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ILL-CONDITIONEDNESS NEEDS NOT BE COMPONENTWISE
NEAR TO ILL-POSEDNESS FOR LEAST SQUARES PROBLEMS

SIEGFRIED M. RUMP∗

Abstract. The condition number of a problem measures the sensitivity of the answer to small
changes in the input, where “small” refers to some distance measure. A problem is called ill-
conditioned if the condition number is large, and it is called ill-posed if the condition number is
infinity. It is known that for many problems the (normwise) distance to the nearest ill-posed prob-
lem is proportional to the reciprocal of the condition number. Recently it has been shown that for
linear systems and matrix inversion this is also true for componentwise distances. In this note we
show that this is no longer true for least squares problems and other problems involving rectangular
matrices. Problems are identified which are arbitrarily ill-conditioned (in a componentwise sense)
whereas any componentwise relative perturbation less than 1 cannot produce an ill-posed problem.
Bounds are given using additional information on the matrix.
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We first repeat some well known facts about condition numbers for normwise and
componentwise perturbations. Consider the matrix

A = A(e) :=




1 e 0
0 1 1
1 0 e


 for 0 6= e ∈ R.

For small values of e, a small (normwise) change of the matrix components produces

a singular matrix. Indeed, A+∆ is singular for ∆ =




0 −e 0
0 0 0
0 0 −e


 , and ||∆||2 =

||∆||∞ = ||∆||1 = e. However, the matrix ∆ represents a large componentwise relative
perturbation of the entries A12 and A33, and expanding the determinant of A by
Cramer’s rule it is clear that any componentwise relative perturbation of A less than
1 cannot produce a singular matrix.

The problem of matrix inversion of A is ill-conditioned in a normwise sense be-
cause small normwise perturbations of A may produce large normwise changes of A−1.
Likewise, the problem of matrix inversion of A is well-conditioned subject to compo-
nentwise relative perturbations of A. This is because a small componentwise relative
perturbation of A causes a small relative change of the determinant of A (as the sum
of two numbers of the same sign), and the determinant of all 2× 2 submatrices of A
is equal to the product of two (sub)matrix entries.

What is true in this specific example turned out to be a general fact: If the
problem of matrix inversion is ill-conditioned, then the distance to the nearest singular
matrix is small using the same distance measure, no matter whether normwise or
componentwise distances are used. In this note we will investigate whether this can
be extended to other problems.

Consider for a real m×n matrix A and a real vector b with m components the fol-
lowing five problems (a pseudoinverse always refers to the Moore-Penrose or (1,2,3,4)
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inverse):

i) A system of linear equations Ax = b for m = n,
ii) matrix inversion A−1 for m = n,
iii) computation of the pseudoinverse A+ for m 6= n,
iv) a least squares problem ||Ax− b||2 = Min! for m > n,
v) an underdetermined linear system ||x||2 = Min! subject to ||Ax− b||2 = Min!

for m < n.
For a small perturbation of the data the change in the solution of one of these problems
can be estimated by means of the condition number. Define for a nonsingular square
matrix A,

κ(A) := ||A−1|| · ||A|| .(1)

For simplicity we use throughout this note the spectral norm. We mention that most
of the following results are valid for other norms as well.

Consider a perturbation Ã of A with ||Ã − A|| ≤ ε · ||A||. If, for any right hand
side, x̃ is the solution of the perturbed system Ãx̃ = b, then [11, Theorem III.2.11]

||x̃− x||
||x̃|| ≤ ε · κ(A) ,(2)

and for nonsingular Ã [11, Corollary III.2.7]

||Ã−1 −A−1||
||Ã−1|| ≤ ε · κ(A) .(3)

When replacing x̃, Ã−1 by the true solution x, A−1 in the denominator of (2), (3),
respectively, the right hand sides is to be replaced by ε ·κ(A)/(1−ε ·κ(A)). Moreover,
these bounds are attainable up to a small factor (see [5, Theorem 7.2], [11, Corollary
III.2.7] and the discussion over there). This gave reason to call κ(A) the condition
number of the matrix (rather than of a problem).

The bounds (2) and (3) look very similar for the other three problems involving
rectangular matrices. The definition of the condition number (1) is generalized to a
rectangular matrix of full rank into

κ(A) := ||A+|| · ||A|| .(4)

Then, for a perturbed matrix Ã with ||Ã − A|| ≤ ε · ||A|| and rank(Ã) = rank(A), it
is [11, Corollary III.3.10]

||Ã+ −A+||
||Ã+|| ≤ ε ·

√
2 · κ(A) .

