
The original publication is available at www.springerlink.com

VERIFIED ERROR BOUNDS FOR MULTIPLE ROOTS OF SYSTEMS OF NONLINEAR

EQUATIONS

SIEGFRIED M. RUMP ∗ AND STEF GRAILLAT †

Abstract. It is well known that it is an ill-posed problem to decide whether a function has a multiple root. Even for

a univariate polynomial an arbitrary small perturbation of a polynomial coefficient may change the answer from yes to no.

Let a system of nonlinear equations be given. In this paper we describe an algorithm for computing verified and narrow error

bounds with the property that a slightly perturbed system is proved to have a double root within the computed bounds. For a

univariate nonlinear function f we give a similar method also for a multiple root. A narrow error bound for the perturbation is

computed as well. Computational results for systems with up to 1000 unknowns demonstrate the performance of the methods.

Key words. nonlinear equations, double roots, multiple roots, verification, error bounds, INTLAB

AMS subject classifications. 65H10, 65G20, 65H05, 65-04

1. Introduction. It is well known that to decide whether a univariate polynomial has a multiple root

is an ill-posed problem: An arbitrary small perturbation of a polynomial coefficient may change the answer

from yes to no. In particular a real double root may change into two simple (real or complex) roots.

Therefore it is hardly possible to verify that a polynomial or a nonlinear function has a double root if not the

entire computation is performed without any rounding error, i.e. using methods from Computer Algebra.

A typical so-called “verification method” is based on a theorem the assumptions of which are verified on the

computer. Typically such theorems are in turn based on some kind of fixed point theorem (see Section 2).

The verification of the assumptions is performed using floating-point arithmetic with rigorously estimating all

intermediate rounding errors. The computed results have a mathematical certainty. Some of those methods

are collected in INTLAB [18], the Matlab [10] Toolbox for Reliable Computing.

The computing time of such a verification method is often of the order of a comparable pure approximative

(floating-point) algorithm, whereas the latter does not provide the kind of guaranty of the correctness of

the result. A main reason is that verification methods use floating-point arithmetic as well, combined with

suitable error estimations. Moreover, the input data may consist of intervals. In such a case, for example,

it is possible to verify that all matrices within an interval matrix are nonsingular, an NP-hard problem [16].

Since the verification method is polynomially time bounded, this works only if the input intervals are not

too wide; otherwise the verification fails, but no false answer is possible.

In case of an exactly given (real or complex floating-point) matrix, the verification of nonsingularity is, of

course, possible as well. As a drawback however, in contrast to Computer Algebra methods, the verification

of singularity is by principle outside the scope of verification methods because this is an ill-posed problem:

An arbitrarily small perturbation of a singular matrix may produce a regular matrix changing the answer

discontinuously from “yes” to “no”.

∗Institute for Reliable Computing, Hamburg University of Technology, Schwarzenbergstraße 95, Hamburg 21071, Germany,

and Visiting Professor at Waseda University, Faculty of Science and Engineering, 3–4–1 Okubo, Shinjuku-ku, Tokyo 169–8555,

Japan, and Visiting Professor at Université Pierre et Marie Curie (Paris 6), Laboratoire LIP6, Département Calcul Scientifique,

4 place Jussieu, 75252 Paris cedex 05, France (rump@tu-harburg.de).
†Université Pierre et Marie Curie (Paris 6), Laboratoire LIP6, Département Calcul Scientifique, 4 place Jussieu, 75252 Paris

cedex 05, France (stef.graillat@lip6.fr).

1

For the same reason a verification method cannot prove that a polynomial has a double root or a matrix

has a double eigenvalue unless all computations are performed without error; however, it is possible to verify

that a (small) disc in the complex plane contains two roots or two eigenvalues. This is done without deciding

whether it is a double root or not. Corresponding methods can be found in [1, 19, 20].

Other methods have been designed to deal with singularities. In [8, 22], the authors propose a statistic

approach of the rounding errors. Using stochastic arithmetic, they make it possible to see if a result is

significant and if rounding errors lead to a nonsignificant result. For example, if the computed determinant

of a matrix has no significant digit, we can say that this matrix is numerically singular [9]. Using the same

method one may compute the (numerical) multiplicity of a root. A root is considered as multiple if its exact

significant digits are common with those of at least another one [2]. Note that a root may be proved to be

multiple with a high probability, but not with certainty.

In this paper we describe a verification method for computing guaranteed (real or complex) error bounds

for double roots of systems of nonlinear equations. To circumvent the principle problem of ill-posedness we

prove that a slightly perturbed system of nonlinear equations has a double root. For example, for a given

univariate function f : R → R we compute two intervals X,E ⊆ R with the property that there exists x̂ ∈ X

and ê ∈ E such that x̂ is a double root of f̄(x) := f(x) − ê. If the function f has a double root, typically

the interval E is a very narrow interval around zero. For complex discs and system of equations assertions

are similar.

Moreover, the computed inclusions are narrow, typically with relative error of the order of the relative

rounding error. Note that the sensitivity of the problem prohibits such narrow error bounds for a pair of

roots, see the next section.

