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VERIFIED SOLUTION OF LARGE LINEAR AND NONLINEAR SYSTEMS

SIEGFRIED M. RUMP∗

Abstract. In this paper we describe some of the principles of methods for the verified solution of large systems of linear

and nonlinear equations. Verified solution means to produce results with correct error bounds using floating point arithmetic,

possibly with directed rounding. Some background is given why and for what kind of problems the methods work, and also

why other approaches do not work.

1. Introduction. In numerical analysis it is usually distinguished between backward and forward er-
ror analysis. Given an approximation of the true solution of a given problem, the frequently used backward
analysis asks: ”How large a perturbation of the original input data is necessary such that the computed
approximation is the exact solution of the perturbed problem?” For many numerical algorithms this pertur-
bation is small. Consider, for example, the solution of a linear system Ax = b with A ∈ Mn(IR), b ∈ IRn. If
L̃, Ũ ∈ Mn(IF), where IF denotes the set of floating point numbers, are the computed factors and x̃ ∈ IFn is
the approximate solution computed by Gaussian elimination with partial pivoting, then Ãx̃ = b where

|Ã−A| ≤ (3 ε′ + ε′2) |L̃| |Ũ | and ε′ := n ε/(1− n ε) .

Here ε denotes the relative rounding error unit. This estimation ([23], [18]) is rigorous provided n ε < 1.
If the factor in backward analysis is small, as for Gaussian elimination, the used algorithm is stable. More
precisely, the algorithm does not introduce additional instability. This is not always true. A familiar example
is the solution of least squares problems by normal equations instead of some orthogonalization technique,
thus unnecessarily squaring the condition number of the problem.

On the other hand, backward analysis does not tell the condition of the problem. In case of Gaussian
elimination, for example, the condition can be read from the growth factor. It is well known that for
Gaussian elimination with partial pivoting the growth factor may grow exponentially with the dimension.
On the other hand, until the work by Wright ([24], see also [7]) it was common belief that this occurs only
in constructed, nonpractical examples. Since then the growth factor is monitored in LAPACK routines [3].

In forward error analysis the question is: ”How far is the computed solution from the true solution of the
problem?” including the question ”Is the problem solvable?” At first sight this seems to be the more natural
question to ask. This is not necessarily always the case. In many cases a good backward error is totally
sufficient. If it is important to know the forward error of an approximation, for example, in problems where
safety is important or controllability has to be assured, traditional estimations contain the condition number
of the problem. For Gaussian elimination, for example, it is

||x− x̃||
||x|| ≤ ε cond(A)

1− ε cond(A)

provided Ax = b, (A + E)x̃ = b and ||E|| ≤ ε ||A||, ε cond(A) = ε ||A|| ||A−1|| < 1 (cf. [10]). A finite
condition number implies solvability of the problem. For many problems the reciprocal of the condition
number is proportional to the distance to the nearest ill-posed problem. This is well known for normwise
distances [6], and has recently proved to be also true for linear systems and componentwise distances [22].
However, for a valid estimate of the forward error we need an upper bound for the condition number, and
this is frequently as difficult to compute as to solve the problem.
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Traditional forward error analysis gives general bounds, independent of the actual data of the problem.
Probably the oldest bounds of this kind are in [16]. Those bounds turned out to be very pessimistic, possibly
one reason that today mostly backward bounds are used. In the following we will discuss possibilities to
compute forward error bounds for a given problem taking into account the actual data. These bounds will
cover all intermediate errors such as representation errors, rounding errors and all kinds of computational
errors. The bounds are completely rigorous.

A major ingredient of those methods is the possibility to estimate the error of a sequence of operations and
to estimate the range of a function. This is to be described in the next section.

2. Range of a function. One possibility to estimate the error of an individual operation is interval
arithmetic. Consider the set of nonempty real intervals IIIR := {[ a1, a2 ] |a1, a2 ∈ IR and a1 ≤ a2}. Power
set operations over real intervals are defined by

A,B ∈ IIIR ⇒ A ◦B := {a ◦ b | a ∈ A, b ∈ B}

where ◦ ∈ {+,−, ·, /}. This definition can also serve as definition of interval operations because for A, B ∈ IIIR
the result of the power set operations is always a real interval (provided the denominator does not contain
zero in case of division). For A = [ a1, a2 ], B = [ b1, b2 ], this definition is equivalent to

A ◦B = [ min(a1 ◦ b1, a1 ◦ b2, a2 ◦ b1, a2 ◦ b2), max(a1 ◦ b1, a1 ◦ b2, a2 ◦ b1, a2 ◦ b2) ] .(2.1)

For intervals with floating point endpoints, the same definition can be used provided operations for the
left bound are executed with rounding downwards, and operations for the right bound are executed with
rounding upwards. For details see a standard book on interval analysis, among them ([2],[15]). We want to
stress that (2.1) is not used for computation of an interval result. Here much faster methods are available,
see Section 6.

