, for29

instance, in [37].30

The famous works by Davis and Kahan yield generalized bounds for multiple31

eigenvalues and their eigenvectors [11, 6]. Naturally, many subsequent related works32

introduced further improvements. In particular we want to mention the generalization33

of quadratic residual bounds for multiple eigenvalues [34, 38] similar to Kato-Temple’s34

inequality [14].35

In this note we are concerned with verification methods [26, 31, 27], i.e., meth-36

ods to compute completely rigorous error bounds for the solution of a problem in37

floating-point arithmetic. The correctness of the bounds includes all procedural and38

in particular all rounding errors due to the use of finite precision floating-point arith-39

metic. In regard to the problem of computing bounds for all eigenpairs of a Hermitian40

matrix, this leads to two major limitations.41

One limitation is that, although eigenvalues of self-adjoint operators are always42
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2 SIEGFRIED M. RUMP AND MARKO LANGE

perfectly well conditioned, eigenvectors may be ill-posed. For instance, a double43

eigenvalue corresponds to a 2-dimensional invariant subspace X, but for any x ∈ X44

there is an arbitrary small perturbation of the input matrix such that x is a unique45

eigenvector. As a consequence, in the presence of rounding errors, it is therefore not46

possible to compute tight verified bounds for eigenvectors to numerically inseparable47

eigenvalues. Instead, in that case our algorithm will compute verified bounds for the48

invariant subspace corresponding to a cluster of eigenvalues. A similar statement is49

true for singular vectors.50

The second limitation is about the applicability of the respective perturbation51

bounds. Some majorization bounds for the given eigenvalue bounds have to be evalu-52

ated in floating-point arithmetic. As a consequence, a mathematically provably tighter53

bound might not lead to a better inclusion when used in the context of verification54

methods. We will elaborate on this further in the respective sections.55

This note is organized as follows. We first give some historical remarks and a very56

brief overview of verification methods for computing rigorous bounds for eigenpairs of57

Hermitian matrices. Subsequently we discuss some auxiliary routines for computing58

an upper and lower bound of the singular values of a Hermitian or a rectangular ma-59

trix, and for a given subspace we estimate the distance to a matrix with orthonormal60

columns spanning that space. In Section 4 our method to compute error bounds for61

all eigenvalues is given. The next section presents a method to improve eigenvalue ap-62

proximations beforehand and to refine the computed bounds. Both improvements are63

based on Rayleigh quotients and will also be applied to singular values. The usage of64

other known bounds is discussed as well. Next, our method to compute error bounds65

for all eigenvectors and/or invariant subspaces of a Hermitian matrix is presented.66

At the end of Section 6 we give some comparisons between the presented method for67

symmetric/Hermitian matrices with the methods in [33] for general matrices.68

Finally, we present our fast method for computing error bounds for all singular69

values and vectors of a general rectangular matrix. The note is closed by an appendix70

showing how to accelerate the Matlab code.71

2. Short history and notation. The first verification method for the algebraic72

eigenproblem is presented by Krawczyk [16] who applies his method for nonlinear73

systems [17] to Ax − λx = 0 with some normalization of x. Krawczyk’s method,74

however, is a refinement of initially provided bounds. Moore [25] proposed to use75

Brouwer’s fixed point theorem and proof of nonsingularity of some matrix to derive76

an existence test. Krawczyk’s operator and Moore’s ansatz are already contained in77

[12, p. 12].78

One might apply that method n times, but besides the complexity O(n4) it fails79

for multiple eigenvalues and cannot guarantee that all eigenvalues are covered. Several80

publications concentrate on verified error bounds on one eigenpair, for example [7, 36];81

in [1] a method is introduced for double eigenvalues.82

Historically, the next step are verification methods for multiple eigenvalues and83

corresponding invariant subspaces introduced in [30]. Bounds are computed regardless84

of the Jordan structure, but for only one cluster. Based on that a verification method85

for computing bounds for all eigenpairs including multiple eigenvalues and clusters86

of a general real or complex matrix is introduced in [33]. It uses a simultaneous87

preconditioning technique for all eigenvalues reducing the total computational effort88

to O(n3) operations.89

An efficient algorithm to compute tight error bounds for all simple eigenpairs of90

a symmetric positive definite matrix is given in [23], extending the work in [22]. How-91
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ever, the method works only for simple, not for clusters and/or multiple eigenvalues.92

Moreover, bounding techniques for the respective invariant subspaces are missing. In93

this note we fill these gaps. In addition we prove similar bounds for singular values94

and vectors of rectangular matrices as well.95

Recently another method has been published in [10] for computing inclusions of96

a few eigenvalues in some region together with their eigenvectors of the generalized97

Hermitian eigenproblem. The method works for clusters and uses complex moments98

and the Rayleigh-Ritz procedure. However, according to the authors it is not suitable99

to compute inclusions of all eigenvalues and -vectors.100

This note presents fast verification methods for the computation of error bounds101

for all eigenvalues and eigenvectors of a general symmetric or Hermitian matrix, and102

error bounds for all singular values and vectors of a general real or complex rectangular103

matrix, both with special emphasis on clustered eigenvalues and/or singular values.104

The presented methods are stable, the bounds are tight. They are based on a general105

estimation of the distance of a nearly orthogonal/unitary basis of a subspace to a106

truly orthogonal/unitary basis together with perturbation bounds for invariant and/or107

singular subspaces.108

The methods apply to real or complex interval matrices as well. In that case the109

bounds are valid for each individual symmetric or Hermitian matrix within the given110

tolerances. The method in [33] covers the first case, i.e., computes bounds for all111

eigenpairs of a general real or complex matrix. However, the methods to be presented112

take advantage of the orthogonality/unitarity of the eigenvectors and outperform the113

general algorithm in [33] in case of not so well separated clusters. Moreover, they are114

faster and apply to singular pairs as well.115

Denote by K ∈ {R,C} the field of real or complex numbers. We use the short116

notation Mn,k for the set of (real or complex) n × k matrices, and use Mn if k = n.117

The n × n identity matrix is denoted by In, where the subindex is omitted if clear118

from the context. The singular values of a matrix A ∈Mm,n with m ≥ n are denoted119

by σ1(A) ≥ . . . ≥ σn(A), and throughout this note ‖ · ‖ denotes the spectral norm,120

i.e., the largest singular value. For brevity, we use [n] := {1, . . . , n} for n ∈ N.121

An introduction to verification methods can be found in [26, 31, 27]. Error bounds122

are computed using interval arithmetic, and we will use boldface letters for interval123

quantities. Not much knowledge about verification methods and/or interval arith-124

metic is necessary to follow the exposition, only familiarity with Matlab notation.125

Also, the representation of intervals, for example infimum-supremum or midpoint-126

radius, is not important: throughout this note we only use the inclusion property,127

namely, that interval operations op ∈ {+,−, ·, /} are defined such that for compatible128

interval quantities A,B129

(2.1) ∀A ∈ A ∀B ∈ B : A op B ∈ A op B130

is satisfied. For details see [26, 31, 27]. We will use Matlab notation [21] and INTLAB131

[29], the Matlab/Octave toolbox for reliable computing. For M ∈Mn(K) and nonneg-132

ative R ∈Mn the command midrad(M,R) is a superset of {A ∈Mn(K) : |A−M | ≤ R}133

with entrywise comparison and absolute value. Moreover, X = f(A) for an interval134

quantity A and the induced function f implies that f(A) ∈ X for all A ∈ A.135

For a scalar interval X, the magnitude is defined by max{|x| : x ∈ X} ≥ 0. The136

definition applies entrywise to vectors and matrices so that B = mag(A) satisfies137

|Aij | ≤ Bij , and similarly, the mignitude B = mig(A) satisfies 0 ≤ Bij ≤ |Aij | for all138

A ∈ A and all i, j, cf. [26]. In both cases B is a nonnegative vector/matrix.139
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4 SIEGFRIED M. RUMP AND MARKO LANGE

3. Routines for verified singular value bounds. In the sequel we need upper140

bounds for the spectral norm of Hermitian H ∈ Mn and of general B ∈ Mn, as well141

as a lower bound on the smallest singular value of X ∈ Mn,k. In the latter case the142

matrix X has usually nearly orthonormal columns.143

For general B ∈ Mn we may use ‖B‖ ≤
√
‖B‖1‖B‖∞. A slightly better bound144

is obtained as follows. For Hermitian H ∈ Mn and every positive vector x̃, Perron-145

Frobenius Theory [9] and a theorem by Collatz [5] give146

(3.1) ‖H‖ ≤ ‖|H|‖ = r(|H|) ≤ max
1≤i≤n

(|H|x̃)i
x̃i

,147

where |H| denotes the matrix of absolute values and r denotes the spectral radius. A148

good choice for x̃ is obtained by few power iterations for |H|. For general B ∈Mn we149

use ‖B‖2 = r(B∗B). Executable Matlab/INTLAB code for general and Hermitian,150

point or interval matrix is as follows.151

function N = NormBnd(A,herm)152

% ||A|| <= N for point or interval matrix A153

% if herm=true, then A is Hermitian154

x = ones(size(A,1),1);155

M = [1 2];156

iter = 0;157

A = mag(A);158

while ( abs(diff(M)/sum(M))>.1 ) && ( iter<10 )159

iter = iter+1;160

y = A*x;161

if ~herm, y = A’*y; end162

x = y./x;163

M = [min(x) max(x)];164

scale = max(y);165

x = max( y/scale , 1e-12 );166

end167

if herm168

N = mag((intval(A)*x)./x);169

else170

N = mag(sqrt( (A’*(intval(A)*x)) ./ x ));171

end172

Basically, the code is self-explanatory. The upper bound of ‖A‖ is computed based173

on an approximation x of the Perron root of mag(A) ∈Mn. An operation is executed174

as an interval operation if at least one operand is of type intval. Therefore, the175

type cast intval(A) in the final computation of N ensures that interval operations176

are used before taking the magnitude of the interval result.1 As a consequence, N is a177

true upper bound for ‖A‖2 for all A ∈ A. The last statement in the while-loop ensures178

that the components of x do not become too small. We mention that the performance179

can be improved by using directed roundings rather than interval operations, see the180

appendix. That is because the interpretation overhead, in particular for user-defined181

data types, is significant. For better readability we refrain from doing this here and182

leave it at giving comments in the appendix.183

1The type cast intval(A) does not change A if already of type intval.
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Fig. 1. Distance to orthonormal subspace.