The paper is organized as follows. In Section 2 we briefly summarize how to compute verified error bounds

for a (simple) solution of a system of nonlinear equations. In Section 3 we develop methods to compute

verified error bounds for a double or multiple root of a univariate nonlinear function, and in Section 4 we

treat double roots of systems of nonlinear equations. In Section 5 we describe an application of the methods

to multiple eigenvalues, and we close the paper with numerical results.

We mention that the results are formulated over the real numbers R, but are valid mutatis mutandis over

the complex numbers as well.

2. Verified solution of nonlinear systems. In the following we assume floating-point arithmetic

performed in IEEE 754 double precision corresponding to a relative rounding error unit u = 2−53 ≈ 1.11 ·
10−16. The i-th row or column of a matrix A ∈ Rn×n are denoted by Ai,: or A:,i, respectively, similar to

Matlab notation.

Denote by IR the set of real intervals, and by IRn and IRn×n the set of real interval vectors and interval

matrices, respectively. To understand the mathematical part of the following it suffices to think of opera-

tions between interval quantities as power set operations. Concerning an efficient implementation, interval

arithmetic is used (see [14]). Using INTLAB [18] there is easy access to efficient interval operations.

Standard verification methods for systems of nonlinear equations are based on the following theorem [17].

Theorem 2.1. Let f : Rn → Rn with f = (f1, . . . , fn) ∈ C1, x̃ ∈ Rn, X ∈ IRn with 0 ∈ X and R ∈ Rn×n

be given. Let M ∈ IRn×n be given such that

{∇fi(ζ) : ζ ∈ x̃+X} ⊆ Mi,: .(2.1)

Denote by I the n× n identity matrix and assume

−Rf(x̃) + (I −RM)X ⊆ int(X).(2.2)

2

Then there is a unique x̂ ∈ x̃ + X with f(x̂) = 0. Moreover, every matrix M̃ ∈ M is nonsingular. In

particular, the Jacobian Jf (x̂) =
∂f
∂x (x̂) is nonsingular.

Remark. Note that in (2.1) an inclusion of the range of the gradients ∇fi over the set x̃+X needs to be

computed. A convenient way to do this in INTLAB is by interval arithmetic and the gradient toolbox. For

a given (Matlab) function f, for xs = x̃ and an interval vector X, the call

M = f(gradientinit(xs+ X))(2.3)

computes an inclusion M satisfying (2.1). Note that (2.3) is executable Matlab/INTLAB code. Similarly

Hessians can be computed using the Hessian toolbox in INTLAB.

The proof of Theorem 2.1 in [17] is based on Brouwer’s Fixed Point Theorem and the fact that for every

x ∈ x̃+X there exists some M̃ ∈ M such that f(x) = f(x̃) + M̃(x− x̃). Note that there is no assumption

on x̃, X or R. In order for (2.2) to be satisfied good choices are an approximation x̃ of a root of f , an

approximation R of the inverse of the Jacobian Jf (x̃) and an interval vector X of small width containing

zero. We stress, however, that independent of the quality of the approximations the assertions of Theorem

2.1 remain true. An implementation of a verification method for nonlinear systems based on Theorem 2.1 is

algorithm verifynlss in INTLAB [18].

The theorem uses a modification of the Krawczyk operator introduced in [7] and the existence test of a root

of a nonlinear system by Moore [11]. Whereas Krawczyk supposes an interval vector Y containing a unique

root of f(x) to be known already and Moore gives no clue what to do when the test fails, in [17] an iteration

scheme is introduced for constructing an inclusion vector. The iteration uses the so-called epsilon-inflation,

where under mild assumptions it is proved that the iteration constructs an inclusion if and only if there is a

simple root of f near x̃. Moreover in [17] the inclusion of the error with respect to some approximate solution

x̃ was introduced. All these techniques are today standard for many verification methods (see [13, 15, 3] and

many others).

Part of the assertions of Theorem 2.1 is the nonsingularity of the Jacobian Jf (x̂). Naturally this restricts

the application to simple roots because it is proved that the root is simple. Next we will derive verification

methods to prove existence of a truly multiple root of a slightly perturbed function.

3. The univariate case. The typical scenario in the univariate case is a function f : R → R with a

double root x̂, i.e. f(x̂) = f ′(x̂) = 0 and f ′′(x̂) ̸= 0. Consider, for example,

f(x) = 18x7 − 183x6 + 764x5 − 1675x4 + 2040x3 − 1336x2 + 416x− 48

= (3x− 1)2(2x− 3)(x− 2)4
(3.1)

The graph of this function is shown in Figure 3.1. In [20] verification methods for multiple roots of poly-

nomials are presented. Here, for example, a set containing k roots of a polynomial is computed, but no

information on the true multiplicity can be given. A hybrid algorithm based on the methods in [20] is

implemented in algorithm verifypoly in INTLAB.

To compute inclusions of the roots of f we need rough approximations. Computing inclusions X1, X2 and

X3 of the simple root x1 = 1.5, the double root x2 = 1/3 and the quadruple root x3 = 2 of f in (3.1)

by algorithm verifypoly in INTLAB we obtain the following (the polynomial is, of course, specified in

expanded form, not the factored form). Note that only rough approximations of the roots are necessary.

>> X1 = verifypoly(f,1.3), X2 = verifypoly(f,.3), X3 = verifypoly(f,2.1)

intval X1 =

[1.49999999999904, 1.50000000000078]

intval X2 =

3

Fig. 3.1. Graph of f(x) = (3x− 1)2(2x− 3)(x− 2)4.

