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COMPUTATIONAL ERROR BOUNDS FOR MULTIPLE OR
NEARLY MULTIPLE EIGENVALUES

SIEGFRIED M. RUMP∗

Abstract. In this paper bounds for clusters of eigenvalues of non-selfadjoint matrices are investigated. We describe

a method for the computation of rigorous error bounds for multiple or nearly multiple eigenvalues, and for a basis of the

corresponding invariant subspaces. The input matrix may be real or complex, dense or sparse. The method is based on a

quadratically convergent Newton-like method; it includes the case of defective eigenvalues, uncertain input matrices and the

generalized eigenvalue problem. Computational results show that verified bounds are still computed even if other eigenvalues

or clusters are nearby the eigenvalues under consideration.
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1. Notation. Let K ∈ {R,C}. Throughout the paper we denote by A ∈ Mn(K) an n × n matrix, by
X̃ ∈ Mn,k(K) an n × k approximation to a k-dimensional invariant subspace corresponding to a multiple
or a cluster of eigenvalues near some λ̃ ∈ K, such that AX̃ ≈ λ̃X̃. The purpose of the paper is to derive
bounds for k eigenvalues and a k-dimensional invariant subspace of A based on the approximations λ̃ and
X̃. We stress that neither a priori assumptions on the quality of the approximations X̃ and λ̃ are made, nor
the matrix A is assumed to be symmetric or Hermitian. The computed bounds are always rigorous. If the
approximations are too poor and/or a cluster of k eigenvalues near λ̃ is not well enough separated from the
rest of the spectrum, it may happen that no error bounds can be calculated and a corresponding message is
given - rather than computing erroneous results.

The computed error bounds are rigorous including all possible computational errors. Note that the letter n

is reserved for the dimension of the matrix, and the letter k is reserved for the dimension of the invariant
subspace. Also note that the size k of the cluster has to be specified (see also Section 6).

The degree of arbitrariness is removed by freezing k rows of the approximation X̃. If the set of these rows is
denoted by v, and by definition u := {1, . . . , n}\v, then throughout the paper we denote by U ∈ Mn,n−k(R)
the submatrix of the identity matrix with columns in u. Correspondingly, we define V ∈ Mn,k(R) to
comprise of the columns in v out of the identity matrix. Denoting the n × n identity matrix by In, it is
UUT +V V T = In, and V T X̃ ∈ Mk(IK) is the normalizing part of X̃. Note that UT U = In−k and V T V = Ik.
For example, for u = {1, . . . , n− k}, v = {n− k + 1, . . . , n} the situation is as follows.

1
. . .

1

U

V

1
. . .

1

In

∗ Inst. f. Informatik III, Technical University Hamburg-Harburg, Schwarzenbergstr. 95, 21071 Hamburg, Germany

(rump@tu-harburg.de).

1



We will use n×k interval matrices X ∈ IMn,k(K). Interval quantities are always denoted in bold face. Interval
quantities may be represented by infimum and supremum or by midpoint and radius. The fundamental
assumption on the interval operations we are using is inclusion isotonicity, that is

∀F ∈ F ∀G ∈ G : F ◦G ∈ F ◦G(1)

for all suitable interval quantities F,G and suitable operations ◦ ∈ {+,−, ·}. For an introduction to interval
arithmetic see, for example, [3], [16]; cf. also the first paper ”Self-validating methods” in this special issue.
There are a number of interval packages, among them [1, 5, 8, 9, 10, 11]. An interval package accessible
from Matlab is described in [19]. For a fast implementation, which is used in [19], of interval arithmetic for
general purpose computers as well as for parallel computers, see [19].

2. A Newton-like iteration. Methods for computing rigorous error bounds are frequently based on
some fixed point iteration. A reformulation being suitable for computation with sets (intervals) and for
application of Brouwer’s fixed point theorem leads to rigorous error bounds.

A number of papers deal with Newton-like improvements of a simple eigenvalue and corresponding eigenvec-
tor, among them [22, 21]. In [7], Dongarra, Moler and Wilkinson extend the methods to multiple eigenvalues.
In the following we present a variant for clusters of eigenvalues and corresponding eigenvectors. It is a nu-
merical method for improving given approximations X̃ and λ̃. However, it will turn out to be a suitable
basis for a self-validating method to be presented in Section 3.