For smaller dimension the bound computed by Algorithm NormBnd is some 20%,184

for larger dimensions some 8% better than
√
‖B‖1‖B‖∞. The latter bound is usually185

faster to compute, so if not critical we recommend this simple bound. However,186

Algorithm NormBnd may be useful to separate clustered eigenvalues.187

Let X ∈ Mm,n with m ≥ n be given. Then ‖X∗X − I‖ ≤ α < 1 implies [32] the188

singular value bounds189

(3.2)
√

1− α ≤ σi(X) ≤
√

1 + α and
1√

1 + α
≤ σi(X+) ≤ 1√

1− α
190

for 1 ≤ i ≤ n where X+ denotes the pseudoinverse. Note that
√

1− α is a very good191

lower bound for the smallest singular value if X has nearly orthonormal columns.192

Executable Matlab/INTLAB code for a point or interval input matrix is as follows.193

function s = singmin(X)194

% s <= sigma_min(X) for rectangular X195

alpha = min( 1 , NormBnd( eye(size(X,2))-X’*intval(X) , true ) );196

s = mig( sqrt(1-intval(alpha)) );197

Using the minimum in the computation of alpha implies the trivial lower bound s = 0198

in case α ≥ 1. In our applications the input matrix has always nearly orthogonal199

columns so that likely the computed lower bound by Algorithm singmin is very close200

to 1. For general matrices, also methods in [31, Section 10.8] may be used.201

To estimate the distance to an orthonormal subspace of eigenvectors and singular202

vectors we use the following lemma.203

Lemma 3.1. Let X,Y ∈ Mm,n with m ≥ n be given. Define α := ‖I − X∗X‖204

and δ := ‖X − Y ‖. Let V be an n-dimensional subspace of the Rm that contains all205

columns of Y . Then there exists Q ∈Mm,n with Q∗Q = I whose columns span V and206

‖Q−X‖ ≤ α+
√

2δ.207

Proof. Let P be the projection onto V, and denote Z := PX, see Figure 1. The208

columns of Z span a subspace of V. Let Z = UΣV ∗ with U ∈ Mm,n,Σ, V ∈ Mn209

be an economy size singular value decomposition of Z. As usual, we assume the210

singular value ordered decreasingly. If Z has full rank, then U spans V and we choose211

Q = UV ∗. Otherwise, if some singular values of Z are zero, still suitable columns of212

U span V, and we choose again Q = UV ∗.213

The columns of Z − X = PX − X lie in the orthogonal complement to V such214

This manuscript is for review purposes only.



6 SIEGFRIED M. RUMP AND MARKO LANGE

that Q∗(Z −X) = 0 = Z∗(Z −X). Together with ‖Z −X‖ ≤ ‖Y −X‖ = δ and215

‖C +D‖2 = ‖(C +D)∗(C +D)‖ ≤ ‖C‖2 + ‖D‖2 + ‖C∗D +D∗C‖,216

this implies217

‖Q−X‖2 ≤ ‖Q− Z‖2 + ‖Z −X‖2 ≤ ‖U(I − Σ)V ∗‖2 + δ2 = ‖I − Σ‖2 + δ2 .218

Denote the diagonal matrix of singular values of X by S. Then ‖S − Σ‖ ≤ ‖X − Z‖219

by [8, Corollary 8.1.6]. Hence220

‖I − Σ‖ ≤ ‖I − S‖+ ‖S − Σ‖ ≤ ‖I − S‖+ ‖X − Z‖

≤ ‖I − S‖+ δ = ‖(I + S)−1(I − S2)‖+ δ

≤ ‖I − S2‖+ δ = ‖I −X∗X‖+ δ = α+ δ

221

and a computation finishes the proof.222

The bound remains true if α ≥ 1 but may not be useful. In our practical applications,223

α is of the order of the relative rounding error unit and thus negligible, so that the224

bound is essentially
√

2δ. For α = 0, the bound is sharp as by X = (
√

1− ε2, z, ε)T225

and Y = (0, z, ε)T with z depicting arbitrarily many zeros, for which Q = (0, z, 1)T226

and ‖Q−X‖ =
√

2(1− ε) =

√
2√

1 + ε
‖X − Y ‖.227

4. Eigenvalue bounds. Throughout this section let A ∈ Mn be a Hermitian228

matrix with eigenvalues λ1, . . . , λn. Let AX̃ ≈ X̃Λ̃ be an approximate eigendecom-229

position of A, for example, computed by the Matlab command [Ls,Xs] = eig(A).230

Numerical experience suggests that we can expect X̃ to be nearly unitary, and the ei-231

genvalue approximations to be accurate of the order u‖A‖ for u denoting the relative232

rounding error unit.233

Assume ‖X̃∗X̃ − I‖ ≤ α < 1. Then X̃ has full rank and the spectra of X̃−1AX̃234

and A coincide. In order to avoid the computation of X̃−1 we use (3.2) to see235

(4.1) ‖X̃∗AX̃ − X̃−1AX̃‖ = ‖(X̃∗X̃ − I)X̃−1AX̃‖ ≤ α
√

1 + α√
1− α

‖A‖ =: β.236

By using Gershgorin circles we then conclude that the spectrum of A, which is real,237

is in the union of G̃i with238

G̃i := {x : |x−Bii| ≤
∑
j 6=i

|Bij |+ β} for B := X̃∗AX̃.239

The radii of the Gershgorin circles depend on the 1-norm of the off-diagonal elements240

of B = X̃∗AX̃. Wilkinson showed [34] that the spectrum of A differs from the diagonal241

elements of Λ̃ by not more than242

(4.2)
‖AX̃ − X̃Λ̃‖
σmin(X̃)

≤ ‖AX̃ − X̃Λ̃‖√
1− α

=: δ.243

The factor of the radii by Gershgorin circles over 100 random matrices compared to244

Wilkinson’s bound is displayed in Table 1.245
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Table 1
Factor of improvement of Wilkinson’s bound over Gershgorin circles

min mean median max

10 2.4 3.3 3.0 4.8
100 5.6 8.9 8.7 14.9

1000 24.2 27.7 27.2 33.8

The union of the Gershgorin circles contains the spectrum of A, but not every246

circle needs to contain an eigenvalue. In contrast, each interval [Bii−δ,Bii+δ] contains247

an eigenvalue of A, and the spectrum is contained in the union of the intervals.248

Define E := AX̃ − X̃Λ̃. The bound in (4.2) needs an upper bound on the norm249

‖E‖, adding another O(n3) operations. That can be improved for subsets of eigenval-250

ues using [4], which removed the factor
√

2 in Kahan’s well known result [8, Theorem251

8.1.8].252

Theorem 4.1. Let the Hermitian matrix A ∈ Mn have eigenvalues λ1, . . . , λn,253

and let the Hermitian matrix H ∈ Mk have eigenvalues ξ1, . . . , ξk. Let X ∈ Mn,k254

have full column rank. Then there exist k eigenvalues λi1 , . . . , λik of A such that255

max
1≤j≤k

|ξj − λij | ≤
‖AX −XH‖
σmin(X)

.256

This covers Wilkinson’s bound (4.2) for k = n. For k = 1 it means that each interval257

(4.3) Lj := [Λ̃jj − δj , Λ̃jj + δj ] with δj :=
‖Eej‖
‖X̃ej‖

258

contains an eigenvalue of A. Here only the norms of the columns of E and X̃ are259

necessary avoiding the extra O(n3) effort to bound the matrix norm ‖E‖.260

The union of Gershgorin circles contains the spectrum of A, however, the union261

of the Lj may not. Consider262

A =

(
5 0
0 2

)
, X̃ =

(
0 −1
3 −2

)
and Λ̃ =

(
2 0
0 1

)
.263

Then E := AX̃ − X̃Λ̃ =

(
0 −4
0 −2

)
, δ1 = 0 and δ2 =

√
20/
√

5 = 2, such that264

L1 = [2, 2] and L2 = [−1, 3].265

The eigenvalue 2 is contained in both intervals, the eigenvalue 5 in none.266

A remedy might be to collect potential clusters of eigenvalues. The connected267

components of Gershgorin circles contain exactly as many eigenvalues of A as circles268

form the component, but that is not true for the Lj . Consider269

A =

 −3 −10 2
−10 −8 6

2 6 13

 , X̃ =

 −2 11 1
2 −8 −3
−3 1 −11

 and Λ̃ =

 0 0 0
0 6 0
0 0 23

 .270

Then E := AX̃ − X̃Λ̃ =

 −20 −17 −18
−14 8 17
−31 −19 94

, and δ1 ≈ 9.57, δ2 ≈ 1.96 and271

δ3 ≈ 8.49, such that272

L1 ⊂ [−9.58, 9.58], L2 ⊂ [4.04, 7.96] and L3 = [14.50, 31.50].273
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8 SIEGFRIED M. RUMP AND MARKO LANGE

The spectrum of A is λ = (−17 , 4.38 , 14.62), so that λ2 ∈ L1 ∩L2 and λ3 ∈ L3. The274

eigenvalue λ1 = −17 is not contained in any Li. Collecting the intervals L1 and L2275

to a cluster µ := {1, 2} gives δµ := ‖E(:,µ)‖
σmin(X̃(:,µ))

≈ 16.47 and new inclusion intervals276

L′1 = 0±δµ ⊂ [−16.47, 16.47] and L′2 = 6±δµ ⊂ [−10.47, 22.47]. Again the eigenvalue277

λ1 = −17 is not included in any interval L′1,L
′
2 or L3.278

Another choice is to adapt the eigenvalue approximations of the cluster, namely279

replacing the diagonal of Λ̃ using the mean of the clustered eigenvalues, in our example280

by (3 , 3 , 23). That changes δµ into 13.58 and the cluster inclusions into L′′1 = L′′2 =281

3± δµ ⊂ [−10.59, 16.59], so that again λ1 = −17 is not contained in any interval.282