[0.33333316656015, 0.33333343640539]

intval X3 =

[1.99741678159164, 2.00363593397305]

The accuracy of the inclusion of the double root x2 = 1/3 is much less than that of the simple root x1 = 1.5,

and this is typical. If we perturb f into f̃(x) := f(x) − ε for some small real constant ε and look at a

perturbed root f̃(x̂+ h) of f̃ , then

0 = f̃(x̂+ h) = −ε+
1

2
f ′′(x̂)h2 +O(h3)(3.2)

implies

h ∼
√

2ε/f ′′(x̂).(3.3)

In general floating-point computations are afflicted with a relative error of size u ≈ 10−16. This has the

same effect as a perturbation of the given function f into f̃ . Therefore we may compute an inclusion of two

roots of a nonlinear function, but by (3.2) and (3.3) we cannot expect this inclusion to be of better relative

accuracy than
√
u ≈ 10−8. This corresponds to the inclusion X2 above and to the results in [1, 19, 20].

Similarly it is known that the sensitivity of a k-fold root is of the order u1/k, so that for the quadruple root

x3 = 2 of f we cannot expect a better relative accuracy than 4
√
u ∼ 10−4. This corresponds to the accuracy

of X3.

Instead we consider for a double root the nonlinear system G : R2 → R with

G(x, e) =

(
f(x)− e

f ′(x)

)
= 0(3.4)

in the two unknowns x and e. The Jacobian of this system is

JG(x, e) =

(
f ′(x) −1

f ′′(x) 0

)
,(3.5)

so that the nonlinear system (3.4) is well-conditioned for the double root x2 = 1/3 of f in (3.1). Now we can

apply a verification algorithm for solving general systems of nonlinear equations based on Theorem 2.1 such

as algorithm verifynlss in INTLAB. Note that the system of nonlinear functions is provided by a Matlab

subroutine for computing the function values. No more information is necessary; in particular derivatives

are computed by means of automatic differentiation. Indeed, applying algorithm verifynlss to (3.4) we

obtain

4

>> Y2 = verifynlss(G,[.3;0])

intval Y2 =

[3.333333333333328e-001, 3.333333333333337e-001]

[-2.131628207280424e-014, 2.131628207280420e-014]

This proves that there is a constant ε with |ε| ≤ 2.14 ·10−14 such that the nonlinear equation f(x)−ε = 0 has

a double root x̂ with 0.3333333333333328 ≤ x̂ ≤ 0.3333333333333337. In contrast to the previous inclusion

X2 the new inclusion Y2 is very accurate. The reason is that only double roots are taken into account, and

this removes the high sensitivity of the root. It is a kind of regularization.

We presented the approach (3.4) in preparation for the multivariate case; however, for univariate nonlinear

functions we may proceed more directly. Suppose X ∈ IR is an inclusion of a root x̂ of f ′, and use the

interval evaluation of f at X to compute E ∈ IR with f(X) ⊆ E. In particular f(x̂) ∈ E, so that there

exists ê ∈ E such that the function g(x) := f(x) − ê satisfies g(x̂) = g′(x̂) = 0. If, moreover, the inclusion

X is computed by a verification method based on Theorem 2.1, then x̂ is a unique root of f ′ in X, and x̂ is

proved to be a double root of g.

By this approach we obtain the inclusions for the double root x̂ are of the same quality, but the inclusion

for the shift is a little weaker than in Y2:

intval X =

[3.333333333333329e-001, 3.333333333333339e-001]

intval E =

[-3.126388037344441e-013, 2.913225216616412e-013]

However, it is superior to expand f with respect to some point m ∈ X. For all x ∈ X we have f(x) ∈
f(m) + f ′(X)(X −m) =: E1, and in particular f(x̂) ∈ E1. Here m should be close to the midpoint of X,

but need not to be equal to the midpoint. In this case we obtain with

intval E1 =

[-2.131628207280369e-014, 2.131628207280378e-014]

an inclusion of the same quality as Y2 by solving G in (3.4). Note that we use only a univariate verification

method to include a root of f ′, the shift E is obtained by a mere function evaluation. This seems superior

to solving the bivariate system (3.4).

We note that one might use f(x) ∈ f(m) + f ′(m)(X −m) + 1
2f

′′(X)(X −m)2 for all x ∈ X; however, we

did not observe much advantage over using E1 as computed before.

For a k-fold multiple root we proceed similarly. Let X be an inclusion of a root x̂ of f (k−1), choose m ∈ X

and compute successively for j = 0, 1, . . . , k − 2

Ej = f (k−2−j)(m) + f (k−1−j)(X)(X −m)−
j−1∑
ν=0

Eν

(j − ν)!
Xj−ν .(3.6)

It follows

f (k−2−j)(x̂) = êj +

j−1∑
ν=0

êν
(j − ν)!

x̂j−ν(3.7)

for some êj ∈ Ej and 0 ≤ j ≤ k − 2. With a straightforward computation we obtain the following result.

Theorem 3.1. Let f : R → R with f ∈ Ck+1 be given. Assume X ∈ IR is an inclusion of a root x̂ of f (k−1).