The definition can be extended to complex operations, to vector and matrix operations, and to real and com-
plex standard functions. The actual computation of the result for complex standard functions is nontrivial
(see [4], [12]).

All interval operations satisfy one fundamental property, the isotonicity. It is

∀ a ∈ A ∀ b ∈ B : a ◦ b ∈ A ◦B(2.2)

for all suitable A,B and all suitable interval operations ◦. For monadic operations isotonicity is formulated
similar to (2.2).

Having isotonicity at hand, it seems natural to apply interval arithmetic in a so-called naive way: Replacing
every operation by the corresponding interval operation produces a final result which includes the true solu-
tion of the problem. This follows trivially by successively applying the isotonicity property (2.2). However,
other than in special cases, this produces a severe overestimation of the result. One reason is the so-called
wrapping effect. Consider the iteration

z0 = 1; zν+1 := (a + ib) · zν where a = b = 1/
√

2.(2.3)

Evaluation of (2.3) in floating point introduces a small roundoff error in the computation of a and b. In the
following iterations, the interval inclusion of zν is always turned by 45◦. The interval inclusion is always a
rectangular parallel to the axes. That means, in every iteration step the true length of the axes is prolonged
by a factor

√
2, which means more than a factor 1016 after 100 iterations. Another reason for overestimation

is the fact that one interval is used several times. For example, using interval arithmetic it is

eX −X = [ 0, e ] for X = [ 0, 1 ] ,

instead of [ 1, e− 1 ] using power set operations. This is the dependency problem. If every interval quantity
occurs exactly once in an expression, then the final result shows no overestimation. Otherwise, except special
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circumstances, the result is afflicted with overestimation. As a more practical example consider Gaussian
elimination in interval arithmetic, frequently called IGA (Interval Gaussian Elimination). That is Gaussian
elimination with partial pivoting is performed by replacing every operation by its corresponding interval
operation.

For the following table we generated a random n × n matrix with entries uniformly distributed in [−1, 1 ].
We performed IGA for the original matrix, for the matrix preconditioned with an approximate inverse of
its L-factor, and preconditioned with an approximate inverse of the entire matrix. In the second case, the
preconditioned matrix is approximately the U-factor, in the third case approximately the identity matrix.
We used INTLAB for the computation, see Section 6. The input is

for n=10:10:100; a=2*rand(n)-1;

[l u]=luwpp(intval(a)); r1=rad(u(n,n));

[l u]=lu(a); [l u]=luwpp(inv(l)*intval(a)); r2=rad(u(n,n));

[l u]=luwpp(inv(a)*intval(a)); r3=rad(u(n,n));

[n r1 r2 r3]

end

The output display only the radius of the Unn element, where U is the U-factor produced by IGA, an interval
matrix. The result is as follows.

10 1.6642e-013 2.8755e-014 1.7764e-015

20 2.7654e-010 3.9713e-012 3.8303e-015

30 5.8932e-008 2.5538e-011 1.0991e-014

40 8.2912e-005 4.318e-009 7.9381e-015

50 0.027519 1.9748e-007 1.0936e-014

60 NaN 1.8863e-005 1.1879e-014

70 NaN 0.00036907 1.4211e-014

80 NaN 0.026651 1.5155e-014

90 NaN 0.092109 1.7042e-014

100 NaN NaN 2.0428e-014

Table 2.1. Radius of Unn for IGA

Obviously, the table displays the exponential growth of interval radii produced by IGA for the first and
second case. An output NaN means that computation broke down due to the fact that all pivoting elements
contained zero. Only in the third case, where there is almost nothing to do, the algorithm seems to work.
Note that the reason for the observed effect is not the condition number, it is the mere number of operations.
The condition number in all cases is less than 103, where computation is performed in double precision (16
decimal places).