Our remedy is to collect eigenvalue clusters recursively. This is done by the283

following executable Matlab/INTLAB code for a given real or complex, point or284

interval input matrix. The function NormBnd(Y) is applied only to matrices with285

nearly orthonormal columns, therefore we use the simple bound
√
‖Y ‖1‖Y ‖∞.286

function [L,mu] = verifyeigall(A)287

n = size(A,1);288

mA = mid(A);289

[Xs,Ls] = eig(mA);290

E = A*intval(Xs) - Xs*intval(Ls);291

lambdas = diag(Ls);292

singXsmin = mig( vecnorm(intval(Xs)) );293

normE = vecnorm(E);294

delta = mag( ( normE ./ singXsmin )’ );295

num_mu = n;296

while 1297

L = midrad(lambdas,delta);298

Linf = repmat(L.inf,1,n); Lsup = repmat(L.sup,1,n);299

dist = ( Linf<=Linf’ ) & ( Lsup>=Linf’ );300

dist = dist | dist’;301

[mu,binsizes] = conncomp(graph(dist),’OutputForm’,’cell’);302

J = find(binsizes>1);303

if any(J) && ( numels(mu)~=num_mu )304

num_mu = numels(mu);305

for j=J306

v = mu{j};307

singXsmin(v) = singmin(Xs(:,v));308

normE(v) = NormBnd(E(:,v));309

delta(v) = mag( normE(v)/singXsmin(v(1)) );310

end311

else312

break313

end314

end315

We add a few comments. The code works for interval input A, in which case the results316

are true for every symmetric or Hermitian A ∈ A. Therefore approximate numerical317

computations use mA, a matrix close2 to the midpoint of A. For non-interval input, A318

and mA coincide. For the eigenapproximations (X̃, Λ̃) := (Xs,Ls) the matrix E is an319

2We cannot expect mA to be the exact midpoint because that needs not be representable.
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inclusion of AX̃ − X̃Λ̃, so that before the while-loop320

‖(AX̃ − X̃Λ̃)ej‖
‖X̃ej‖

≤ δj for all j ∈ [n].321

According to (4.3) each interval Lj contains an eigenvalue. In the while-loop dist is322

computed such that323

distij = true ⇔ Li ∩ Lj 6= ∅,324

and µ are the connected components of the distance matrix dist. If all Lj are initially325

mutually disjoint, i.e., all connected components contain only one element, then each326

Lj contains a unique eigenvalue of A and Algorithm verifyeigall stops. That327

situation corresponds to an empty index set J. Note that this statement is true for328

each symmetric or Hermitian A ∈ A in case of an interval input matrix A.329

Otherwise, some eigenvalues of A may not be contained in any Lj and the while-330

loop continues until the maximal connected components µ are determined. The cor-331

responding elements of δ are recomputed such that at the end of the while-loop332

(4.4)
‖E(:, µj)‖

σmin(X̃(:, µj))
≤ δj333

holds true for all µj and j ∈ J. The algorithm stops when all connected components334

Lj := ∪i∈µj
Li are mutually disjoint. Thus, Theorem 4.1 implies that each Lj contains335

exactly |µj | eigenvalues of A, and, setting k := |µ| and because
∑
j∈[k] |µj | = n, the336

spectrum is included in ∪j∈[k]Lj . Note that in the extremely unlikely event that the337

lower bound3 singXsmin(v(1)) of σmin(X̃(:, v)) is zero, all eigenvalue inclusions Lj338

become ±∞.339

If there are no clusters, then k = n and the result of Algorithm verifyeigall are340

mutually disjoint intervals containing exactly one eigenvalue of A. In case of clusters341

and for point matrix A we did not encounter cases where the while-loop was executed342

more than once - unless we searched for that. In contrast, for an interval matrix A343

it may happen that the final cluster size is determined by several executions of the344

while-loop.345

The main computing time of Algorithm verifyeigall goes into the computation346

of E = AX̃ − X̃Λ̃ requiring O(n3) operations. If there are no or few clusters, the347

additional time for the while-loop is limited by O(np2) operations for the lower bounds348

on σmin(X̃(:, µj)) with p := |µj |. In the worst case, that is one big cluster, that may349

cost another O(n3) operations.350

For simplicity we presented Algorithm verifyeigall in a way that the total com-351

puting time might be O(n4). Indeed, the while-loop might start with a single cluster352

of two eigenvalues and increase that one by one until one big cluster of n eigenvalues.353

The way the algorithm is presented the computing time of singmin(Xs(:,v)) is np2354

for a cluster v of p eigenvalues, which means in total n
∑n
p=1 p

2 = O(n4) operations.355

In an efficient implementation one would compute the diagonal of X̃∗X̃ and then, if356

necessary, step by step the missing entries of the diagonal blocks.357

Another way to treat this problem is as follows. We guess a lower bound β for the358

smallest singular value of E. Based on that we compute the clusters in one step, and it359

remains to certify β ≤ σmin(Eµ) for all Eµ = E(:,mu{j}) with j ∈ J, i.e., for clusters360

3Note that singXsmin(v) is a vector with identical elements being a lower bound to σmin(X̃(:, v)).
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Fig. 2. Eigenvalue inclusions by Algorithm verifyeigall [red] compared to taking the mean of
eigenvalue approximations of a cluster [blue].

with at least two elements. For k clusters of sizes pj denote w := (p1, . . . , pk) ∈ Rk.361

Then ‖w‖1 ≤ n and the total effort is at most n
∑k
j=1 p

2
j = n‖w‖22 ≤ n3. Numerical362

evidence suggests that in double precision the guess 1− 10n · 2−53 never fails, but the363

guess for β may be much more generous such as, for example, β := 1− 10−5 without364

changing the final result significantly.365

Theorem 4.2. Let a real or complex, point or interval matrix A be given, and let366

(L, µ) be the result of Algorithm verifyeigall applied to A. Then for each symmetric367

or Hermitian A ∈ A the following is true. There is a numbering of the eigenvalues368

λ1, . . . , λn of A such that λj ∈ Lj for all j ∈ [n]. Moreover, µ = (µ1, . . . , µk) is a369

partition of [n] into k sets µj such that Lj := ∪i∈µjLj is a set of k mutually disjoint370

intervals, and for all j ∈ [k] each Lj contains exactly |µj | eigenvalues of A.371

In Algorithm verifyeigall the midpoints Λ̃ii do not change, also if clusters are372

determined in the while-loop. As has been mentioned, another strategy is to use the373

mean (
∑
i∈µj

Λ̃ii)/|µj | as new midpoint if a cluster µj is discovered. As a drawback, for374

each newly formed cluster µj the submatrix E(:, µj) = AX̃(:, µj)− X̃(:, µj)Λ̃(µj , µj)375

has to be recomputed.376

Numerical experience suggests that the computed eigenvalue inclusions of the pre-377

sented Algorithm verifyeigall are better for clustered eigenvalues when not chang-378

ing the midpoints Λ̃ii of the Li. By numerical evidence, the eigenvector inclusions are379

generally better for simple eigenvalues, but worse for clusters.380

Moreover, sometimes the strategy not to change the original approximations Λ̃ii381

leads to fewer clusters. As an example consider382

(4.5) A =


16 7 0 3 7
7 −4 −1 −2 1
0 −1 −6 5 1
3 −2 5 −6 3
7 1 1 3 −2

± 0.5 .383

The eigenvalue inclusions Lj computed in INTLAB are as follows, left the result of384

Algorithm verifyeigall as presented, and right when taking the mean of eigenvalue385

approximations of a cluster in the while-loop, see Figure 2.386

intval ans =387

[ -15.0571, -8.1235] [ -21.1455, 9.7633]388

[ -10.4787, -3.5451] [ -21.1455, 9.7633]389
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Fig. 3. Improvement of the bounds by correction of the singular value approximations.

[ -8.7632, -1.8295] [ -21.1455, 9.7633]390

[ -1.1711, 3.4393] [ -21.1455, 9.7633]391

[ 18.9542, 22.5746] [ 18.9542, 22.5746]392

As can be seen, for verifyeigall the first three eigenvalues are collected into one393

cluster with different midpoints and constant radius 3.47, where the alternative com-394

putes a cluster of the first four eigenvalues with identical inclusions, each of radius395

15.45. We come to that example again in the section for eigenvector inclusions.396

5. Improvement of eigenvalue approximations and inclusions. We will397

improve our eigenvalue inclusions in two ways. First, the initial eigenvalue approxi-398

mations in Λ̃ will be corrected to obtain smaller residuals. Second, after inclusions of399

all eigenvalues are known, those can be sharpened. Both improvements are based on400

Rayleigh quotients. The same principle is used to improve singular value inclusions.401

The quality of the verified bounds for simple eigenvalues depend on the spectral402

norm of the columns of AX̃ − X̃Λ̃, i.e., on residuals ‖Ax̃− λ̃x̃‖. So first we improve403

a given approximation λ̃ into λ̃+ ε by minimizing f(ε) := ‖Ax̃− (λ̃+ ε)x̃‖2. Setting404

y := Ax̃− λ̃x̃ we obtain405

f(ε) = ‖y‖2 − 2εx̃∗y + ε2‖x̃‖2 which is mimimal for ε̃ =
x̃∗y

‖x̃‖2
,406

so that λ̃ + ε̃ becomes the Rayleigh quotient. For singular values the quality of the407

inclusions depend on residuals y := Aṽ − σ̃ũ and lead to the corrected singular value408

approximation409

σ̃ → σ̃ +
ũ∗y

‖ũ‖2
.410

For condition numbers up to 1016, Figure 3 shows the minimum (solid line), mean411

(dotted line) and median (dashed line) ratio of the improvement of all residual bounds412

for the singular values for a set of 100 random 100× 100 real matrices (left) and 100413

random 100 × 100 complex matrices (right). As can be seen the best ratio is up to414

0.3 for larger condition number. That means that the relative error of the improved415

bounds is up to a factor 3 smaller than the original bounds.416

In Figure 4 the same ratios are shown for the improvement of the eigenvalue417

bounds. Here the improvement is up to a factor 1.5 for all condition numbers. The418

median is close to 1 which means that only a few corrections are significant. Mainly the419

singular values and eigenvalues of largest absolute value enjoy the best improvement420

because a correction of a small eigen- or singular value has small impact on the421
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12 SIEGFRIED M. RUMP AND MARKO LANGE

Fig. 4. Improvement of the bounds by correction of the eigenvalue approximations.