Let Ej ∈ IR be computed by (3.6) for j = 0, 1, . . . , k − 2, so that there exist êj ∈ Ej with (3.7). Define

5

Fig. 4.1. Contour lines of f1(x) = 0 (solid) and f2(x) = 0 (dashed)

g : R → R by

g(x) := f(x)−
k−2∑
ν=0

êν
(k − 2− ν)!

xk−2−ν .(3.8)

Then g(j)(x̂) = 0 for 0 ≤ j ≤ k − 1. If the inclusion X is computed by a verification method based on

Theorem 2.1, then the multiplicity of the the root x̂ of g in X is exactly k-fold.

For the 4-fold root x̂ = 2 of f in (3.1) we obtain the following inclusions with the proof that the regularized

equation g(x) = f(x)− 1
2 ê0x

2 − ê1x− ê2 with êj ∈ Ej has a quadruple root in X.

intval X =

[1.999999999999963e+000, 2.000000000000040e+000]

intval E0 =

[-4.547473510733392e-013, -4.547473506997975e-013]

intval E1 =

[-1.364242053101423e-012, -1.364242052216876e-012]

intval E2 =

[4.604316926434916e-012, 4.604316929015351e-012]

4. The multivariate case. Let a suitably smooth function f : Rn → Rn and x̂ ∈ Rn be given such

that f(x̂) = 0 and the Jacobian of f at x̂ is singular. A standard verification method such as verifynlss

must fail because with an inclusion of a root the nonsingularity of the Jacobian at the root is proved as well.

Again it is an ill-posed problem and we need some regularization technique.

Consider the model problem

f(x, y) =

(
f1(x, y)

f2(x, y)

)
=

(
x2 + (x+ 1)(y − 1)2 − asinh((x+ 3)3 + y2)cos(x− xy)

(x+ 1.908718874061618)2 − sin(x)(y + 1)2

)
= 0 .(4.1)

In Figure 4.1 the zero contour lines of f are displayed. Near (x, y) = (0.60, 2.34) the tangents of the contour

lines are nearly parallel so that the Jacobian of f at the nearby root is nearly singular. As a regularization

we add, similar to the univariate case, a smoothing parameter e and rewrite (4.1) into1

F (x, y, e) =

 f1(x, y)− e

f2(x, y)

detJf (x, y)

 = 0 .(4.2)

1As has been pointed out by Prof. Oishi, some similar approach was followed in [5, 6]

6

The third equation forces the tangents of the zero contour lines to be parallel at the solution, whereas the

first equation introduces a perturbation to f1 so that the root becomes a double root. Locally the zero

contour lines behave linearly, so that the smoothing parameter expands or shrinks the zero line for f1 as

depicted by the double arrows in Figure 4.1. Each point of the contour line moves locally normal to the

contour line itself. Obviously this is optimal for the regularization.

This approach may work for two or three unknowns, however, an explicit formula for the determinant of

the Jacobian is prohibitive for larger dimensions. Consider the following way to ensure the Jacobian to be

singular.

Let a function f = (f1, . . . , fn) : Rn → Rn be given and let x̂ = (x̂1, . . . , x̂n) be such that f(x̂) = 0 and the

Jacobian Jf (x̂) of f at x̂ is singular. Adding a smoothing parameter e we arrive with g : Rn+1 → Rn and

g(x, e) =


f1(x)− e

f2(x)

· · ·
fn(x)

 = 0(4.3)

at n equations in n+ 1 unknowns. We force the Jacobian to be singular by

Jf (x)y = 0(4.4)

for some vector y in the kernel of Jf . In order to make y unique we normalize some component of y to 1.

For the moment we choose the first component so that y = (1, y2, . . . , yn). In practice we have to choose a

suitable component for normalization, see below. Now (4.4) adds another n equations in n− 1 unknowns, so

that we arrive at a system of 2n equations (4.3) and (4.4) in 2n unknowns (x1, . . . , xn, e, y2, . . . , yn). Note

that the new equations (4.4) only ensure the Jacobian to be singular and have no influence on the described

regularization technique.

Theorem 4.1. Let f = (f1, . . . , fn) : Rn → Rn with f ∈ C2 be given. Define F : R2n → R2n by (4.3) and

F (x, e, y) =

(
g(x, e)

Jf (x)y

)
= 0 ,(4.5)

where x = (x1, . . . , xn), e ∈ R and y = (1, y2, . . . , yn). Suppose Theorem 2.1 is applicable to F and yields

inclusions for x̂ ∈ Rn, ê ∈ R and ŷ ∈ Rn−1 such that F (x̂, ê, ŷ) = 0. Then g(x̂, ê) = f(x̂)− (ê, 0, . . . , 0)T = 0,

and the rank of the Jacobian Jf (x̂) of f at x̂ is n− 1.

Proof. By Theorem 2.1 we have f(x̂) = (ê, 0, . . . , 0)T and Jf (x̂)(1, ŷ2, . . . , ŷn)
T = 0, so that Jf (x̂) has a

nontrivial vector in its kernel. We have to show that the rank of the Jacobian Jf (x̂) is not less than n− 1.

The Jacobian of F computes to

JF (x, e, y) =

(
Jf (x) I:,1 On,n−1

H On,1 Jf (x):,2..n

)
,(4.6)

where I denotes the n× n identity matrix and Ok,l the k× l zero matrix. The i− th row of H computes to

Hi,: = (1, y2, . . . , yn) ·Hessian(fi(x)) .