On the other hand, interval arithmetic offers the possibility to estimate the range of a function without
further knowledge about Lipschitz constants or others. Consider, for example, the following function taken
from a paper by Broyden [5]

y =

(
0.5 sin (x1x2)− x2/4π − x1/2
(1− 1/4π)(e2x1 − e) + e · x2/π − 2ex1

)
.(2.4)

Then the INTLAB function

function y = f(x)

Pi = typeof(intval(’3.14159265358979_’), x);

E = exp(typeof(intval(1)), x);

y(1) = .5*sin(x(1)*x(2)) - x(2)/(4*Pi) - x(1)/2;
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y(2) = (1-1/(4*Pi))*(exp(2*x(1))-E) + E*x(2)/Pi - 2*E*x(1);

calculates the function (2.4). The call

x = [ .5 ; 3.14 ]; y = f(x)

calculates the function in pure floating point, whereas the call

x = intval([ .5 ; 3.14 ]); y = f(x)

calculates the function with verified bounds. If x is specified to be an interval like x = midrad ( [ .5; 3.14 ],
1e− 5 ), then the range of the function over the input interval is estimated. The function typeof(a,b) gives
back the value of a with type adjusted to that of b.

Again, the estimation of the range will be afflicted with an overestimation. The objective of verification
methods is to diminish the effect of overestimation. One of the possibilities to do that is to formulate the
problem in such a way that all interval quantities are multiplied by a small factor. This is possible as
demonstrated in the next section.

3. Verified solution of dense linear systems. Consider a (dense) system of linear equations

Ax = b for A ∈ Mn(IR), b ∈ IRn .(3.1)

It turns out that the use of fixed point theorems can take advantage of interval arithmetic and the possibility
to estimate the range of a function. We reformulate (3.1) into the fixed point form

g(x) := x + R(b−Ax) ,(3.2)

where R ∈ Mn(IR) is a preconditioning matrix to be specified. Suppose for some interval vector X ∈ IIIRn,
which is nonempty, closed, bounded and convex, it is

g(X) ⊆ X .(3.3)

Then Brouwer’s Fixed Point Theorem implies existence of a fixed point x̂ ∈ X of g , and (3.2) implies

R(b−Ax̂) = 0 .(3.4)

If the preconditioner is nonsingular, then a solution of the linear system (3.1) is enclosed in X. The proof
of nonsingularity of the preconditioning matrix R together with that of A is given by the following lemma.

Lemma 3.1. Let X, Z ∈ IIIRn, C ∈ IIMn(IR) and suppose
Z + C ·X ⊆ int(X).

Then ρ(C) < 1 for all matrices C ∈ C.

For the proof of this and the following results in this section see [19]. The naive way to check (3.3) is
to replace every operation by its corresponding interval operation. If X − R ( b − A · X ) ⊆ int (X), then
g(X) ⊆ int(X). However, this will never be satisfied because adding some quantity to an interval can never
shrink its diameter. Instead, we use the so-called Krawczyk operator [13]:

x̃ + R ( b−Ax̃ ) + ( I −RA ) ( X − x̃ ) ⊆ int (x) ⇒ g(x) ⊆ int (x) ,

where x̃ ∈ IRn. The proof follows by isotonicity:

∀ x ∈ X : g(x) = x + R ( b−Ax )
= x̃ + R ( b−Ax̃ ) + ( I −RA ) ( x− x̃ )
⊆ x̃ + R ( b−Ax̃ ) + ( I −RA )( X − x̃ )
⊆ int (X) .

Together with Lemma 3.1 this implies nonsingularity of the matrices R and A, and therefore A−1b ∈ X.
For a practical application it turns out to be superior to enclose the error with respect to an approximate
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solution of the linear system. This gives better inclusions for less work. Moreover, it is easy to derive a
corresponding theorem for linear systems with uncertain data.

Theorem 3.2. Let [ A ] ∈ IIMn(IR), [ b ] ∈ IIIRn, R ∈ Mn(IR), x̃ ∈ IRn and X ∈ IIIRn be given. Suppose

R · ( [ b ]− [ A ]x̃ ) + ( I −R · [ A ] ) X ⊆ int(X) .(3.5)

Then the matrix R and all matrices A ∈ [A] are nonsingular, and

∀ A ∈ [ A ] ∀ b ∈ [ b ] : A−1b ∈ x̃ + X .(3.6)

In a practical computation, the optimal preconditioner is the inverse of the midpoint matrix. Therefore,
usually an approximate midpoint inverse is used. For the quality of the inclusion, consider the inclusion
formula (3.5). The critical term is ( I −R[ A ] )X. However, this is the product of two small quantities: For
a linear system with precise date, I − RA is of the order ε · ||A||, and X is an inclusion of the error of x̃,
which is also small if the problem is not too ill-conditioned.