residual, and in order to save computing time the correction may be restricted to the422

former.423

Second, once inclusions of all eigenvalues are at hand, we sharpen those of simple424

eigenvalues. Once the gap of % to the remaining spectrum is known, the distance to425

its nearest eigenvalue can be estimated by [13, Theorem 5]:426

Theorem 5.1. For Hermitian A ∈Mn and nontrivial x ∈ Kn let λ be the closest427

eigenvalue to %(x) :=
x∗Ax

x∗x
, and ε be the separation of % to the next closest eigenvalue.428

Then429

(5.1) |λ− %| ≤ ‖Ax− %x‖
2

ε‖x‖2
.430

The authors note that this residual bound, which also follows by Kato-Temple’s in-431

equalities [14], gives considerable insight but is not readily computable because ε is not432

known. Fortunately, we have bounds for the eigenvalue gaps and can apply Theorem433

5.1.434

For a given eigenvector approximation x̃ of a Hermitian matrix, the Rayleigh435

quotient % is the best eigenvalue approximation. Both the improvement of the initial436

approximations in Λ̃ and the eigenvalue bounds by Theorem 5.1 are based on %, where437

we first need an approximation and second an inclusion of the Rayleigh quotient %.438

Therefore, we compute inclusions rho of the Rayleigh quotients at the beginning439

of Algorithm verifyeigall and replace Λ̃ by the diagonal matrix of midpoints of440

rho. After having inclusions of all eigenvalues at hand we improve the inclusions of441

the simple eigenvalues by Theorem 5.1 based on the inclusion of rho.442

For an interval input matrix A the assertions of Theorem 4.2 are true for all443

matrices A ∈ A. The computation of the Rayleigh quotient % is based on approximate444

eigenvector approximations, and to that end it seems suitable to use the midpoint445

matrix mA = mid(A) of A as in Algorithm verifyeigall. To achieve tight bounds446

for the eigenvectors and/or invariant subspaces it is important that the computed447

eigenvector approximation matrix is close to unitary. But that may not be true if the448

input matrix is numerically but not mathematically symmetric or Hermitian.449

To describe the problem, we generate a numerically symmetric matrix A with450

a double eigenvalue and calculate the residual I-X’*X of the computed eigenvector451

approximation X.452

n = 5;453

d = randn(n,1); d(1) = d(2);454

Q = orth(randn(n));455
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A = Q’*diag(d)*Q;456

normA = norm(A’-A)457

[X,L] = eig(A); res1 = norm(eye(n)-X’*X)458

B = (A’+A)/2;459

normB = norm(B’-B)460

[X,L] = eig(B); res2 = norm(eye(n)-X’*X)461

Typical results are462

normA =463

2.1999e-16464

res1 =465

0.1414466

normB =467

0468

res2 =469

1.7760e-15470

In other words, the eigenvector approximation without symmetrization is far from471

being orthogonal. The initial matrix A is numerically symmetric, but not mathe-472

matically. Therefore Matlab uses an algorithm for general matrices, and this leads473

typically to numerically linear dependent eigenvector approximations for the clustered474

eigenvalue.475

For an interval input matrix A, the midpoint matrix computed by mA = mid(A)476

need not be symmetric or Hermitian, even if the bounds are. Therefore we compute477

eigenvector approximations of the symmetrized matrix B = (A’+A)/2 which must be478

symmetric or Hermitian, also in the presence of rounding errors because floating-point479

addition is commutative, symmetric to zero and division by 2 is exact.480

Another strategy is to use the Schur decomposition A = UTU∗. Since the input481

matrix is expected to be numerically symmetric or Hermitian, i.e., very close to nor-482

mal, the Schur matrix T is close to diagonal. The problem described before is solved483

because the transformation matrix U is intended to be unitary.484

In order to fully use the remarkable quadratic approximation property (5.1) of485

the Rayleigh quotient it is important to compute it using some increased precision as,486

for example, described in [24, 20, 2, 28]. This should be used to implement routines487

(5.2) norm X2(x), norm xAx(A, x) and norm Axrhomid2(A, x, rho.mid)488

which give vectors of inclusions of ‖x‖2, x∗Ax and ‖Ax− rx‖2 for each column x of489

Xs, respectively, where r := rho.mid is the midpoint of the Rayleigh quotient inclusion490

rho. Then, for x̃ denoting the i-th column of X̃, the i-th entry of rho is an inclusion491

of the Rayleigh quotient of x̃. In order to use the Rayleigh quotient to compute the492

eigenvalue approximations we then replace the line493

[Xs,Ls] = eig(mA);494

in Algorithm verifyeigall by the lines495

[Xs,~] = eig((mA’+mA)/2);496

norm2x = norm_X2(Xs);497

rho = norm_xAx(A,Xs)./norm2x; % inclusion of Rayleigh quotient498

Ls = diag(rho.mid);499

Note that only the eigenvector matrix Xs of eig is needed, the eigenvalue approxima-500

tions are computed using the Rayleigh quotients based on Xs. To improve the already501
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14 SIEGFRIED M. RUMP AND MARKO LANGE

computed eigenvalue inclusions L we append the call502

L = refineeig(A,Xs,L,rho,norm2x)503

after Algorithm verifyeigall using the following code:4504

function L = refineeig(A,Xs,L,rho,norm2x)505

n = size(A,2);506

LL = repmat(L,1,n);507

e = mig(LL-LL’);508

e(1:n+1:n^2) = inf;509

e = min(e); % gaps between eigenvalues510

index_s = find(e>0); % indices of simple eigenvalues511

res = norm_Axrhomid2(A,Xs,rho.mid)./norm2x;512

res = sqrt(max(0,res)) + rho.rad;513

Lnew = ( rho + midrad(0,mag(sqr(res)./e)) )’;514

L(index_s) = intersect(L(index_s),Lnew(index_s));515

Let j ∈ index s be fixed but arbitrary. The set index s comprises only of clusters of516

size 1, so that the eigenvalue λj of A in Lj is unique and simple. In order to avoid517

extensive index computations, the bounds in Lnew are computed for all indices 1 . . . n518

but are valid only for the indices in index s. That is taken into account in the last519

statement computing the refined L.520

Denote Lj = [λ̃j − δj , λ̃j + δj ] based on the approximate eigenpair λ̃j , x̃ and521

δj := ‖Ax̃− λ̃j x̃‖/‖x̃‖. The Rayleigh quotient of x̃ is an element of Lj as by522

(5.3) |%− λ̃j | =
|x̃∗(A− λ̃jI)x̃|

x̃∗x̃
≤ ‖Ax̃− λ̃j x̃‖

‖x̃‖
= δj .523

The distance vector e satisfies min{|ξi− ξj | : ξi ∈ Li, ξj ∈ Lj , i 6= j, } ≤ ej, so that for524

the eigenvalues λi of A in particular525

min
i 6=j
|λi − %| ≤ ej526

because λi /∈ Lj for i 6= j. Thus Theorem 5.1 is applicable and yields527

(5.4) |λ− %| ≤ ‖Ax− %x‖
2

ej‖x‖2
.528

Then Lnew is computed according to (5.4) using529

‖Ax− %x‖
‖x‖

∈ ‖Ax− rx‖
‖x‖

± rad(rho) .530

The final value of res uses sqrt(max(0,res)) to cure possible interval overestimation,531

and the intersection of the entries of L and Lnew is only necessary for interval input.532

For Hermitian A = A1+ iA2 and z = x+ iy it is advisable to use z∗Az = x∗A1x+533

y∗A2y−2x∗A2y and z∗z = x∗x+y∗y because the imaginary part vanishes. Moreover,534

if complex midpoint-radius arithmetic is used as in INTLAB, that is superior to taking535

the real part of the interval products. As has been mentioned it is better to calculate536

4For brevity we use the Matlab notation rho.mid and rho.rad, where rho.mid is an approximation
of the midpoint of the interal rho and rho.rad an upper bound for its radius rad(rho). The quantities
are computed such that midrad(rho.mid,rho.rad) contains rho.
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Ax in the computation of the Rayleigh quotient and the residual Ax− rx with some537

extra precision.538

We next provide some computational results. For dimension n = 1000 we generate539

symmetric and Hermitian matrices randomly and calculate the eigenvalue inclusions540

by Algorithm verifyeigall and using refineeig. Then we calculate the minimum541

m1, median m2 and maximum m3 of the relative errors of both inclusions. This is542

done for 100 sample matrices and the median of the mi is displayed together with543

their ratio in Table 2.544

Table 2
Improvement of eigenvalue inclusions by Algorithm refineeig

symmetric matrix Hermitian matrix
relerr minimum median max minimum median max

initial 2.0 · 10−14 7.7 · 10−14 7.8 · 10−11 2.8 · 10−14 9.5 · 10−14 7.1 · 10−11

refined 9.5 · 10−15 1.1 · 10−14 1.2 · 10−14 9.5 · 10−15 1.1 · 10−14 4.0 · 10−13

ratio 2.2 7.3 6612 2.9 8.8 178

As can be seen there is often a considerable refinement of the eigenvalue bounds, and545

there seems not too much difference between the symmetric and Hermitian case.546

Next, for e := 10−11, we generate a symmetric matrix with 10 random eigenvalues547

in a circle of radius e around 0.1, another 10 random eigenvalues in a circle of radius e548

around 0.2, and another 980 random eigenvalues in [−1,−0.3]∪ [0.3, 1], and similarly549

for a Hermitian matrix. Since there is no improvement for the clustered eigenvalues,550

we consider only the relative errors of the simple eigenvalues. Again, the median of551

the results of 100 samples is taken and shown in Table 3.