By Theorem 2.1 we know that JF (x̂, ê, ŷ) is nonsingular. If the rank of Jf (x̂) is less than n − 1, then

there is a vector z ∈ Rn in its kernel which is not a scalar multiple of (1, ŷ2, . . . , ŷn)
T . If z1 = 0, then

JF (x̂, ê, ŷ)(0, . . . , 0, z)
T = 0, a contradiction. If z1 ̸= 0, then a suitable linear combination of z and

(1, ŷ2, . . . , ŷn)
T has a first component zero, which is again a contradiction to the nonsingularity of JF .

�

7

Two problems remain. The first is how to choose a suitable component for normalizing the vector in the

kernel of Jf . For a given matrix A ∈ Rn×n, Gaussian elimination with partial pivoting yields LU-factors and

a permutation matrix. Applying this to AT yields PAT = LU . Total pivoting guarantees that the rank of

A is n− 1 or less if and only if Unn = 0 (cf. [4]), and except extraordinary circumstances this is also true for

partial pivoting. Then Ax = 0 for LTPx = I:,n. Applying this to the Jacobian Jf and taking a component

of x with largest absolute value is a suitable choice for the component to be normalized to 1.

The second problem is that an inclusion cannot be computed if the rank of the Jacobian Jf is less than n−1.

More precisely, we proved that if an inclusion of a multiple root is computed, then the rank of the Jacobian

is n− 1, and it would be nice to have the converse, namely that for a root f(x̂) = 0 and Jacobian Jf (x̂) of

rank n− 1 an inclusion can be computed by applying Theorem 2.1 to (4.3) and (4.4). This is not true as by

f(x1, x2) =

(
x1 − x2

2

x2
1 − x2

2

)
= 0 .(4.7)

Obviously the Jacobian has rank 1 at x1 = x2 = 0, but the Jacobian (4.6) of the augmented system (4.5)

computes to

JF (x, e, y) =


1 −2x2 −1 0

2x1 −2x2 0 0

0 −2 0 1

2y −2 0 2x1

 ,(4.8)

which is singular for x1 = x2 = 0. This means that it is not possible to compute an inclusion of the multiple

root (0, 0). However, in this case the reason is that the wrong equation was regularized. Exchanging the two

equations in (4.7) into

f(x1, x2) =

(
x2
1 − x2

2

x1 − x2
2

)
= 0(4.9)

yields

JF (x, e, y) =


2x1 −2x2 −1 0

1 −2x2 0 0

0 −2 0 1

2y −2 0 2x1

 ,(4.10)

as the Jacobian of the augmented system, which is nonsingular for x1 = x2 = 0. Thus an inclusion is in

principle possible, and indeed

>> f=inline(’[x(1)^2-x(2)^2;x(1)-x(2)^2]’), verifynlss2(f,[0.002;0.001])

f =

Inline function:

f(x) = [x(1)^2-x(2)^2;x(1)-x(2)^2]

intval ans =

1.0e-323 *

[-0.66666666666666, 0.66666666666666]

[-1.00000000000000, 1.00000000000000]

[-1.00000000000000, 1.00000000000000]

However, we mention that in this case the iteration is sensitive to the initial approximation as by

>> verifynlss2(f,[0.001;0.001])

intval ans =

8

[0.49999999999999, 0.50000000000001]

[0.70710678118654, 0.70710678118655]

[-0.25000000000001, -0.24999999999999]

which finds the double root (0.5, 1/
√
2) of x2 − y2 + 0.25 = 0 and x− y2 = 0.

We might hope that there is always a renumbering of the equations such that for Jacobian Jf (x̂) of rank

n− 1 an inclusion of the root x̂ can be computed. Unfortunately this is not the case. Consider

f(x1, x2) =

(
x2
1x2 − x1x

2
2

x1 − x2
2

)
= 0 .(4.11)

The Jacobian of the augmented system computes to

JF (x, e, y) =


2x1x2 − x2

2 x2
1 − 2x1x2 −1 0

1 −2x2 0 0

2(x2y + x1 − x2) 2(x1 − x2)y − 2x1 0 2x1x2 − x2
2

0 −2 0 1

 ,(4.12)

Obviously the third row is entirely zero for x1 = x2 = 0, and this does not change when interchanging the

two equations in (4.11). Note that the Jacobian Jf at the root is

(
0 0

1 0

)
and forces the kernel vector to

be

(
y1

1

)
. Summarizing an inclusion for the root (0, 0) of (4.11) is in principle not possible by our method.

But this situation is rare and can be characterized as follows.

Theorem 4.2. Let f = (f1, . . . , fn) : Rn → Rn with f ∈ C2 be given. Define D(x) : Rn → R by

D(x) := det(Jf (x)), and define the function F [k](x, e) : Rn+1 → Rn+1 for x ∈ Rn and e ∈ R by

F [k](x, e) =

(
g(x, e)

D(x)

)
= 0 ,(4.13)

where the component functions of g : Rn+1 → Rn are defined by

gi(x, e) =

{
fi(x) for i ̸= k

fk(x)− e for i = k
.(4.14)

Let some x̂ ∈ Rn be given such that the rank of the Jacobian Jf (x̂) of f at x̂ is n− 1. Then the following is

equivalent.

i) For all k is the Jacobian JF [k](x̂) of F [k] at x̂ singular.

ii) The (n+ 1)× n matrix [Jf (x̂);∇D(x̂)] of the Jacobian Jf (x̂) of f at x̂ appended by the gradient ∇D(x̂)

of its determinant has rank n− 1.