It turns out in practice that the same limit 1/ε for the condition number applies to the verification algo-
rithm. Therefore, one may ask what verification is useful for. The major difference to a pure floating point
algorithm is that every result is verified to be correct. In pure floating point methods one might take a poor
approximation to be a correct answer to a problem, see [24], [7]. This is not possible for verification methods.

Still the question remains: If a verification method delivers a poor answer, is this due to overestimations and
dependencies or, is it due to the poor condition of the problem. This is solved by the following observation.

Theorem 3.3. With the assumptions of Theorem 3.2, for all i, 1 ≤ i ≤ n there exist A1, A2 ∈ [A ] and
b1, b2 ∈ [ b ] such that with

Z := R · ( [ b ]− [ A ] x̃ ) and ∆ := (I −R [A ] )X

it is

(A−1
1 b1)i ≤ inf(Zi) + sup(∆i) and sup(Zi) + inf(∆i) ≤ (A−1

2 b2)i .

Note that Theorem 3.2 implies

inf(Zi) + inf(∆i) ≤ (A−1b)i ≤ sup(Zi) + sup(∆i)

for all A ∈ [ A ], b ∈ [ b ] and for all i, 1 ≤ i ≤ n. Henceforth, the quality of the inclusion depends on the
width of ∆, and due to the preceeding discussion this is the product of two small quantities and therefore
small. This is the reason why inclusions obtained by Theorems 3.2 and 3.3 are very sharp. We mention that
an intrinsic assumption is that all uncertain data are independently varying within the given tolerances. If
there are dependencies between input data, consult [11] and [19].

As an example consider the INTLAB input

n=500; A=2*rand(n)-1; b=A*ones(n,1); cond(A)

X = verifylss(A,b); X(1), X(n)

producing the output

8.753696537725864e+002

[ 0.999999999989908, 1.000000000010085]

[ 0.999999999990334, 1.000000000009646]

According to the condition number, the radius 10−11 is about what to expect in double precision. If we
afflict the input data with tolerances like
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X = verifylss(midrad(A,1e-10),b); X(1), X(n),

which means all matrix entries are afflicted with an absolute uncertainty of 10−10, then the result is as
follows:

[ 0.999997448889150, 1.000002551110845]

[ 0.999997561317640, 1.000002438682342]

The radii 2 · 10−6 of the inclusion reflect the condition of the problem. Note that usually only approximate
information about the condition number is available. Those approximations may be inaccurate (see the
discussion in [10], Chapter 14 and the many papers cited over there).

4. Verified results for sparse linear systems. The methods described in the previous section are
not suitable for sparse systems because an approximate inverse is used as preconditioner. For sparse systems
we use an estimation of the smallest singular value of the matrix. In the following || · || denotes always the
spectral norm; the results may be formulated for other norms as well. For Ax̃ = b and a given approximation
x̃ it is

||x̃− x̂|| = ||A−1(Ax̃− b)|| ≤ σn(A)−1 · ||Ax̃− b|| ,(4.1)

where σn(A) denotes the smallest singular value of A. For the moment we suppose A to be symmetric
positive definite. In the course of estimations it will be proved that A has this property. Later, the concepts
will be extended to general symmetric and unsymmetric matrices.

For the estimation we need a verified lower bound for the smallest singular value of A. Such a positive bound
implies nonsingularity of A. One possibility is to compute an approximation s for σn(A), and to verify that
A − sI is positive definite. This in turn is true if a Cholesky decomposition of A − sI exists. One might
try to prove this by performing an interval Cholesky decomposition. However, the same remarks as for IGA
apply: due to overestimation and dependencies this works only for small dimension. Consider

A = 0.1 ·GGT with G =




1
1 1 0
1 1 1

1 1 1

0
. . . . . . . . .




.