For given X̃ ∈ Mn,k(IK), λ̃ ∈ IK, suppose

AY = Y M for Y ∈ Mn,k(K), M ∈ Mk(K),(2)

such that Y and X̃ coincide in the normalizing part of X̃ : V T Y = V T X̃. We collect the unknown quantities
UT Y and M into X̂ ∈ Mn,k(K). In other words, we anticipate computation of X̂ with UT X̂ = UT Y and
V T X̂ = M . Note that we do not assume M to be diagonal. For u = {1, . . . , n− k}, v = {n− k + 1, . . . , n}
the situation is as follows
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This implies the eigenequation

A(UUT X̂ + V V T X̃) = (UUT X̂ + V V T X̃)V T X̂,(3)

such that, according to (2), Y = UUT X̂ + V V T X̃ and M = V T X̂. Consider the following iteration scheme
(tr denotes the trace).

Algorithm 2.1. Newton-like iteration for eigenvalue clusters

X0 := UUT X̃ + λ̃V

for ν = 0, 1, . . .

λν := tr(V T Xν)/k

Cν := (A− λνIn)UUT − (UUT Xν + V V T X̃)V T

Xν+1 := UUT Xν + λνV − C−1
ν · (A− λνIn)(UUT Xν + V V T X̃)
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The iteration will be shown to converge to X̂ under certain conditions. The common ”approximation” λν

to the cluster is adjusted in every iteration to be the mean value of the eigenvalues of V T Xν .

The computation of error bounds for clustered eigenvalues, the goal of this paper, will be based on this iter-
ation. In the following we prove quadratic convergence for non-defective multiple eigenvalues, and geometric
convergence for clusters or defective multiple eigenvalues.

Using (3), UT V = V T U = 0 and V T V = Ik, we will show

Cν(Xν+1 − X̂) = UUT (Xν − X̂)(V T X̂ − λνIk).(4)

Indeed it is

Cν (Xν+1 − X̂) = Cν(Xν+1 − UUT Xν − λνV ) + Cν(UUT Xν + λνV − X̂)
= −(A− λνIn)(UUT Xν + V V T X̃) + (A− λνIn)UUT (Xν − X̂)

−(UUT Xν + V V T X̃)V T (λνV − X̂)
= −(A− λνIn)(UUT X̂ + V V T X̃) + (UUT Xν + V V T X̃)(V T X̂ − λνIk)
= −(UUT X̂ + V V T X̃)(V T X̂ − λνIk) + (UUT Xν + V V T X̃)(V T X̂ − λνIk)
= UUT (Xν − X̂)(V T X̂ − λνIk).

(5)

Using the column sum norm ‖ · ‖1, denote

αν := ‖Xν − X̂‖1
λ̂ := tr(V T X̂)/k

Ĉ := (A− λ̂I)UUT − (UUT X̂ + V V T X̃)V T and
Eν := Cν − Ĉ = (λ̂− λν)UUT + UUT (X̂ −Xν)V T .

Then the following theorem shows geometric convergence in the general case.

Theorem 2.2. With the above notations assume Ĉ to be nonsingular, and for ‖ · ‖ = ‖ · ‖1 assume

q := 2‖Ĉ−1‖ (‖V T X̂ − λ̂I‖+ ‖X0 − X̂‖) < 1.

Then every Cν is invertible, and the iteration defined by Algorithm 2.1 converges geometrically to X̂ with

‖Xν − X̂‖ ≤ qν · ‖X0 − X̂‖.

Proof. It is |λ̂− λν | ≤ max |(V T X̂)ii − (V T Xν)ii| ≤ ‖V T (X̂ −Xν)‖ ≤ αν and ‖Eν‖1 ≤ max(|λ̂− λν |, ‖X̂ −
Xν‖) ≤ ‖X̂ −Xν‖ = αν . We proceed by induction using ‖X0 − X̂‖ = α0, and assume ‖Xν − X̂‖ ≤ qν · α0

for some ν ∈ IN. Using Cν = Ĉ(I + Ĉ−1Eν) and ‖Ĉ−1Eν‖ ≤ αν‖Ĉ−1‖ ≤ α0‖Ĉ−1‖ < 1/2 < 1 implies Cν to
be invertible. By (4),

αν+1 = ‖Xν+1 − X̂‖ ≤ ‖C−1
ν ‖ · ‖UUT (Xν − X̂)(V T X̂ − λνI)‖.