Remark. Note that the Jacobian of F [k] does not depend on e for all k.

Proof of Theorem 4.2. The last column of the Jacobian of F [k] is entirely zero except the k-th component,

and the last row is the gradient of D(x) appended by zero. Since the Jacobian Jf (x̂) of f at x̂ is singular,

the result follows. �

It is easy to see that Theorem 4.2 applies to our formulation (4.2) as well. It means for Theorem 4.1 that in

general and if the situation is numerically not too difficult we can expect to be able to compute an inclusion

of a multiple root of the perturbed nonlinear system (4.3). Note that ∇detJf (x̂) is entirely zero in example

(4.12), so that ii) in Theorem 4.2 is satisfied.

9

We can introduce a strategy for finding a suitable partial function fk for regularization to make sure that

for a system like (4.7) our method does not fail due to poor numbering of the equations. The strategy is

much in the spirit of choosing a good component for normalization of a vector in the kernel of Jf . Suppose

the first function f1 is regularized. According to (4.6) it is necessary that the rows 2..n of Jf are linearly

independent, otherwise the Jacobian JF (x, e, y) is singular. So this situation must be avoided.

Suppose the rank of Jf is n− 1 - otherwise by Theorem 4.1 a verification is not possible anyway. Then there

exists a row K of Jf such that the rows {Jf (i, :) : i ̸= K} are linearly independent, which is equivalent to

xTJf ̸= 0 for nontrivial x with xK = 0. Since the rank of Jf is n − 1, its kernel is one-dimensional, i.e. a

scalar multiple of some z ∈ Rn. So any value of K is suitable with zK ̸= 0.

This shows that it is not likely to be trapped by this, and it also gives the clue to find a suitable K: As

before Gaussian elimination with partial pivoting yields PJf = LU , and the solution of LTPx = I:,n spans

the kernel of Jf . Taking a component K of x of largest absolute value is a suitable choice. These strategies

are implemented in algorithm verifynlss2 in INTLAB.

5. Double eigenvalues. Finally we show an application of our method to double eigenvalues of a

matrix. It has been mentioned that in [19] methods are given to calculate inclusions of a cluster of eigenvalues

of a matrix. More precisely, for a given n×n-matrix A inclusions of a k×k-matrix M and an n×k-matrix X

are calculated such that the Jordan form of M is part of the Jordan form of A, and X is an invariant subspace

of A. By calculating an inclusion L ⊆ C of the eigenvalues of M it follows that there are k eigenvalues of

the original matrix A in L.

Note that it is not proved that A has a k-fold or even a double eigenvalue. Also note that an inclusion is

only possible if the geometric multiplicity of all included eigenvalues is 1. The reason is again, as for multiple

roots of polynomials, that the problem becomes ill-posed for geometric multiplicity greater that one [21].

Using our approach we may prove existence of a double eigenvalue, but of a slightly perturbed matrix. In

this particular case we may estimate how much an individual component of the input matrix A has to be

perturbed such that a true double eigenvalue appears. As in [17, 19] consider

f(x, λ) =

(
Ax− λx

eTk x− 1

)
= 0 ,(5.1)

where ek denotes the k-th column of the identity matrix. Obviously a solution (x, λ) is an eigenvec-

tor/eigenvalue pair of A. Here k is a suitably chosen component normalizing the eigenvector x. As before we

regularize the system (5.1), but now not by shifting a whole partial function but by changing an individual

component aij of A:

g(x, λ, ε, y) =

 Ax− λx− εxjeie
T
j

eTk x− 1

Jf (x, λ)y

 = 0 .(5.2)

Again an inclusion is calculated using Theorem 2.1. In this case, as by Theorem 4.1, the rank of the Jacobian

Jf (x, λ) =

(
A− λI −x

eTk 0

)
is proved to be n, and it is easy to see [21] that the eigenvalue λ must be of geometric multiplicity 1.

Computational tests show that for dimensions over n = 200 of the matrix inclusions deteriorate. This means

that in general only some 6 to 10 decimal places of the inclusion can be guaranteed. The inclusion of ε is

always not far from u · norm(A). It proves that changing aij into aij + ε produces a matrix with a double

eigenvalue. So there is the choice to prove that the original matrix A has two (possibly separated) eigenvalues

within some computed narrow bounds, or that a slightly perturbed matrix has a true double eigenvalue.

10

6. Numerical results. We add some numerical examples for the univariate and the multivariate

case. We implemented the methods using (3.4) and (4.3), (4.4) in Algorithm verifynlss2 in INTLAB,

see http://www.ti3.tu-harburg.de/rump . Following we display results of this algorithm.

First consider

f(x) = (sin(x)− 1)(x− α) for α :=
π

2
(1 + ε) .(6.1)

The function f has a double root x̂ = π/2 with another simple root α of relative distance ε to π/2. Hence in

any case we expect the inclusion E of the offset e for regularization to be a narrow inclusion of zero. Table

6.1 displays the results for different values of ε.