We perform a Cholesky decomposition of A with interval operations and monitor the radius of the lower
right element of the Cholesky factor. The result is as follows.

n | 10 20 30 40

-----------------------------------------------

rad(G_nn) | 7e-13 1e-8 2e-4 failed

cond(A) | 200 600 1000 2000

Again, the failure of the approach is due to the number of operations, not due to the condition of the matrix.
In contrast we use perturbation analysis of the symmetric eigenvalue problem. It is well known that for
symmetric A and E and suitable numbering the following bounds are valid:

|λi(A + E)− λi(A)| ≤ ||E||2 for 1 ≤ i ≤ n .(4.2)

Here, λi denotes the i-th eigenvalue of a (symmetric) matrix. Suppose, s is an approximation to the smallest
singular value of a symmetric matrix, and HHT ≈ A− sI is an approximate Cholesky decomposition. If H

has no zero on the diagonal, HHT is positive definite, and by (4.2) it is for all i

|λi(A− sI)| ≥ −||∆||, where ∆ := A− sI −HHT .
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This implies

σn(A) ≥ s− ||∆|| ,

a lower bound for the smallest singular value of A. The only computation to be performed in interval
arithmetic in this verification process is the computation of ∆. Therefore, a verification may look as follows.

1. Compute an approximate Cholesky decomposition A ≈ GGT

2. Use G to compute an approximate solution x̃

3. Use G and inverse power iteration to compute an approximation t to the smallest singular value of
A

4. Set s := 0.9t

5. Compute an approximate Cholesky decomposition A− sI ≈ HHT

6. Compute an upper bound δ of ||A− sI −HHT ||
7. If s− δ > 0, then A is positive definite and ||A−1b− x̃|| ≤ (s− δ)−1 · ||Ax̃− b|| .

Algorithm 4.1. Verified solution of s.p.d. linear systems

The applicability of Algorithm 4.1 is limited by cond(A) . ε−1, the same bound as for any floating point
algorithm. Algorithm 4.1 may also serve as a verified condition estimator. Sometimes it is even faster than
an approximate condition estimator. Consider a linear system with A := LLT , where L is an n× n random
band matrix with band width 7. Therefore, A is of bandwidth 14. We calculate the right hand side such
that the true solution of the linear system is x̂i = (−1)i/i. In the following table we display the maximum
error achieved by Algorithm 4.1, the condition number of A and the ratio

ρ :=
t(LAPACK condition estimator)

t(verified inclusion by Algorithm 4.1)
,

the ratio between the time for the LAPACK condition estimator divided by the total time to achieve the
verified inclusion by Algorithm 4.1.

n ||x̂− x̃||∞ / ||x̂||∞ cond(A) ρ

1 000 2.0e-9 2.5e7 1

10 000 2.4e-6 3.5e10 40

100 000 3.0e-5 4.3e11 1100

Table 4.2. Computing time for s.p.d. systems

The main principle of this and many other verification methods is that interval computations are used only
if absolutely necessary. Almost everything is done in floating point; interval arithmetic is only used to
verify validity of certain assumptions of an inclusion theorem. To cite Wilkinson: ”In general it is the best
in algebraic computations to leave the use of interval arithmetic as late as possible so that it effectively
becomes an a posteriori weapon.”

For symmetric indefinite systems, the eigenvalues and singular values do not coincide. The problem can still
be solved by perturbation theorems for symmetric matrices. Suppose, we have an approximation s to the
smallest singular value of A. We perform an LDLT -decompositions of A− sI and A + sI:

L1D1L
T
1 ≈ A− sI and L2D2L

T
2 ≈ A + sI .

We use symmetric pivoting together with the method of Bunch-Kaufmann ([8], Chapter 4.4). Furthermore,
we use a limited pivoting strategy to reduce fill-in [14]. By the perturbation result for symmetric eigenvalue
problems, the inertia of A− sI and A + sI cannot differ by more than

δ := max ( ||A− sI − L1D1L
T
1 || , ||A + sI − L2D2L

T
2 || )

from the inertia of D1 and D2. If the inertias of D1 and D2 are equal, then it is not difficult to see that
s− δ is a lower bound for the smallest eigenvalue in absolute value of A, which is the smallest singular value
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of A. Therefore, the approach is similar to Algorithm 4.1 with the exception that the verification process is
two-fold, the factorization of A− sI and A + sI.

For indefinite systems we use the fact that the set of eigenvalues of

B :=

(
0 AT

A 0

)

is ±σi(A). Thus the condition number of B and A are the same. The verification process uses the above
approach for symmetric linear systems. A band minimization can be performed in advance by taking
advantage of the special structure of the matrix B.

Computational results for Gregory/Karney test cases 4.16 and 4.20 are as follows. The first matrix is positive
definite, the second indefinite. The column ”error” shows ||x̂− x̃||∞ / ||x̂||∞.