Furthermore, ‖V T X̂ − λνI‖ ≤ ‖V T X̂ − λ̂I‖+ αν and ‖C−1
ν ‖ ≤ ‖Ĉ−1‖(1−‖Ĉ−1Eν‖)−1 ≤ 2‖Ĉ−1‖. Putting

things together and using αν ≤ α0 implies

αν+1 = ‖Xν+1 − X̂‖ ≤ 2 · ‖Ĉ−1‖ · αν · (‖V T X̂ − λ̂I‖+ αν) ≤ q · aν < αν .(6)

The quality of q as defined in Theorem 2.2 decreases with the size of ‖V T X̂ − λ̂I‖. For a cluster of simple
and for multiple but non-defective eigenvalues, q is small. For defective eigenvalues, however, q < 1 is hardly
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satisfied. Nevertheless, practical experience shows that Algorithm 2.1 converges well for reasonably separated
and not too defective eigenvalues. This can be theoretically justified. However, we refrain to reformulate
Theorem 2.2 because the necessary conditions are a bit involved. For one multiple non-defective eigenvalue
we obtain quadratic convergence.

Corollary 2.3. With the above notations assume Ĉ to be nonsingular, and assume V T X̂ to be diagonal
with k-fold eigenvalue λ̂, i.e. V T X̂ = λ̂I. If

2‖Ĉ−1‖ · ‖X0 − X̂‖ < 1,

then every Cν is invertible, and the iteration defined by Algorithm 2.1 converges quadratically to X̂ with

‖Xν+1 − X̂‖ ≤ 2‖Ĉ−1‖ · ‖Xν − X̂‖2.

Proof. Proceeding like in the proof of Theorem 2.2 and inserting ‖V T X̂ − λ̂I‖ = 0 into (6) yields the
result.

As a difference to iterations presented in [7] we note the following. Over there the next iterate is computed
as the solution of a linear system, whereas in Algorithm 2.1 the solution of a linear system with system
matrix Cν is the correction to the previous iterate. This may be of computational advantage.

3. Error bounds for eigenvalue clusters. There are a number of papers considering the problem
of computing rigorous error bounds for a simple eigenvalue and corresponding eigenvector, among them
[12, 22, 17, 14]. To the author’s knowledge there is only one paper for computing error bounds for double
eigenvalues [4], and no method for rigorous error bounds of multiple eigenvalues of general matrices.

To develop such a method we need the following lemma for intervals, which was given in a more general
form in [17]. For completeness, we give a simple proof which is due to Alefeld [2] (int denotes the interior of
a set, ρ the spectral radius).

Lemma 3.1. Let Z,X ∈ IKn and C ∈ IMn(K) be given. Suppose (using interval operations)

Z + C ·X ⊆ int(X).(7)

Then every C ∈ C is convergent, i.e. ρ(C) < 1.

Proof. For every fixed Z ∈ Z, C ∈ C, the inclusion isotonicity (1) implies Z + C · X ⊆ int(X). For
the midpoint vector mX and radius vector rX of X, it is X = [mX − rX, mX + rX] = {x ∈ IRn :
mX − rX ≤ x ≤ mX + rX} with entrywise comparisons. Therefore, using entrywise absolute values,
it is C · X = C · mX + [−|C| · rX, |C| · rX]. Hence, (7) implies mX − rX < Z + C · mX − |C| · rX ≤
Z+C·mX+|C|·rX < mX+rX, and therefore |C|·rX < rX. By Perron-Frobenius theory, ρ(C) ≤ ρ(|C|) < 1.

With these preliminaries we can prove the following theorem.

Theorem 3.2. Let A ∈ Mn(K), X̃ ∈ Mn,k(K), λ̃ ∈ K, R ∈ Mn(K) and X ∈ IMn,k(K) be given, and let U, V

partition the identity matrix as defined in Section 1. Define

f(X) := −R(AX̃ − λ̃X̃) + {I −R
(
(A− λ̃I)UUT − (X̃ + UUT ·X)V T

)} ·X.(8)

Suppose

f(X) ⊆ int(X).(9)