Table 3
Improvement of eigenvalue inclusions in the presence of clusters by Algorithm refineeig

symmetric matrix Hermitian matrix
relerr minimum median max minimum median max

initial 1.8 · 10−14 5.8 · 10−14 1.6 · 10−13 6.9 · 10−14 1.3 · 10−13 4.1 · 10−13

refined 2.0 · 10−15 1.0 · 10−14 2.4 · 10−14 9.5 · 10−15 1.1 · 10−14 1.2 · 10−14

ratio 9.2 5.6 6.6 7.2 12.6 34

552
Although the comparison is for the simple eigenvalues, there seems some influence of553

clusters to the eigenapproximations. Therefore the improvement is more moderate,554

and maybe slightly better for Hermitian matrices.555

One might think about the application of mathematically provable tighter bounds556

for even better accuracy. For example, in [37] the authors proved a bound similar to557

that in (5.1). They showed that the residual can be replaced with its projection onto558

a smaller subspace V provided that V contains x as well as the eigenvector to λ.559

However, V is not given since we do not know the respective eigenvector. By applying560

the method described in Section 6 it is possible to derive an inclusion of V from561

which then a verified inclusion of the respective projection matrix can be computed.562

Nevertheless, the introduction of additional rounding errors may outweigh the benefit563

from the tighter bound.564

This issue is even more present when applying the quadratic residual bounds from565

[34] or [38] to a cluster of eigenvalues. All computations would need to be done in566

higher precision to compensate the additionally introduced floating-point rounding567
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errors. However, the additional computational effort might be better spent on more568

accurate eigenpair approximations. A further investigation of these possibilities is569

surely of interest but lies outside of the scope of this note.570

6. Eigenvector bounds. Let (L, µ) be the results of Algorithm verifyeigall571

applied to Hermitian A ∈ Mn with eigendecomposition AX = XΛ. The eigenvalue572

inclusions are Lj = [λ̃j − δj , λ̃j + δj ] for j ∈ [n], and µ = (µ1, . . . , µk) is a partition573

of [n]. Moreover, the cluster inclusions L` := ∪j∈µ`
Lj are mutually disjoint for ` ∈574

[k]. Applying Theorem 4.1 to each cluster separately shows that there is a suitable575

numbering λ1, . . . , λn of the eigenvalues of A such that λj ∈ Lj for all j ∈ [n]. To576

obtain bounds for the respective eigenvectors or invariant subspaces, we exploit the577

following lemma which is closely related to Davis’ and Kahan’s celebrated sin(Θ)578

theorem [6]. Indeed, for its short proof we borrowed from the original work.579

Lemma 6.1. Let Hermitian A ∈ Mn be given, denote its eigendecomposition by580

AX = XΛ, and let X̃ ∈ Mn,p and Hermitian Λ̃ ∈ Mp with p ≤ n be given. Let581

Λ = diag(λ1, . . . , λn) and denote the eigenvalues of Λ̃ by λ̃1, . . . , λ̃p. Let µ ⊆ [n] with582

|µ| = p be given and assume that there exists positive ε with583

(6.1) ε ≤ min
i/∈µ,j∈µ

|λi − λ̃j |.584

Then there exists Y ∈Mn,p whose columns lie in the invariant subspace V of A to the585

eigenvalues {λj : j ∈ µ} with586

(6.2) ‖X̃ − Y ‖ ≤ ‖AX̃ − X̃Λ̃‖
ε

.587

Proof. For B ∈Mn denote by Bµ ∈Mn,p its submatrix with columns in µ, and set588

µ := [n]\µ. Then Xµ spans the invariant subspace of A to the eigenvalues {λj : j ∈ µ},589

and Xµ is its orthogonal complement. Denote by L := [min1≤j≤p λ̃j ,max1≤j≤p λ̃j ]590

the convex hull of the eigenvalues of Λ̃, by λ̂ its midpoint and by r its radius, so that591

L = [λ̂ − r, λ̂ + r]. The assumption (6.1) and ε > 0 give |λi − λ̂| ≥ ε + r for all592

i /∈ µ. Then, borrowing from the proofs of [19, Lemma 3.1] and the celebrated sin(Θ)593

theorem [6] and using r = ‖Λ̃− λ̂Ip‖ it follows594

‖AX̃ − X̃Λ̃‖ = σ1(X∗µ)‖XΛX∗X̃ − X̃Λ̃‖ ≥ ‖Λ(µ, µ)X∗µX̃ −X∗µX̃Λ̃‖

= ‖
(

Λ(µ, µ)− λ̂In−p
)
X∗µX̃ −X∗µX̃

(
Λ̃− λ̂Ip

)
‖

≥ (ε+ r)‖X∗µX̃‖ − r‖X∗µX̃‖ = ε‖X∗µX̃‖

= ε‖XµX
∗
µX̃‖ = ε‖

(
I −XµX

∗
µ

)
X̃ ‖ .

595

Since Y := XµX
∗
µX̃ is a subspace of Xµ, that finishes the proof.596

We use the notation of the previous section. Let ` ∈ [k] be fixed but arbitrary,597

and set p := |µ`|. Define S := X̃(:, µ`) ∈ Mn,p and L̃ := Λ̃(µ`, µ`) ∈ Mp. Then598

AS − SL̃ = E(:, µ`) and Theorem 4.1 yield599

|λ̃j − λj | ≤
‖E(:, µ`)‖
σmin(S)

≤ δj for all j ∈ µ`.600

The quantity601

(6.3) ε` := min
i/∈µ`,j∈µ`

|λi − λ̃j | ≥ min
i/∈µ`,j∈µ`

|λ̃i − λ̃j | − δi602
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can be computed in O(n2) operations, and ε` is positive because the cluster inclusions603

are mutually disjoint. Thus, Lemma 6.1 is applicable and proves that there exists604

Y ∈ Mn,p whose columns lie in the invariant subspace V of A to its eigenvalues605

{λj : j ∈ µ`} with606

(6.4) ‖S − Y ‖ ≤ ‖E(:, µ`)‖
ε`

=: τ`.607

Note that Y may be rank-deficient, it might even be the zero matrix if X̃ is orthogonal608

to Xµ. Although that seems hardly possible in practice, the result (6.2) remains true609

and allows to compute an inclusion of a matrix with orthonormal columns spanning610

V using Lemma 3.1. For q, r in the same partition µ` the radii τq = τr are the same.611

In order to compute mathematically correct error bounds for an invariant sub-612

space to corresponding eigenvalue clusters belonging to the partition µ the first line613

614
function [L,mu] = verifyeigall(A)615

is changed into616

function [L,mu,X] = verifyeigall(A)617

where the corresponding columns in X contain an orthonormal basis of the invariant618

subspaces. The following executable Matlab/INTLAB code is appended to Algo-619

rithm verifyeigall. It includes the refinement of the eigenvalues as described in the620

previous section.621

L = refineeig(A,Xs,L,rho,norm2x);622

if numels(mu)==1 % only one cluster623

if isinf(delta(1)) || isnan(delta(1))624

rX = inf(1,n);625

else626

rX = zeros(1,n);627

end628

else629

lam = intval( repmat(L.mid,1,n)’ );630

e = mig(min( abs(lam-Linf) , abs(lam-Lsup) ));631

e(1:n+1:n^2) = inf;632

for j=J633

v = mu{j};634

e(v,v) = inf;635

end636

tau = normE ./ min(e);637

alpha = mag( 1 - sum(intval(Xs).*conj(Xs)) );638

rX = mag( alpha + intval(’sqrt2’)*tau );639

for j=J640

v = mu{j};641

Ip = eye(length(v));642

alpha = NormBnd(Ip - Xs(:,v)’*intval(Xs(:,v)));643

rX(v) = mag( alpha + intval(’sqrt2’)*tau(v) );644

end645

end646

X = midrad( Xs , repmat(rX,n,1) );647

If numels(mu)==1 that means that there is only one cluster collecting all eigenvalues648
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and that exceptional case is handled first. Otherwise, the distance matrix of the649

eigenvalue inclusions is computed such that the entries of the vector min(e) are the650

quantities as in (6.3). Note that the eigenvalue inclusions L have been refined and lam651

uses the new midpoints L.mid. If the index set J is empty, then there are no clusters,652

exclusively simple eigenvalues and the elements of rX bound the norm distance of the653

columns of Xs to a true eigenvector normed to 1. Otherwise, the radii are corrected654

according to (6.4) such that, for all j∈J and v=mu{j}, X(:,v) contains an orthonormal655

matrix spanning the invariant subspace of A to its eigenvalues.656

Theorem 6.2. Let a real or complex, point or interval matrix A be given, and let657

(L, µ,X) be the result of Algorithm verifyeigall applied to A. Then for each sym-658

metric or Hermitian A ∈ A the following is true. For the partition µ = (µ1, . . . , µk)659

of [n] into k sets µ`, each X(:, µ`) contains an orthonormal basis of the invariant660

subspace to the eigenvalues in ∪j∈µ`
Lj.661

Denote by A the matrix (4.5) and consider A := A ± r for different radii r. The662

following Table 4 shows the clusters for taking the mean of eigenvalue clusters as mid-663

point of the inclusions as described before, and the original Algorithm verifyeigall.664

As can be seen the cluster sizes are the same except for radius 0.45 where eigenvalues

Table 4
Cluster sizes for mean of eigenvalue clusters and original Algorithm verifyeigall.

radius mean of eigenvalues Algorithm verifyeigall

0.10 1, 2, 3, 4, 5 1, 2, 3, 4, 5
0.20 1, 2, 3, 4, 5 1, 2, 3, 4, 5
0.25 1, {2,3}, 4, 5 1, {2,3}, 4, 5
0.30 1, {2,3}, 4, 5 1, {2,3}, 4, 5
0.35 1, {2,3}, 4, 5 1, {2,3}, 4, 5
0.40 1, {2,3}, 4, 5 1, {2,3}, 4, 5
0.45 {1,2,3,4}, 5 1, {2,3}, 4, 5

665

1 . . . 4 form a single cluster when using the mean of eigenvalue clusters as midpoint.666

Next we show in the rows of Table 5 the median of the radii of the inclusions of667

the invariant subspaces of A := A ± r for different radii r, left taking the mean of668

eigenvalues for clusters and right Algorithm verifyeigall.669

Table 5
Radii of the inclusions of the invariant subspaces of A := A± r for different r.