Similarly, for ε · κ(A) < 1 and any right hand side, the solution x of the original
problem and the solution x̃ of the perturbed problem with r = Ax − b, r̃ = Ãx̃ − b,
satisfy [4, Theorem 5.3.1]

||r̃ − r||
||b|| ≤ ε · (1 + 2 · κ(A)) +O(ε2)
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for least squares problems, and [4, Theorem 5.7.1]

||x̃− x||
||x|| ≤ ε · 2 · κ(A) +O(ε2)

for underdetermined linear systems. Therefore κ(A) := ||A+|| · ||A|| is often called the
condition number of a (full-rank) rectangular matrix. Note that the sensitivity of the
solution (rather than of the residual) of least squares problems is the square of κ(A)
[4, Theorem 5.3.1].

It is well known that any of the above five problems becomes ill-posed [12] if and
only if the matrix is rank-deficient. The 2-norm distance of a full-rank matrix to the
nearest singular matrix is the smallest singular value of A [4, Theorem 2.5.2], which
is ||A+||−1. Therefore, for full-rank square and rectangular matrices,

min
{

0 < ε ∈ R
∣∣∣ ∃Ã : ||Ã−A|| ≤ ε · ||A||, Ã rank-deficient

}
= κ(A)−1 .(5)

This confirms the well known fact that

the normwise distance to the nearest ill-posed problem of a
problem i) to v) is proportional to the reciprocal of κ(A).(6)

This has been shown to be true for a number of other problems in numerical analysis
in the classical paper [2].

It seems natural to ask whether this statement is still true for other measures
of distance, for example componentwise distances. For this purpose we need an ap-
propriate condition number. We restrict our attention to the practically important
case of componentwise relative perturbations but mention that most of the following
is valid in a much more general setting, i.e. for componentwise perturbations subject
to an arbitrary nonnegative weight matrix [8, ?].

For a given matrix A (square or rectangular) consider a perturbation Ã with

|Ã−A| ≤ ε · |A|.(7)

Here and in the following, absolute value and comparison are always to be understood
componentwise. So (7) is equivalent to |Ãij − Aij | ≤ ε · |Aij | for all i, j. Define for a
full-rank matrix A,

cond(A) := || |A+| · |A| || .(8)

For square matrices this is the so-called Bauer-Skeel condition number. Let Ã be a
perturbation of A satisfying (7). Then for a square matrix A and any right hand side
b with Ax = b and Ãx̃ = b and ε · cond(A) < 1, it is [11, Corollary III.2.15]

||x̃− x||
||x|| ≤ ε · cond(A)

1− ε · cond(A)
.

For a square or underdetermined linear system with full-rank matrix A and ε ·
cond(A) < 1, it is [5, (20.8)]

||x̃− x||
||x|| ≤ ε · 3 · cond(A) +O(ε2) .

There are similar, although more involved, estimates for the sensitivity of matrix in-
version and least squares problems subject to componentwise relative perturbations
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(see, for example, [5, Theorem 7.4 and Theorem 19.2]). These estimations contain
again cond(A). Therefore, cond(A) := || |A+| · |A| || is sometimes called the compo-
nentwise condition number of a matrix.

The question is whether some relation similar to (5) can be established in the
case of componentwise distances. Define for a full-rank rectangular matrix A,

σ(A, |A|) := min
{

0 < α ∈ R
∣∣∣ ∃Ã : |Ã−A| ≤ α · |A|, Ã rank-deficient

}
.(9)

Definition (9) can be generalized to other nonnegative weight matrices E by replacing
|A| by E. In the following, we restrict our attention to the important case of entrywise
relative perturbations: E = |A|.

Obviously 0 < σ(A, |A|) ≤ 1. Unlike in the normwise case, a characterization
cannot be a simple equality as in (5). This is because Poljak and Rohn showed that
computation of σ(A, |A|) for square A is NP-hard [7]. Moreover, the definition of
cond(A) still depends on a norm, and improper scaling may produce artificial ill-
conditioning [11, p.122f].

Let us first consider the square case, i.e. problems i) and ii). In this case we may
ask for the optimal scaling, that is for the minimum achievable condition number
cond(AD) for nonsingular diagonal D (the condition number cond(A) is independent
of row scaling for m ≤ n). For ρ denoting the spectral radius it is ([3, §5], see also [1])

inf
D

cond(AD) = ρ(|A−1| |A|) ,(10)

where for irreducible |A−1||A| the minimizing diagonal matrix can be computed ex-
plicitly from the left and right Perron vector of |A−1| · |A|. The question is whether,
similar to the normwise case (5), the minimum achievable componentwise condition
number is related to the componentwise distance to the nearest rank-deficient matrix.
Indeed, it has been shown in [?, 8] that for square nonsingular A