Table 6.1

Inclusions for the double root x̂ = π/2 and a nearby simple root α for f as in (6.1).

ε X E

10−2 1.5707963267949± 1.8 · 10−14 [−3.5, 1.8] · 10−18

10−3 1.5707963267948± 1.7 · 10−13 [−3.5, 1.8] · 10−19

10−4 1.570796326795± 1.6 · 10−12 [−3.5, 1.8] · 10−20

10−5 1.57079632679± 1.2 · 10−10 [−3.5, 1.8] · 10−21

10−6 1.5707963268± 1.5 · 10−9 [−3.5, 1.8] · 10−22

10−7 1.570796327± 1.6 · 10−8 [−3.5, 1.8] · 10−23

10−8 failed

As can be seen for decreasing relative distance of α to the double root x̂ the quality of the inclusion decreases.

An inclusion is possible until about a relative error 10−8 ∼
√
u. This corresponds to the sensitivity of the

double root x̂: If there is another root α of relative distance
√
u, then numerically the three roots cannot

be distinguished in a floating-point arithmetic with relative rounding error unit u. This effect can also be

observed when changing f into

f(x) = (sin(x)− 1)(x− α)2 for α :=
π

2
(1 + ε) ,(6.2)

so that now there is a double root α near the double root x̂. For a relative distance ε of about 4
√
u ∼ 10−4

the four roots behave like a quadruple root. This is confirmed by the results in Table 6.2.

Table 6.2

Inclusions for the double root x̂ = π/2 and a nearby double root α for f as in (6.2).

ε X E

10−2 1.57079632679488± 1.2 · 10−14 [−2.8, 5.5] · 10−20

10−3 1.5707963267948± 2.4 · 10−13 [−2.8, 5.5] · 10−22

10−4 1.570796326794± 2.8 · 10−12 [−2.8, 5.5] · 10−24

10−5 failed

Note that in both cases the inclusions of the offset for the regularization are very accurate inclusions of zero.

Next we test some systems of nonlinear equations. The first test function is

f(x1, x2) =

(
ex1x2 − sin(x2

1 − 2x1x2)

x1(x1 − cosh(x2)) + x1atan(x2)− α

)
= 0 ,(6.3)

where we choose the parameter α such that the system has a nearly double root. For example, for α = 0.4

the zero contour lines look like in Figure 6.1. For α = 0.40031204474074 there is an almost double root near

(1.329,−0.0273). The parameter α is chosen such that we can just separate the nearly double root into two

single roots. The results are displayed in Table 6.3.

11

Fig. 6.1. Zero contour lines of f(x1, x2) as defined in (6.3) for α = 0.4.

Fig. 6.2. Zero contour lines of f(x1, x2) as defined in (6.3) for two different parameter values α.

Table 6.3

Inclusions X1, X2 for two single roots and X for a nearly double root for f as in (6.3) and α = 0.4003120447407.

X1 X2 X E

1.3288996218628 1.328899515748 1.3288995683907165
−0.027298056759 −0.027297929888 −0.027297992758794134 [-5.2,-5.0]·10−14

The inclusions of the two simple roots are separated by about 10−7 which is almost
√
u, and the quality of

the inclusion is about
√
u as well. Subtracting a constant ε ∈ E from the first equation generates a truly

double root. Note that |ε| < 6 · 10−14. As expected the quality of the inclusion of the double root is much

better than those of the separated simple roots, almost of maximum accuracy.

For α = 0.35653033083794 there is another almost double root of f as in (6.3) near (−0.292, 1.195). Again

the parameter α is chosen such that we can just separate the nearly double root into to two single roots.

The results are displayed in Table 6.4. The quality of the results is very similar to the previous example.

Finally we show examples of higher dimensions. Consider Brown’s almost linear function f : Rn → Rn with

12

Table 6.4

Inclusions X1, X2 for two single roots and X for a nearly double root for f as in (6.3) and α = 0.35653033083794.

X1 X2 X E

−0.291973309144 −0.29197336157 −0.291973333127644129
1.19500512300 1.19500486953 1.19500498575099287 [-1.17,-0.96]·10−14

[12]

fk(x) = xk +
∑n

j=1 xj − (n+ 1) for 1 ≤ k ≤ n− 1 ,

fn(x) =
(∏n

j=1 xj

)
− 1− e ,

(6.4)

where the last function is shifted by some e. One verifies that for

e = (1− 1

n2
)n−1(1 +

1

n
)− 1(6.5)

and

x̄k = 1− 1
n2 for 1 ≤ k ≤ n− 1 ,

x̄n = 1 + 1
n

the vector (1, . . . , 1,−n) is in the kernel of the Jacobian of f as in (6.4). Thus x̄ is not a simple root of f .

Inclusions for different dimensions n are displayed in Table 6.5. More precisely it is verified that there exists

x̂ ∈ X and ε̂ ∈ E such that f(x̂)− (ε̂, . . . , 0) = 0 and the Jacobian Jf (x̂) of f at x̂ is singular.