Then there exists M̂ ∈ Mk(K) with M̂ ∈ λ̃Ik + V T X such that the Jordan canonical form of M̂ is identical
to a k × k principal submatrix of the Jordan canonical form of A, and there exists Ŷ ∈ Mn,k(K) with
Ŷ ∈ X̃ + UUT X such that Ŷ spans the corresponding invariant subspace of A. It is AŶ = Ŷ M̂.
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Proof. The continuous mapping f : Kn → Kn defined by (8) maps by (9) the nonempty, convex and compact
set X into itself. Therefore, Brouwer’s fixed point theorem implies existence of a fixed point X̂ ∈ Kn with
f(X̂) = X̂ and X̂ ∈ X. Inserting in (8) yields

−R{(AX̃ − λ̃X̃) + (A− λ̃I)UUT X̂ − (X̃ + UUT X̂)V T X̂} = 0.(10)

Furthermore, (8),(9) and Lemma 3.1 imply I − R · () to be convergent and henceforth R and every matrix
within B := (A− λ̃I)UUT − (X̃ +UUT ·X)V T ∈ IIMn(IK) to be nonsingular. Collecting terms in (10) yields

i.e.
A(X̃ + UUT X̂) = (X̃ + UUT X̂)(λ̃Ik + V T X̂),

AỸ = Ŷ M̂ for Ŷ := X̃ + UUT X̂ and M̂ := λ̃Ik + V T X̂.

Finally, (A− λ̃I)UUT − (X̃ + UUT X̂)V T ∈ B is nonsingular and has k columns equal to −Ŷ . Therefore, Ŷ

is a basis for an invariant subspace of A. For M̂ = ZJZ−1 denoting the Jordan canonical form, AŶ = Ŷ M̂

implies A(Ŷ Z) = (Ŷ Z)J . The theorem is proved.

For a practical implementation we have to specify the quantities in use. Note that there are no a priori
assumptions on X̃, λ̃, R; the only assumption is the inclusion property (9). Especially, there are no a priori
requirements on the quality of the approximations X̃ and λ̃.

For AX̃ ≈ λ̃X̃, the matrix R serves as a preconditioner with (8) giving the obvious choice

R ≈ (
(A− λ̃I)UUT − X̃V T

)−1
.

Note that Theorem 3.2 computes an inclusion X for the error with respect to λ̃ and X̃. This is computation-
ally most advantageous [18] in terms of the quality of the error bounds. A choice for X is a small superset
of the correction term −R(AX̃ − λ̃X̃).

To arrive at a computational procedure we define an interval iteration for X in order to construct an inclusion
X. In principle, the interval iteration could be Xν+1 := f(Xν). However, we have to make sure that inclusion
in the interior of Xν as in (9) is possible. That needs a certain width of Xν , and a good way to take care
of that is a so-called epsilon inflation, [6, 17, 18, 15]. There is a precise theoretical justification for the
epsilon-inflation [18].

Moreover, we need to specify the size k of the cluster. If approximations to all eigenvalues are available, one
may guess k from their distances. The choice of k may be critical. For example, the proof of Theorem 3.2
implies that an inclusion is not possible if k is smaller than the actual multiplicity of the eigenvalue to be
included.

Finally, we need an inclusion of the eigenvalue cluster, that is an inclusion of the eigenvalues of M̂ . Since
M̂ ∈ λ̃Ik + V T X, this could easily be achieved by the union of Gerschgorin circles of λ̃Ik + V T X. However,
for defective eigenvalues this would yield quite pessimistic bounds.

Instead we proceed as follows. For an interval matrix C ∈ IIM(K), denote by |C| ∈ M(IR) the matrix of the
entrywise maximum modulus of C. Therefore, |Cij | ≤ (|C|)ij for every C ∈ C. Then

for r := ρ(|V T X|) there are k eigenvalues of A in Ur(λ̃) := {z ∈ C : |z − λ̃| ≤ r},(11)

where ρ denotes the spectral radius, in this case the Perron root of |V T X| ∈ Mk(IR). By principle, the
inclusion is complex; we comment on this later. To see (11), observe that M̂ = λ̃Ik +M̃ for some M̃ ∈ V T X,
that the eigenvalues of M̂ are the eigenvalues of M̃ shifted by λ̃, and for any eigenvalue of µ of M̃ it follows
by Perron-Frobenius Theory |µ| ≤ ρ(M̃) ≤ ρ(|M̃ |) ≤ ρ(|V T X|) = r.