Example (4.16) Example (4.20)

n cond(A) error cond(A) error

--------------------------------------------------

1000 1.7e11 3.8e-14 6.2e2 1.0e-18

10000 1.6e15 5.4e-10 5.5e3 7.6e-17

20000 2.6e16 1.8e-8 1.1e4 2.6e-16

50000 1.0e18 failed 3.2e4 4.1e-15

100000 6.3e4 7.6e-14

Table 4.3. Verified solution of banded systems

5. Verified solution of nonlinear systems. The methods derived in the previous sections can be
used for the inclusion of the solution of nonlinear systems of equations. The following results hold in a more
general setting; for simplicity, we state the results with rather strong preassumptions. Let f : IRn → IRn be
a continuously differentiable function, and let x̃ ∈ IRn and X ∈ IIIRn be given. We call S(x̃,X) ⊆ Mn(IR)
an expansion of f in X with respect to x̃ if

∀ x ∈ X ∃ M ∈ S(x̃,X) : f(x) = f(x̃) + M · (x− x̃) .

Such an expansion can be computed by means of automatic differentiation ([17], [9]), automatic slopes
([15], [20]) or other techniques. Given such an expansion the following is true.

Theorem 5.1. Let f : IRn → IRn be a continuously differentiable function, let x̃ ∈ IRn, x ∈ IIIRn, R ∈
Mn(IR) and S(x̃, x) ⊆ Mn(IR) be given. If

−R · f(x̃) + (I −R · S(x̃, x)) ·X ⊆ int(X) ,(5.1)

then there exists some x̂ ∈ x̃ + X with f(x̂) = 0.

The proof can be found in [19]. Condition (5.1) can be verified on the computer. Again, the critical
part (I − R · S(x̃, x)) · X subject to overestimation is the product of two small quantities. In a practical
application, the matrix R is usually choosen to be a good preconditioner, for example an approximate inverse
of the midpoint of the expansion matrix mid(S(x̃, x)).

For sparse nonlinear systems this is not possible because the inverse of the Jacobian is likely to be a full
matrix. Nevertheless, we choose the preconditioner to be the optimal preconditioner, namely the exact

inverse of mid(S(x̃, x)). Define

R := mid(S(x̃, x))−1 .

Then the basic rules of interval analysis ([2], [15]) yield

I −R · S(x̃, x) = I −R · [mid(S(x̃, x))± rad(S(x̃, x))]
= [−|R| · rad(S(x̃, x)) , +|R| · rad(S(x̃, x))] .
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A short calculation proves the following corollary of the preceeding theorem.

Corollary 5.2. Let f : IRn → IRn be a continuously differentiable function, let x̃ ∈ IRn and 0 < ρ ∈ IR be
given and define X := {x ∈ IRn : ||x|| ≤ ρ}. Furthermore, let S(x̃, x) ∈ IIMn(IR) be given with

∀ x ∈ X ∃ M ∈ S(x̃, x) : f(x) = f(x̃) + M · (x− x̃) .

If 0 < τ ∈ IR satisfies τ < σn(mid(S(x̃, x))) and

||f(x̃)||+ ||rad(S(x̃, x))|| · ρ ≤ τ · ρ ,

then there exists x̂ ∈ IRn with ||x̂− x̃|| ≤ ρ and f(x̂) = 0.

The advantage of the formulation of Corollary 5.2 is that it is suitable for sparse systems, and that it uses
the optimal preconditioner without explicitly computing it. Note that if f is sparse, the expansion interval
matrix S(x̃, x) is also sparse.

As an example consider Emden’s equation

−∆U = U2 where U = 0 on ∂ Ω for Ω = (0, l−1)× (0, l) .

This equation is not too difficult to solve on the unit square; for values of l larger than 2 the discretized
system becomes rapidly ill-conditioned. For an approximate solution ũ := λx1

2(1 − x1)2x2
2(1 − x2)2 with

suitable parameter λ we perform some Newton steps and apply Corollary 5.2. The discretization uses central
differences. The result for different values of l for the final error e = ||û− ũ|| / ||ũ|| is as follows.

l N m1 m2 cond e

--------------------------------------------

1 32385 255 127 1.3e4 7.7e-13

2 32385 255 127 8.0e6 4.5e-10

2.5 32385 255 127 7.9e9 4.6e-7

Table 5.3. Computational results for Emden’s equation

Note that verification of the result applies to the discretized system. The column N denote the total
dimension of the nonlinear system, columns m1 and m2 denote number of grid points in the two variables,
and cond the condition number of the nonlinear system.