0.10 0.20 0.25 0.30 0.35 0.40 0.45

0.10 0.10 0.21 0.21 0.35 0.32 0.46 0.42 0.60 0.54 0.78 0.69 0.17 0.88
0.30 0.30 0.84 0.84 0.32 0.39 0.40 0.50 0.49 0.62 0.58 0.75 0.17 0.91
0.30 0.30 0.84 0.84 0.32 0.39 0.40 0.50 0.49 0.62 0.58 0.75 0.17 0.91
0.08 0.08 0.16 0.16 0.24 0.23 0.31 0.29 0.38 0.36 0.47 0.44 0.17 0.53
0.02 0.02 0.04 0.04 0.05 0.05 0.06 0.06 0.07 0.07 0.08 0.08 0.14 0.09

For increasing values of r the radii of the original Algorithm verifyeigall become670

slightly superior though there is not too much difference, but become worse for the671

cluster {2, 3}. The radii in the last column are not really comparable because only672

the original Algorithm verifyeigall is able to separate the eigenvalues.673

A typical computational result for larger dimension is displayed in Table 6. First,674
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we take a 1000 × 1000 random symmetric matrix and show the minimum, mean,675

median and maximum of the relative error of the inclusions of eigenvalues and eigen-676

vectors, where for eigenvectors we first take the median of relative errors so that677

outlayers of small eigenvector components do not dominate the result. The minimum

Table 6
Relative error of eigenvalue and eigenvector inclusions for a random symmetric matrix.

rel. error minimum mean median maximum

eigenvalues 1.9 · 10−14 1.5 · 10−12 7.9 · 10−14 1.3 · 10−9

eigenvectors 2.3 · 10−12 3.8 · 10−11 2.7 · 10−11 4.0 · 10−10

678

distance, i.e., gap between the eigenvalues is about 4.6 · 10−3 corresponding to the679

accuracy of the eigenvector inclusions.680

The picture changes for clusters. For e := 10−11 we generate a symmetric matrix681

with 10 random eigenvalues in a circle of radius e around 0.1, another 10 random682

eigenvalues in a circle of radius e around 0.2, and another 980 random eigenvalues in683

[−1,−0.3] ∪ [0.3, 1]. The results are shown in Table 7. There is not much difference

Table 7
Relative error of eigenvalue and eigenvector inclusions for two 10-fold clusters.

rel. error minimum mean median maximum

eigenvalues 1.7 · 10−14 6.9 · 10−14 6.3 · 10−14 8.9 · 10−13

eigenvectors 6.7 · 10−12 3.8 · 10−3 7.8 · 10−11 7.3 · 10−1

684
in the eigenvalue inclusions, and generally the eigenvector inclusions are of similar685

quality. However, the mean and maximum relative error is much worse. The reason686

is that the clusters could be separated by Algorithm verifyeigall so that only one687

cluster of size 2 remained rather than 2 clusters of size 10, all other eigenvalues have688

unique intervals and the bounds become poor due to the small gap. As an advantage,689

individual bounds for almost all eigenvectors are computed, as a disadvantage the690

bounds of the clustered eigenvectors are of less quality.691

If it is sufficient to collect the clustered eigenvectors into invariant subspaces, a692

cure is to define a threshold kappa so that eigenvalues with distance below kappa693

are considered as a cluster. To that end the computation of dist in Algorithm694

verifyeigall is changed into695

dist = ( Linf-kappa*abs(Linf)<=Linf’ ) & ...696

( Lsup+kappa*abs(Lsup)>=Linf’ );697

Using kappa = 10−10 the results are shown in Table 8. Now inclusions of two clusters

Table 8
Relative error of eigenvalue and eigenvector inclusions for two 10-fold clusters with threshold

on the cluster size.

rel. error minimum mean median maximum

eigenvalues 1.7 · 10−14 6.9 · 10−14 6.3 · 10−14 8.9 · 10−13

eigenvectors 1.1 · 10−12 9.2 · 10−10 7.5 · 10−11 2.2 · 10−7

698
of 10 eigenvalues each with corresponding 10-dimensional invariant subspace are com-699

puted. The remaining inclusions cover the simple eigenvalues and eigenvectors, and700
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all inclusions are of reasonable quality. These results are typical for other dimensions701

and cluster sizes, so that additional test results do not give much more information.702

We close this section with some comparison between our presented methods for703

symmetric/Hermitian matrices and those in [33] for general real or complex matrices.704

First we look at the necessary separation of clusters. To that end we use the matrix in705

(4.5) with different radii R, i.e., apply the algorithms to midrad(A,R). For each value706

of R, the median relative error of all eigenvalue inclusions computed by Algorithm707

verifyeigall and the general algorithm in [33] is displayed in Table 9, followed by708

the median relative error of all eigenvector/orthogonal subspace inclusions. The last709

column gives the size of the eigenvalue clusters detected by Algorithm verifyeigall.710

Table 9
Median of relative errors by Algorithm verifyeigall and [33] for large tolerances

eigenvalues eigenvectors/orthogonal subspaces clusters
R verifyeigall [33] verifyeigall [33]

0.006 3.4 · 10−3 2.7 · 10−3 2.4 · 10−2 3.2 · 10−2 1,2,3,4,5
0.007 3.9 · 10−3 - 2.8 · 10−2 - 1,2,3,4,5
0.1 5.6 · 10−2 - 2.8 · 10−1 - 1,2,3,4,5
0.3 2.4 · 10−1 - 5.9 · 10−1 - 1,{2,3},4,5
0.5 4.9 · 10−1 - 8.4 · 10−1 - {1,2,3},4,5
0.6 7.5 · 10−1 - 3.4 · 10−1 - {1,2,3,4},5

711

For a radius R = 0.006 both algorithm can separate the eigenvalues, the cluster712

size for both is always 1. The quality of the inclusions is comparable, however, it713

is weak due to the large radius of all matrix components. The dimension of the714

matrix is 5, so the spectral norm of the radius matrix is 5R. Hence, the maximum715

relative perturbation of the eigenvalues is of the order 5R/‖A‖ and, for example in716

the first row, we cannot expect an error much better than 5R/‖A‖ ≈ 1.4 · 10−3. That717

means the inclusions computed by Algorithm verifyeigall are wide, but without718

much room for improvement. From radius R ≥ 0.007, the clusters are too close719

and the algorithm in [33] cannot compute any inclusion at all. One reason is the720

simultaneous preconditioning technique. In contrast, Algorithm verifyeigall treats721

the eigenvalues individually and can separate all of them until R ≤ 0.1. For even722

larger radii, clusters appear, but still inclusions are computed.723

Finally we present some accuracy and timing comparisons between Algorithm724

verifyeigall and the algorithm in [33] for random symmetric matrices of dimen-725

sion n. As before the median relative error of all eigenvalue inclusions computed by726

Algorithm verifyeigall and the general algorithm in [33] is displayed in Table 10,727

followed by the median relative error of all eigenvector/orthogonal subspace inclu-728

sions. The last column displays the time ratio of the algorithm in [33] divided by that729

for Algorithm verifyeigall.730

As can be seen the algorithm in [33] produces inclusions with smaller relative731

errors than Algorithm verifyeigall, in particular for the eigenvector/invariant sub-732

space inclusions. However, the ∗ indicates that in 20% of the test cases the algorithm733

in [33] failed to compute an inclusion because the eigenvalues were not sufficiently734

separated.735

There are two reasons for the better inclusions of the algorithm in [33]. First, the736

algorithm in [33] is based on [30] and computes inclusions of the error with respect737
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Table 10
Median of relative errors by Algorithm verifyeigall and [33] for large dimension

eigenvalues eigenvectors/orthogonal subspaces time ratio
n verifyeigall [33] verifyeigall [33]

10 1.0 · 10−15 2.4 · 10−16 5.1 · 10−15 5.6 · 10−17 1.2
30 1.4 · 10−15 2.4 · 10−16 2.0 · 10−14 5.6 · 10−17 1.3

100 1.9 · 10−15 2.4 · 10−16 9.0 · 10−14 4.2 · 10−17 2.0
300 2.3 · 10−15 2.3 · 10−16 3.3 · 10−13 4.2 · 10−17 3.4

1000 2.4 · 10−15 2.3 · 10−16 1.3 · 10−12 3.5 · 10−17 4.1
3000 3.5 · 10−15 2.4 · 10−16 5.0 · 10−12 3.5 · 10−17 4.9

10,000 1.4 · 10−14 2.4 · 10−16∗ 7.2 · 10−11 3.5 · 10−17∗ 6.6

to approximations of the eigenvalues and -vectors. In turn those approximations are738

improved by one Newton step. Generally, an inclusion of the error with respect to a739

good approximation is superior to a direct inclusion of the solution. That principle740

is the basis of many verification algorithms, cf. [31]. Second, the algorithm in [33]741

provides componentwise error bounds rather than the normwise bounds by Algorithm742

verifyeigall. The inclusions computed by [33] converted into normwise error es-743

timates are still better by almost an order of magnitude, however, the discrepancy744

is not that large. Together, that explains the better accuracy, in particular for the745

eigenspaces. The drawback is that with increasing dimension the algorithm in [33] for746

general real or complex matrices becomes significantly slower than the new Algorithm747

verifyeigall and, as we saw before, the necessity of well separated clusters.748

7. Singular value and vector bounds. For A ∈Mm,n let A = XΣY ∗ be the749

economy size singular decomposition with X ∈ Mm,n and Σ, Y ∈ Mn. Denote the750

singular values of A by σ1 ≥ . . . ≥ σn, the orthogonal complement of X by X⊥, and751

set752

(7.1) B :=

(
0 A∗

A 0

)
and Q :=

1√
2

(
Y 0 Y

X
√

2X⊥ −X

)
.753

Then Q∗BQ = diag(σ1, . . . , σn,−σ1, . . . ,−σn, 0, . . . , 0). Error bounds for the singular754

values of a matrix based on residuals are very similar to those given in Theorem 6.2755

for eigenvalues of a Hermitian matrix. As in the case of eigenvalues, better bounds756

can be derived using Lange’s result [18]:757

Theorem 7.1. Let A ∈Mm,n and H ∈Mp with m ≥ n ≥ p. Denote the singular758

values of H by θ1 ≤ . . . ≤ θp. For X ∈Mm,p and Y ∈Mn,p define the residuals759

E := AY −XH and F := A∗X − Y H∗.760

Then there is a subset of singular values σi1 , . . . , σip of A such that761

(7.2) max
1≤j≤p

|σij − θj | ≤
√
‖E‖2 + ‖F‖2
σmin(Y )

.762

We note that in [18] the sharper bound763

max
1≤j≤p

|σij − θj | ≤ max

{√
‖E‖2 + ‖F‖2

σmin(X)2 + σmin(Y )2
,
‖E‖

σmin(Y )
,
‖F‖

σmin(Y )

}
764

This manuscript is for review purposes only.