Table 6.5

Inclusions of a double root of (6.4) for different dimensions.

n X1···n−1 Xn E

10 0.990000± 1.0 · 10−14 1.100000± 1 · 10−14 [−3.5, 5.8] · 10−15

20 0.997500± 4.0 · 10−14 1.050000± 1 · 10−14 [−1.4, 2.2] · 10−14

50 0.996000± 2.1 · 10−13 1.020000± 2 · 10−14 [−0.1, 1.9] · 10−13

100 0.999900± 8.2 · 10−13 1.010000± 2 · 10−14 [−5.4, 2.9] · 10−13

200 0.999975± 3.3 · 10−12 1.005000± 5 · 10−14 [−1.3, 2.0] · 10−12

500 0.999996± 1.9 · 10−11 1.002000± 1 · 10−13 [−0.6, 1.3] · 10−11

1000 0.999999± 7.5 · 10−11 1.001000± 2 · 10−13 [−1.1, 6.4] · 10−11

The inclusions for the first n−1 components of X are identical. As can be seen the accuracy of the inclusions

decreases slowly with increasing dimension. All inclusions including that of the regularization parameter ε

are of remarkable quality. Note that for all computations the same algorithm verifynlss2 in INTLAB has

been used without change. This code is available in INTLAB, see http://www.ti3.tu-harburg.de/rump .

7. Conclusion. In this paper we provided efficient algorithms for computing verified and narrow error

bounds with the property that a slightly perturbed system is proved to have a double root within the

computed bounds. We have applied those to univariate polynomials, to multivariate polynomials and also

to eigenvalue problems. Numerical experiments have confirmed the performance of our algorithms.

Acknowledgement. The authors wish to thank Prof. Jean Vignes from Paris VI for his constructive

comments.

REFERENCES

13

[1] G. Alefeld and H. Spreuer. Iterative Improvement of Componentwise Errorbounds for Invariant Subspaces Belonging to

a Double or Nearly Double Eigenvalue. Computing, 36:321–334, 1986.

[2] R. Alt and J. Vignes. Stabilizing Bairstow’s method. Comput. Math. Appl., 8(5):379–387, 1982.

[3] A. Frommer, B. Lang, and M. Schnurr. A Comparison of the Moore and Miranda Existence Test. Computing, 72(3-

4):349–354, 2004.

[4] N.J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM Publications, Philadelphia, 2nd edition, 2002.

[5] Y. Kanazawa and S. Oishi. Calculating Bifurcation Points with Guaranteed Accuracy. IEICE Trans. Fundamentals,

E82-A(6):1055–1061, 1999.

[6] Y. Kanazawa and S. Oishi. Imperfect Singular Solutins of Nonlinear Equations and a Numerical method of Proving Their

Existence. IEICE Trans. Fundamentals, E82-A(6):1062–1069, 1999.

[7] R. Krawczyk. Newton-Algorithmen zur Bestimmung von Nullstellen mit Fehlerschranken. Computing, 4:187–201, 1969.

[8] M. La Porte and J. Vignes. Étude statistique des erreurs dans l’arithmétique des ordinateurs; application au controle des

resultats d’algorithmes numériques. Numer. Math., 23:63–72, 1974.

[9] M. La Porte and J. Vignes. Méthode numérique de détection de la singularité d’une matrice. Numer. Math., 23:73–81,

1974.

[10] MATLAB User’s Guide, Version 7. The MathWorks Inc., 2004.

[11] R.E. Moore. A Test for Existence of Solutions for Non-Linear Systems. SIAM J. Numer. Anal. (SINUM), 4:611–615,

1977.

[12] J.J. Moré and M.Y. Cosnard. Numerical solution of non-linear equations. ACM Trans. Math. Software, 5:64–85, 1979.

[13] M.R. Nakao. Numerical verification methods for solutions of ordinary and partial differential equations. Numerical

Functional Analysis and Optimization, 33(3/4):321–356, 2001.

[14] A. Neumaier. Introduction to Numerical Analysis. Cambridge University Press, 2001.

[15] M. Plum and Ch. Wieners. New Solutions of the Gelfand Problem. J. Math. Anal. Appl., 269:588–606, 2002.

[16] S. Poljak and J. Rohn. Checking Robust Nonsingularity Is NP-Hard. Math. of Control, Signals, and Systems 6, pages

1–9, 1993.

[17] S.M. Rump. Solving Algebraic Problems with High Accuracy. Habilitationsschrift. In U.W. Kulisch and W.L. Miranker,

editors, A New Approach to Scientific Computation, pages 51–120. Academic Press, New York, 1983.

[18] S.M. Rump. INTLAB - INTerval LABoratory. In Tibor Csendes, editor, Developments in Reliable Computing, pages

77–104. Kluwer Academic Publishers, Dordrecht, 1999.

[19] S.M. Rump. Computational Error Bounds for Multiple or Nearly Multiple Eigenvalues. Linear Algebra and its Applications

(LAA), 324:209–226, 2001.

[20] S.M. Rump. Ten methods to bound multiple roots of polynomials. J. Comput. Appl. Math. (JCAM), 156:403–432, 2003.

[21] S.M. Rump and J. Zemke. On eigenvector bounds. BIT Numerical Mathematics, 43:823–837, 2004.

[22] Jean Vignes. Algorithmes numériques, analyse et mise en œuvre. 2. Éditions Technip, Paris, 1980. Équations et systèmes

non linéaires. [Nonlinear equations and systems], With the collaboration of René Alt and Michèle Pichat, Collection

Langages et Algorithmes de l’Informatique.

14