For larger values of l the discretized system becomes truely ill-conditioned. Moreover, plenty of solutions
appear and turn out to be ghost solutions produced by floating point errors. For example, consider l =
3.1, m1 = 127, m2 = 31 such that N = 3937. Denote the floating point iterates by ũk. Then the weighted
residue shows the following behaviour.

k ||f(ũk)|| / ||ũk||
1 1.3e-3

2 9.8e-5

3 2.6e-7

4 3.1e-12

5 1.2e-4

Table 5.4. Floating point iteration for Emden’s equation

What looks like an almost quadratic convergence finally turns out to be a fake. However, a stopping criterion
may stop at iteration 4 and give back the computed approximation.

6. Implementation issues. Implementation of interval arithmetic is more involved than it looks at
first sight. Consider, for example, the realization of (3.5). The computing intensive part in interval arithmetic
is the multiplication T = R · [ A ], a real matrix times an interval matrix. A top-down implementation would
be
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T = zeros(n);

for i=1:n

for j=1:n

for k=1:n

T(i,j) = T(i,j) + R(i,k)*A(k,j);

end

end

end

However, the most inner loop contains an interval multiplication and an interval addition. This has terrible
consequences for the performance. First, the multiplication and addition each require two switches of the
rounding mode, totally 4n3. Second, the compiler looses every possibility to optimize the inner loop, where
this is exactly the strength of a floating point inner product. The latter would in fact use a multiply-and-add
instruction, what is of course impossible in the above approach.

A much better way is the following. First, rewrite the interval matrix [A ] in midpoint-radius form, then
multiply using BLAS routines. Suppose, A.inf and A.sup represent the matrices of lower and upper bounds
of [ A ], respectively. Then an algorithm looks as follows.

SetRoundUp

Amid = A.inf + 0.5*(A.sup-A.inf);

Arad = Amid - A.inf;

Trad = abs(R)*Arad;

Tsup = R*Amid + Trad;

SetRoundDown

Tinf = R*Amid - Trad;

SetRoundNear

Algorithm 6.1. Real matrix times interval matrix

The algorithm uses totally three matrix multiplications. However, these are calls to BLAS routines and are
very fast on a variety of machines. Apparently this seems to be the fastest way to perform interval matrix
multiplication. Note that the compiled Tinf, Tsup satisfy for all A ∈ [ A ]

Tinf ≤ R ∗A ≤ Tsup .

For the other operations similar considerations apply. Those operations are collected in a Matlab toolbox
called INTLAB [21]. The main advantage of INTLAB is that it is entirely written in Matlab code, with the
exception of exactly the 3 routines for switching the rounding mode. The above examples are calculated in
INTLAB.

An example of INTLAB code is the following algorithm for solving dense systems of equation according to
Theorem 3.2. The following is original INTLAB code.

function X = denselss(A,b) % linear system solver

R = inv( mid(A) ) ; % for dense matrices

xs = R * mid(b) ;

Z = R * (b-intval(A)*xs) ;

C = speye(size(A)) - R*intval(A);

Y = Z;

E = 0.1*rad(Y)*hull(-1,1) + midrad(0,10*realmin);

k = 0; kmax = 15; ready = 0;

while ~ready & k<kmax

k = k+1;

X = Y + E;
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Y = Z + C * X;

ready = in0(Y,X);

end

if ready

X = xs + Y;

else

disp(’no inclusion achieved for \’);

X = NaN;

end

Algorithm 6.2. Solution of dense linear systems

A timing in seconds on a 120 Mhz Pentium I Laptop for Algorithm 6.2 is as follows.

pure verified verified

dimension floating point point interval

----------------------------------------------------------------

100 0.09 0.53 0.70

200 0.56 3.35 4.23

500 8.2 50.9 67.6

Table 6.3. Solution of real linear systems

Looking into the code of Algorithms 6.1 and 6.2 reveals that the total number of operations for Algorithm
6.2 for interval linear systems is 4n3, n3 for the matrix inversion and 3n3 for the point matrix times interval
matrix multiplication R ·A. Gaussian elimination needs n3/3 operations, but the measured computing times
show only a factor of 7 to 8 instead of 12. The reason is that matrix multiplication does not take 3 times as
long as Gaussian elimination. Consider

n=200; A=2*rand(n)-1; b=A*ones(n,1); k=10;

tic; for i=1:k, inv(A); end, toc/k

tic; for i=1:k, A*A; end, toc/k

tic; for i=1:k, A\b; end, toc/k

producing

1.24 seconds for matrix inversion,
0.78 seconds for matrix multiplication, and
0.56 seconds for Gaussian elimination.