22 SIEGFRIED M. RUMP AND MARKO LANGE

is proved. However, singular value and vector approximations are generally of high765

accuracy, so that (7.2) is very tight and more than sufficient for our purposes.766

Theorems 4.1 and 7.1 are of similar nature, so Algorithm verifyeigall can be767

adapted directly. Now we added, as for eigenvalue clusters, the extra parameter kappa768

to collect singular values with distance below into one cluster. If not specified, kappa769

is set to zero.770

function [S,mu,X,Y] = verifysvdall(A,kappa)771

if nargin==1, kappa = 0; end772

[m,n] = size(A);773

[Xs,Ls,Ys] = svd(mid(A),0);774

norm2z = norm_X2([Xs;Ys]);775

rho = norm_zBz(A,Xs,Ys)./norm2z; % inclusion of Rayleigh quotient776

Ls = diag(rho.mid);777

E = A*intval(Ys) - Xs*intval(Ls);778

F = A’*intval(Xs) - Ys*intval(Ls);779

sings = diag(Ls);780

singYsmin = mig( vecnorm(intval(Ys)) );781

normG = vecnorm(intval([E;F]));782

delta = mag( normG ./ singYsmin )’;783

num_mu = n;784

while 1785

S = max( 0 , midrad(sings,delta) );786

Sinf = repmat(S.inf,1,n); Ssup = repmat(S.sup,1,n);787

dist = ( Sinf-kappa*abs(Sinf)<=Sinf’ ) & ...788

( Ssup+kappa*abs(Ssup)>=Sinf’ );789

dist = dist | dist’;790

[mu,binsizes] = conncomp(graph(dist),’OutputForm’,’cell’);791

J = find(binsizes>1);792

if any(J) && ( numels(mu)~=num_mu )793

num_mu = numels(mu);794

for j=J795

v = mu{j};796

singYsmin(v) = singmin(Ys(:,v));797

normG(v) = sqrt(NormBnd(E(:,v))^2+NormBnd(F(:,v))^2);798

delta(v) = mag( normG(v)/singYsmin(v(1)) );799

end800

else801

break802

end803

end804

We apply the principle of eigenvalue improvements presented in Section 5 to improve805

the singular value approximations and inclusions. Here norm zBz computes an in-806

clusion of z∗Bz for z := [x;y] similar to norm xAx. Note that the first line of the807

while-loop assures that the inclusions of the singular values are nonnegative. As for808

eigenvalues, the singular values are refined applying Theorem 5.1 to the matrix B in809

(7.1) by appending810

L = refinesvd(A,Xs,Ys,S,rho,norm2z);811

to the code above. The code is very similar to refineeig except that812
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if m>n, e(1:n+1:n^2) = S.inf; else e(1:n+1:n^2) = 2*S.inf; end813

is used to cover the distance to the negative eigenvalues of B. Otherwise, for given814

left and right singular vector x and y, the routines in (5.2) are adapted to compute815

inclusions of816

D := ‖
(
x
y

)
‖ and N := y∗A∗x+ x∗Ay and ‖

(
Ay − rx
A∗x− ry

)
‖817

for the inclusion rho of the Rayleigh quotient N/D and r := rho.mid as before.818

Similar to eigenvalues, for complex input A = A1 + iA2, x = x1 + ix2 and y = y1 + iy2819

it is better to use820

y∗A∗x+ x∗Ay = 2(x1(A∗1y1 −A2y2) + x2(A1y2 +A2y1) ) .821

As for eigenvalues we compare the singular value inclusion without and with refine-822

ment. The first test set are real or complex randomly generated 1000× 200 matrices,823

where the median of the minimum, median and maximum of the relative errors of 100824

samples is displayed in Table 11.

Table 11
Improvement of singular value inclusions by Algorithm refineeig

symmetric matrix Hermitian matrix
relerr minimum median max minimum median max

initial 3.7 · 10−14 5.5 · 10−14 9.1 · 10−14 4.3 · 10−14 6.1 · 10−14 9.6 · 10−14

refined 6.0 · 10−15 6.6 · 10−15 7.2 · 10−15 9.6 · 10−15 1.1 · 10−14 1.1 · 10−14

ratio 6.1 8.3 12.6 4.5 5.8 8.4

825

There is still considerable improvement, although not as large as for eigenvalues. In826

the presence of clustered singular values the results do not differ too much.827

Next we discuss the computation of verified error bounds for the left and right828

singular vectors. Let (S, µ) be results of Algorithm verifysvdall applied to rectan-829

gular A ∈Mm,n with economy-size singular decomposition A = XΣY ∗. The singular830

value inclusions are Sj = [σ̃j − δj , σ̃j + δj ] for j ∈ [n], and µ = (µ1, . . . , µk) is a831

partition of [n]. As for eigenvalues, the cluster inclusions S` := ∪j∈µ`
Sj are mutually832

disjoint for all ` ∈ [k]. Applying Theorem 7.1 to each cluster separately shows that833

there is a suitable numbering σ1, . . . , σn of the singular values of A such that σj ∈ Sj834

for all j ∈ [n].835

For inclusions of singular vectors, there is the additional problem of zero or close836

to zero singular values. We first discuss square, then rectangular input matrices.837

We first assume that A is square so that B as in (7.1) has no extra nullspace to838

deal with. Let X̃, Σ̃, Ỹ with Σ̃ := Ls be the approximate singular value decomposition839

of A computed by [Xs,Ls,Ys] = svd(A). An approximation of the eigenspace of B840

is841

Z̃ =

(
Ỹ Ỹ

X̃ −X̃

)
,842

where the normalization is omitted. Following our inclusion approach for eigenvectors843

of Hermitian matrices, we define844

(7.3) G :=

(
AỸ − X̃Σ̃

A∗X̃ − Ỹ Σ̃

)
∈Mm+n,n .845
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Let ` ∈ [k] be fixed but arbitrary and set p := |µ`|. Then846

(7.4) G(:, µ`) = BZ̃(:, µ`)− Z̃(:, µ`)Σ̃(µ`, µ`) .847

The left and right singular subspaces to the singular values {σj : j ∈ µ`} are spanned848

by X̂ := X(:, µ`) and Ŷ := Y (:, µ`), respectively. As for eigenvalues, we may assume849

σmin(Ỹ ) > 0, otherwise the bounds become meaningless. Note that this implies that850

Z̃ has full rank as well.851

Following our approach for eigenvector inclusion, we define852

(7.5) ε` := min
i/∈µ`,j∈µ`

|σi − σ̃j | ≥ min
i/∈µ`,j∈µ`

|σ̃i − σ̃j | − δi.853

Suppose ` < k. Then the definitions (7.5) for the singular value clusters of A and854

(6.3) for the eigenvalue clusters of B coincide, and we apply Lemma 6.1 to B to855

show that there exists V ∈Mm,p whose columns lie in the invariant subspace of B to856

{λj : j ∈ µ`} with857

(7.6) ‖Z̃(:, µ`)− V ‖ ≤
‖G(: µ`)‖

ε`
=: τ` .858

The matrix Z̃(:, µ`) approximates an eigenspace of B to the eigenvalues {λj : j ∈ µ`},859

which are positive because ` < k. Since V is composed of the left and right singular860

subspaces of A, it follows that both the distance of X̃(:, µ`) to a subspace of the861

left singular vectors and the distance of Ỹ (:, µ`) to a subspace of the corresponding862

right singular vectors of {σj : j ∈ µ`} is bounded by τ`. Then an inclusion of matrices863

with orthonormal columns spanning the corresponding space of left and right singular864

vectors is computed by Lemma 3.1.865

For ` = k, the singular value cluster µk is a special case because the distance to866

its negative counterpart may be smaller than the distance to the next larger singular867

value inclusion. Hence Lemma 6.1 is not directly applicable. Luckily this does not868

require a redefinition of (7.5) because we may use [19, Lemma 3.1] to handle this case:869

Lemma 7.2. Let A ∈Mm,n, H ∈Mq, Q ∈Mn,q, P ∈Mm,q with m ≥ n be given.870

Define the residuals E := AQ − PH, F := A∗P − QH∗ and let A = XΣY ∗ be an871

economy-size singular value decomposition of A with X ∈ Mm,n,Σ ∈ Rn×n, Y ∈ Mn872

and non-increasing order of singular values (with possible ambiguities in the choice873

of singular vectors). Furthermore, for some s ∈ {1, . . . , n}, denote by Xs the matrix874

consisting of the first s columns of X and let Ys be accordingly. If there is a ζ such875

that σs(A) ≥ σ1(H) + ζ, then876

(7.7) ζ ·max{‖Y ∗s Q‖, ‖X∗s P‖} ≤ max{‖E‖, ‖F‖}877

is satisfied for any unitarily invariant norm ‖ · ‖.878

We set ζ = εk according to (7.5), s = n− |µk|, H = Σ̃(µk, µk), Q = Ỹ (:, µk) and879

P = X̃(:, µk). Then880

σs = σn−|µk| ≥ max
j∈µk

σ̃j + ζ = ‖H‖+ ζ881

shows that Lemma 7.2 is applicable. The matrices Xs and Ys span the orthogonal882

complements of X̂ = X(:, µk) and Ŷ = Y (:, µk), respectively. Thus883

(7.8) d := max{‖
(
I − Ŷ Ŷ ∗

)
Ỹ (:, µk)‖, ‖

(
I − X̂X̂∗

)
X̃(:, µk)‖}884

This manuscript is for review purposes only.