1
inf
D

cond(AD)
≤ σ(A, |A|) ≤ (3 + 2

√
2)n

inf
D

cond(AD)
.(11)

The left bound has been known for long and is an immediate consequence of Perron-
Frobenius theory: If A + ∆ = A(I + A−1∆) is singular for |∆| ≤ β · |A| and β :=
σ(A, |A|), then 1 ≤ ρ(A−1∆) ≤ ρ(|A−1∆|) ≤ ρ(|A−1||∆|) ≤ β ·ρ(|A−1||A|). The right
bound of (11) is the difficult part; a consolidated proof of this inequality will appear
in SIAM Review [10]. The right bound is sharp up to the factor 3 + 2

√
2 for any n

[?]. In words:

The componentwise distance to the nearest rank-deficient matrix
is proportional to the reciprocal of the minimum achievable com-
ponentwise condition number for square matrices.

(12)

That means, if a linear system or the problem of matrix inversion is ill-conditioned
subject to componentwise relative perturbations of the matrix, then a small compo-
nentwise relative perturbation produces an ill-posed problem.

It seems natural to ask whether this statement is still true for problems iii) to
v). First, we face the same problem as in the square case that cond(A) depends on a
norm. For full-rank least squares problems it is

inf
D

cond(AD) = ρ(|A+| · |A|) for A ∈ Mmn(R), m ≥ n .(13)

4



This is because (AD)+ = D−1A+, and setting B := |A+| · |A|, (13) is equivalent to

inf
D
||D−1BD|| = ρ(B) for B ∈ Mn(R), B ≥ 0,

which can be shown along the lines of the proof of Theorem 5.2 in [3]. Unlike the cor-
responding condition number for square matrices, κ(A) is not independent of diagonal
row scaling. However, it does not make sense to use an infimum of κ(DA) over diag-
onal D, because this changes the problem, and putting zeros in appropriate diagonal
positions of D readily produces the (usual) condition number of some square matrix
out of A. Furthermore, for a least squares problem row scaling is usually related to
uncertainties in the right hand side (cf. [6]). The same remarks apply similarly to
undetermined linear systems.

In any case, for square as well as for rectangular matrices, it is

ρ(|A+| · |A|) ≤ cond(A) and ρ(|A+| |A|) ≤ ||A+||∞||A||∞ ≤ √
mn · κ(A) .(14)

If a statement in the spirit of (12) would be true for one of the problems iii) to
v), then for a rectangular matrix A with ρ(|A+| · |A|) being large, and henceforth
cond(A) being large, a small componentwise relative perturbation must produce a
rank-deficient matrix. In the following we show that this is not true in general.

Suppose A is a real m × n matrix of full rank k = min(m,n), and Ã is some
rank-deficient perturbation of A. The rank-deficiency of Ã is equivalent to the fact
that all k× k submatrices of Ã are singular. Therefore, definition (9) yields for a real
m× n matrix A of full rank k = min(m,n)

max
A∗

σ(A∗, |A∗|) ≥ σ(A, |A|) ≥ min
A∗

σ(A∗, |A∗|) ,(15)

where the maximum and minimum is taken over all k × k submatrices A∗ of A.
Consider the following matrix

A = A(ε) :=




0 −1 0
−1 1 1

0 1 ε
−1 −1 1


 for 0 6= ε ∈ R .(16)

Then det(AT A) = 6ε2 and A is of full rank. Furthermore, for |ε| < 2/3,

|A+| · |A| = 1
3|ε|




2 6 2 + 3|ε|
2|ε| 3|ε| 2|ε|
2 6 2 + 3|ε|




implies ρ(|A+| · |A|) > ε−1. By (14), κ(A) is large for small ε, and by (6) a small
normwise perturbation must produce a rank-deficient matrix. Indeed, changing A33

into 0 yields a rank-2 matrix.
All three problems iii) to v) are also ill-conditioned subject to small relative

perturbations of A. It is (the numbers were computed using Maple [13])

A+ =
1
6ε
·



2 −2− 3ε 6 2− 3ε
−2ε 2ε 0 −2ε
2 −2 6 2


 ,
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whereas perturbing A into Ã by changing the (4,3)-component into 1− δ yields

(Ã+)11 =
1
6ε
·
(

2 +
(

10
3ε
− 1

)
· δ +O(δ2)

)
.

Therefore, the sensitivity of (Ã+)11 with respect to a componentwise relative pertur-
bation of A43 is larger than ε−1. Thus the problem of computing the pseudoinverse
of A, the least squares problem with right hand side (1, 0, 0)T , and the underde-
termined linear system with right hand side (1, 0, 0, 0)T is indeed ill-conditioned for
componentwise relative perturbations.