Finally, we display the code for the solution of a system of nonlinear equations according to Theorem 5.1.

function [ X , xs ] = verifynlss(f,xs)

%VERIFYNLSS Verified solution of nonlinear system

%

% [ X , xs ] = verifynlss(f,xs)

%

% f is name of function, to be called by f(x), xs is an approximation

% optional output xs improved approximation

%

% floating point Newton iteration

n = length(xs);

xsold = 2*xs;

k = 0;
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while ( norm(xs-xsold)>1e-10*norm(xs) & k<10 ) | k<1

k = k+1; % at most 10, at least 1 iteration performed

xsold = xs;

x = initvar(xs);

y = feval(f,x);

xs = xs - y.dx\y.x;

end

% interval iteration

R = inv(y.dx);

Z = - R * feval(f,intval(xs));

X = Z;

E = 0.1*rad(X)*hull(-1,1) + midrad(0,realmin);

ready = 0; k = 0;

while ~ready & k<10

k = k+1;

Y = hull( X + E , 0 ); % epsilon inflation

Yold = Y;

x = initvar(xs+Y);

y = feval(f,x); % f(x) and Jacobian by

C = eye(n) - R * y.dx; % automatic differentiation

i=0;

while ~ready & i<2 % improved interval iteration

i = i+1;

X = Z + C * Y;

ready = in0(X,Y);

Y = intersect(X,Yold);

end

end

if ready

X = xs+Y; % verified inclusion

else

X = NaN; % inclusion failed

end

Algorithm 6.4. Verified solution of nonlinear systems

Again this is original INTLAB code. We want to stress that the function f need not to be changed to cover
floating point arguments or interval arguments. The operator overloading generates automatically correct
operations and code.

As an example consider a problem given by Abbott and Brent in [1], the discretization of

3 y" y + y’^2 = 0 with y(0)=0; y(1)=20;

We solve the discretized system, not the continuous equation. In the paper, the initial (poor) approximation
is a vector all entries of which are equal to 10, the true solution is 20*x^.75. The discretized problem is
specified by the following INTLAB function.

function y = f(x)

y = x;

n = length(x); v=2:n-1;

y(1) = 3*x(1)*(x(2)-2*x(1)) + x(2)*x(2)/4;
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y(v) = 3*x(v).*(x(v+1)-2*x(v)+x(v-1)) + (x(v+1)-x(v-1)).^2/4;

y(n) = 3*x(n).*(20-2*x(n)+x(n-1)) + (20-x(n-1)).^2/4;

Note the vectorized formulation of the function. The timing on the 120 Mhz Pentium I Laptop by the
following statement

tic; X = verifynlss(’f’,10*ones(n,1)); toc

is

5.4 seconds for dimension n=50,
8.5 seconds for dimension n=100, and

20.3 seconds for dimension n=200.

The first and last components of the inclusion are

X(1:4)

intval ans =

0.346256418326_

0.6045521734322

0.8305219234696

1.0376691412984

X(197:200)

intval ans =

19.7005694833674

19.775568557350_

19.8504729393822

19.9252832242374

An "_" in the output means that subtracting 1 from and adding 1 to the last displayed figure before the
underscore produces a correct interval for the result. An output without underscore is correct up the the
last digit. The output is also written in Matlab and is rigorous and correct.

7. Conclusion. Self-validating methods are designed to produce rigorous error bounds for the solution
of numerical problems. We want to stress again that those methods are not thought to replace existing
numerical methods whatsoever. Traditional numerical methods usually produce correct results within a
certain error margin. There are situations where numerical methods produce poor or sometimes erreneous
results. However, those situations are rare. To cite Vel Kahan: ”Numerical errors are rare, rare enough not
to care about them all the time, but yet not rare enough to ignore them.”

Self-validating methods should be used when another degree of safety is necessary and/or if there is doubt
about reliability of some approximation. The scope of applicability of self-validating methods is still limited,
although always increasing. The very large problems treated today in numerical analysis are clearly out
of the scope of current self-validating algorithms. However, there is the possibility of treating data with
uncertainties which may also be advantageous beside the correctness of all results.
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