ERROR BOUNDS FOR ALL SINGULAR VECTORS 25

is the maximal distance of P = X̃(:, µk) and Q = Ỹ (:, µk) to their orthogonal projec-885

tion onto X̂ and Ŷ , respectively, and Lemma 7.2 yields, as in (7.6),886

(7.9)

d = max{‖YsY ∗s Q‖, ‖XsX
∗
sP‖} = max{‖Y ∗s Q‖, ‖X∗sP‖}

≤ max{‖AQ− PH‖, ‖A∗P −QH∗‖}
εk

≤ ‖G(:, µk)‖
εk

=: τk.
887

Let us now consider the rectangular case m > n. Now B has additional m − n888

zero eigenvalues requiring special attention. The singular vector spaces to a cluster µ`889

for ` < k can be handled using Lemma 6.1 as before. Moreover, since the orthogonal890

complement Ys to Y (:, µk) is the same as in the quadratic case, Lemma 7.2 is still891

applicable as before, and the inclusion for the right singular vectors are derived in892

the same way as for quadratic A. Only the left singular vectors corresponding to the893

nullspace need some extra consideration.894

To that end, we extend the set of singular values by the m − n trivial zeros895

σn+1, , . . . , σm. Naturally, we set σ̃n+1 = . . . = σ̃m = 0. The clustering has now to896

be done over the extended set, and we use a new index set µ. For the definition of µ,897

which coincides with µ in the first k − 1 indices, we distinguish two cases.898

First, if 0 ∈ Sk, then numerically the singular values {σj : j ∈ µk} cannot be899

distinguished from zero and we set µk := µk ∪ N with N := {n+ 1, . . . ,m}. Second,900

if 0 /∈ Sk, we set extend µ by µk := µk and µk+1 := N .901

The index sk shall be k or k+1 depending on the separation of the nullspace. The902

quantities sε` are then defined as in (7.5) but for the new index sets and including the903

trivial singular value entries. Using these modified definitions the inclusion of the left904

singular vector subspaces can be realized as in the quadratic case.905

The inclusion of the left singular vector space corresponding to sµ
sk requires the906

full singular value decomposition of A. However, if we are not interested in the907

nullspace and/or the smallest non-trivial singular value could be separated from zero908

i.e., sk = k + 1, then we may skip sµ
sk from consideration. The advantage is that it909

allows us to use an economy-size approximate singular value decomposition of A. On910

the other hand, if we use an economy-size decomposition and cannot separate σn from911

zero, the subspace inclusion derived for µk can be any subset of the space spanned by912

[X(:, µk) X⊥].913

Alternatively, the singular subspace of the additional m− n zero singular values914

may be computed as the kernel of A∗ by one of the methods given in [15]. With915

a residual iteration as described in [15] it may be that the additional zero singular916

values can be separated from the cluster µ`.917

In order to compute singular vector inclusions, we append the following code918

to Algorithm verifysvdall. This includes the refinement by Theorem 5.1, but for919

simplicity the extra treatment of the nullspace, which is straightforward to add, is920

omitted.921

S = refinesvd(A,Xs,Ys,S,rho,norm2z);922

if numels(mu)==1923

if isinf(delta(1)) || isnan(delta(1))924

r_left = inf(1,n);925

else926

r_left = zeros(1,n);927

end928

r_right = r_left;929

else930
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sing = intval( repmat(S.mid,1,n)’ );931

e = mig( min( abs(sing-Sinf) , abs(sing-Ssup) ));932

e(1:n+1:n^2) = inf;933

for j=J934

v = mu{j};935

e(v,v) = inf;936

end937

min_e = min(e);938

r_right = mag( normG ./ min_e );939

r_left = r_right;940

if m>n % take care of additional zero singular values941

r_left(end) = mag( normG(end)/min(min_e(end),S.inf(end)) );942

end943

end944

alphaX = mag(1 - sum(intval(Xs).*conj(Xs)));945

alphaY = mag(1 - sum(intval(Ys).*conj(Ys)));946

rX = mag( alphaX + intval(’sqrt2’)*r_left );947

rY = mag( alphaY + intval(’sqrt2’)*r_right );948

for j=J949

v = mu{j};950

Ip = eye(length(v));951

alphaX = NormBnd(Ip - Xs(:,v)’*intval(Xs(:,v)));952

rX(v) = mag( alphaX + intval(’sqrt2’)*r_left(v) );953

alphaY = NormBnd(Ip - Ys(:,v)’*intval(Ys(:,v)));954

rY(v) = mag( alphaY + intval(’sqrt2’)*r_right(v) );955

end956

X = midrad( Xs , repmat(rX,m,1) );957

Y = midrad( Ys , repmat(rY,n,1) );958

Here sing uses the midpoint of S because the singular value inclusions S have been959

refined. Note that for rectangular A the last entry of the radius r left for the left960

singular vectors is adapted. If 0 ∈ Sk, then S.inf(k)=0 and r left becomes infinity.961

Theorem 7.3. Let an m×n real or complex, point or interval matrix A be given,962

and let (S, µ,P,Q) be the results of Algorithm verifysvdall applied to A. Then963

for each A ∈ A the following is true. There is a numbering of the singular values964

σ1, . . . , σn of A such that σj ∈ Sj for all j ∈ [n]. For the partition µ = (µ1, . . . , µk)965

of [n] into k sets µ` the S` := ∪j∈µ`
Sj are a set of k mutually disjoint intervals,966

each containing exactly |µ`| singular values of A, and P(:, µ`) and Q(:, µ`) contain an967

orthonormal basis of the corresponding left and right singular value subspaces.968

In (7.6) we use ‖G‖ as in (7.3), whereas in (7.7) the maximum of ‖E‖ and ‖F‖ is969

used. For the correctness of the code note that970

max(‖E‖, ‖F‖) ≤ ‖G‖ .971

Otherwise the proof of correctness is similar to that for the eigenproblem.972

As for eigenvalue and eigenvector inclusions we show some typical computational973

results for larger dimension. We take a 1000 × 200 random matrix and show the974

minimum, mean, median and maximum of the relative errors of the inclusions of975

singular values and the left and right singular vectors. The results are displayed976

in Table 12. The minimum distance, i.e., gap between the singular values is about977

5.9 ·10−3 which corresponds roughly to the accuracy of the singular vector inclusions.978
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Table 12
Relative error of singular value and singular vector inclusions for a random 1000× 200 matrix.

rel. error minimum mean median maximum

singular values 4.0 · 10−14 5.8 · 10−14 5.6 · 10−14 8.9 · 10−14

left singular vectors 1.1 · 10−10 1.5 · 10−9 9.3 · 10−10 1.4 · 10−8

right singular vectors 5.4 · 10−11 6.8 · 10−10 4.3 · 10−10 6.7 · 10−9

The picture changes for clusters. For e := 10−11 we generate a 1000× 200 matrix979

with 10 random singular values in a circle of radius e around 0.1, another 10 random980

singular values in a circle of radius e around 0.2, and the other 180 randomly in [0.3, 1].981

The results are shown in Table 13. There is not much difference in the singular value

Table 13
Relative error of singular value and singular vector inclusions for two 10-fold clusters.

rel. error minimum mean median maximum

singular values 4.1 · 10−14 7.6 · 10−14 6.2 · 10−14 2.8 · 10−13

left singular vectors 3.5 · 10−10 3.2 · 10−2 4.2 · 10−9 9.2 · 10−1

right singular vectors 5.6 · 10−11 3.4 · 10−2 7.7 · 10−10 9.2 · 10−1

982

inclusions, and generally the singular vector inclusions are of similar quality as before.983

However, the mean and maximum relative error become much worse. The reason,984

similar to eigenvalues, is that Algorithm verifysvdall could separate the clusters985

into 200 individual intervals for the singular values. Therefore, the gap between the986

inclusions becomes small resulting in a poor quality of the inclusions. As before we use987

the threshold kappa= 10−10 and obtain the results shown in Table 14. Now inclusions

Table 14
Relative error of singular value and singular vector inclusions for two 10-fold clusters with

threshold on the cluster size.

rel. error minimum mean median maximum

singular values 1.4 · 10−16 5.7 · 10−14 5.7 · 10−14 1.3 · 10−13

left singular vectors 8.9 · 10−11 1.1 · 10−8 3.1 · 10−9 2.0 · 10−8

right singular vectors 1.7 · 10−11 2.1 · 10−9 5.8 · 10−10 4.2 · 10−8

988
for two clusters of 10 singular values each with corresponding 10-dimensional invariant989

subspace are computed, together with the remaining inclusions for simple singular990

values and singular vectors. As a result, the singular vector inclusions are now of991

reasonable quality. As for eigenvalues, these results are typical for other dimensions992

and cluster sizes, and additional test results do not give much more information.993

8. Appendix. As has been mentioned, Matlab introduces quite some interpre-994

tation overhead, in particular if user-defined data types such as intval are used.995

That can be improved significantly by using function calls and/or calculating left996

and right bounds individually using directed rounding as Florian Bünger did for the997

Taylor model and AWA toolbox in INTLAB [3]. For our applications we give a few998

examples.999

Directed roundings are used as follows. The INTLAB command setround(-1)1000

implies that all numerical operations including vector and matrix operations are exe-1001

cuted using rounding downwards, i.e., the computed result is less than or equal to the1002
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exact result. That remains true until the next change of the rounding mode. Sim-1003

ilarly, setround(1) changes the rounding to upwards, and setround(0) to nearest.1004

The command1005

singXsmin = mig( vecnorm(intval(Xs)) );1006

in Algorithm verifyeigall computes a vector of lower bound of the Euclidean norm1007

of the columns of Xs and can be replaced by1008

setround(-1)1009

singXsmin = sqrt(sum(sqr(Xs)));1010

After changing the rounding mode to downwards, sqr(Xs) yields lower bounds for1011

the entrywise squares of the elements of Xs, followed by lower bounds for the column1012

sums and their square roots. That code works for real input Xs and is easily adapted1013

to complex input. Another example is1014

E = A*intval(Xs) - Xs*intval(Ls);1015

which may be replaced by1016

D = repmat(diag(Ls)’,n,1);1017

setround(-1)1018

Einf = A*Xs + Xs.*D;1019

setround(1)1020

Esup = A*Xs + Xs.*D;1021

E = intval(Einf,Esup,’infsup’);1022

Finally we mention1023

alpha = mag( 1 - sum(intval(Xs).*conj(Xs)) );1024

which was used for eigenvector and singular vector bounds. It gives a vector of upper1025

bounds of |1− x∗x| for the columns x of Xs. For real input it may be replaced by1026

setround(-1)1027

alpha = abs(sum(X.*conj(X)) - 1);1028

setround(1)1029

alpha = max( alpha , abs(sum(X.*conj(X)) - 1) );1030

Here lower and upper bounds of sum(X.*conj(X)) - 1 are computed, and since the1031

absolute value and maximum does not cause additional rounding errors, the final1032

alpha is correct.1033

These are just a few examples. Following we give some computational results in1034

Table 15. For each dimension we execute the code for 100 samples and show the ratio1035

of computing times.1036

Table 15
Ratio of computing time using Matlab’s operator concept vs. directed roundings.

n = 10 n = 30 n = 100 n = 300 n = 1000

singXsmin 57.6 55.0 27.3 35.3 22.5
E 11.6 6.8 5.6 3.2 2.4

alpha 16.1 12.4 4.9 4.7 3.4

This means quite some improvement. The ratio is larger for small dimensions and/or1037

if O(n2) operations are to be interpreted.1038
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