On the other hand, we know from (15) that the componentwise distance to the
nearest rank-deficient matrix is bounded below by the componentwise distance of the
upper 3 × 3 matrix of A to the nearest singular matrix. The determinant of this
matrix is −A12A21A33, and any componentwise relative perturbation less than 1 of
A cannot produce a singular matrix. Summarizing:

If the problem of
computing the pseudoinverse,
a least squares problem,
or an underdetermined linear system

is ill-conditioned subject to componentwise relative perturbations of the
matrix entries, then the problem need not be near an ill-posed problem
subject to componentwise relative perturbations.

In fact, in our example the componentwise distance to the nearest rank-deficient
matrix is equal to the distance to the rank-0 matrix. From the 4× 3 example (16) it
is easy to derive examples of larger dimensions.

The main difference between the square and the rectangular case is that, for
k = min(m,n), in the latter case a perturbation has to lower the rank of every k × k
submatrix simultaneously, whereas in the first case only one matrix, the given ma-
trix, must become singular. Another explanation uses that for Ã := A+∆ the matrix
ÃT Ã = (A + ∆)T (A + ∆) must become singular for a perturbation ∆. For a similar
reason, a symmetric matrix, the inversion of which is sensitive with respect to sym-
metric componentwise relative perturbations, need not be near a singular matrix with
respect to symmetric componentwise relative perturbations [9].

For the square cases i) and ii) we have with (11) general two-sided bounds for the
ratio between the componentwise distance to the nearest ill-posed problem and the
reciprocal of the condition number. Example (16) shows that this ratio is, in general,
unbounded for the problems iii) to v). The question remains whether bounds are
possible using additional information on A. We are interested in bounds for the
quantity

γ := σ(A, |A|) · cond(A) = σ(A, |A|) · || |A+| · |A| ||

for full-rank rectangular A ∈ Mmn(R). Note that, unlike (11), we use the actual
condition number, not an optimal condition number subject to some scaling. Such
bounds are indeed possible.

A general lower bound without further assumptions on A can be established
similar to the square case. Let full-rank A ∈ Mmn(R), m ≥ n, and rank deficient
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A + ∆ = (I + ∆A+)A with |∆| ≤ σ(A, |A|) · |A| be given. Then I + ∆A+ is rank-
deficient and

1 ≤ ρ(∆A+) = ρ(A+∆) ≤ ρ(|A+| |∆|) ≤ σ(A, |A|) · ρ(|A+| · |A|) = γ.(17)

For m < n the same argument using A + ∆ = A(I + A+∆) applies.
For an upper bound we need additional information on A. Denote

µ := min
i,j

|A|ij and M := max
i,j

|A|ij .

For the singular value decomposition A =
∑

σiuiv
T
i with smallest singular value σk,

k = min(m,n), the matrix A−σkukvT
k is rank-deficient. For (1)mn denoting the m×n

matrix of all 1’s,

|σkukvT
k | ≤ σk · (1)mn ≤ µ−1σk · |A| = µ−1||A+||−1|A| .

Hence σ(A, |A|) ≤ {µ · ||A+||}−1. On the other hand [5, Table 6.2],

cond(A) = || |A+| · |A| || ≤
√
|| |A+| · |A| ||1 || |A+| · |A| ||∞

≤
√
||A+||1 ||A||1 ||A+||∞ ||A||∞

≤ M
√

mn
√
||A+||1 ||A+||∞

≤ M(mn)3/4 ||A+|| .

Together with (17) and (16) this proves the following result for square and for rect-
angular matrices. For square matrices a weaker result of this kind is [3, Theorem
5.4].

Theorem 1.1. Suppose A ∈ Mmn(R) has full rank, suppose Aij 6= 0 for all i, j ,
and define

ϕ :=
max |Aij |
min |Aij | .

Then

1
cond(A)

≤ σ(A, |A|) ≤ ϕ · (mn)3/4

cond(A)
,

where the componentwise condition number cond(A) is defined by (8), and the com-
ponentwise distance σ(A, |A|) to the nearest rank-deficient problem subject to relative
componentwise perturbations is defined by (9).

Without the assumption Aij 6= 0, the product σ(A, |A|) ·cond(A) can be arbitrarily
large for m 6= n, m ≥ 4, n ≥ 3.

The result can be interpreted as follows. The closer the entries of A are in
magnitude, that means the more a componentwise relative perturbation becomes a
componentwise absolute perturbation, the closer are the componentwise distance to
the nearest rank-deficient matrix and the reciprocal of the condition number.
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