The Perron root of a nonnegative matrix C := |V T X| ∈ M(IR) is estimated for every nontrivial nonnegative
vector x by

ρ(C) ≤ ϕ(x) with ϕ(x) = max
xi 6=0

(Cx)i/xi.
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Whatever numerical method is at hand for calculating an approximation of the Perron vector y of C, ϕ(y)
is an upper bound for ρ(C). Usually, a few power iterations do a good job.

The advantage of using (11) occurs especially for defective eigenvalues. The matrix V T X basically contains
error terms except large off-diagonal quantities characterizing the Jordan blocks. If the error terms are of size
ε and off-diagonal elements of size 1, the spectral radius of |V T X| is of size ε1/m where m is the size of the
largest Jordan block. Therefore, the inclusion is of size ε1/m, and this corresponds exactly to the sensitivity
of defective eigenvalues [20]. In turn, this implies that if the distance of an m-fold defective eigenvalue to
the rest of the spectrum is of the order ε1/m, then ”numerically” the cluster comprises of at least m + 1
eigenvalues and, for k = m, no inclusion is possible. This is confirmed by the numerical examples in Section
6. The above considerations define the following algorithm (where I = In).

Algorithm 3.3. Verified error bounds for eigenvalue clusters

R = inv
(
(A− λ̃I)UUT − X̃V T

)
;

Z = −R · (A− λ̃I)X̃;
C = I −R

(
(A− λ̃I)UUT − X̃V T

)
;

X = Z; α = 0; αmax = 10;
repeat

α = α + 1;
Y = X + 0.1 · [−|Z| − η, |Z|+ η];
X = Z + CY + R(UUT YV T Y);
ready =

(
X ⊆ int(Y)

)
;

until ready or (α = αmax);
if ready

compute r ≥ ρ(|V T X|);
L = {z ∈ C : |z − λ̃| ≤ r}

All quantities in bold face are interval quantities, and the computations yielding an interval quantity as a
result are supposed to use interval operations. The quantity η in the epsilon-inflation denotes the smallest
representable positive floating point number (∼ 10−308 in double precision). This is to ensure that the
inflation always increases the width [17, 18].

We note that in Algorithm 3.3 we use λ̃Ik + V T f(X) as the inclusion of M̂ , which is not covered by
Theorem 3.2. However, the fixed point property shows that defining X0 := X and Xν+1 := f(Xν), it is
M̂ ∈ λ̃Ik + V T Xν for all ν. By purpose, we refrained from noting this in Theorem 3.2 because the reader
might use this to improve the inclusion. In general, one better improves the initial approximation by few
floating point iterations before starting the verification process. This takes less computing time, and since
by principle an interval iterate must contain a corresponding floating point iterate, it is also superior.

Note that the final inclusion L for k eigenvalues of A is always complex. This needs to be the case for the
following reason. Suppose A has a k-fold real eigenvalue, k even, and Algorithm 3.3 computes an inclusion
L. Then for small perturbations of A the algorithm will still end successfully, but eigenvalues may have
moved into the complex plane. In other words, the question whether there exists a real multiple eigenvalue
(of even multiplicity) is an ill-posed problem.

The same consideration applies to the inclusion of the invariant subspace. For non-defective eigenvalues the
k × k matrix λ̃Ik + V T X will essentially be diagonal (see Corollary 2.3). But it cannot be proved to be
exactly diagonal because the problem whether eigenvalues are defective is again ill-posed.

The choice of the normalizing indices (which define U and V , see Section 1) is still free. A simple choice,
which is used in our implementation, is to take the k rows of X̃ with largest spectral norm. An optimal
choice, for example minimizing the width of the inclusion or minimizing ρ(|C|), is not known.
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Finally, we mention that if the entries of A are not exactly representable on the computer, A may be replaced
by some A with A ∈ A and obvious changes in Algorithm 3.3. If an inclusion is computed, then using the
main principle of inclusion isotonicity (1), assumption (9) in Theorem 3.2 is satisfied for every Ã ∈ A,
especially for the anticipated matrix A.

Given approximations X̃ and λ̃, the computing time of Algorithm 3.3 is governed by the computation of
R and C. The interval matrix C can be computed using R · (AUUT − X̃V T ) + λ̃ · RUUT , where the two
products can be computed by ordinary floating point matrix multiplication in rounding downwards and
rounding upwards, respectively. All other operations are O(n2) provided k ¿ n. Thus, the total computing
time is 3n3 + O(n2).

In Section 6 numerical examples will show the robustness of the algorithm, especially with respect to nearby
clusters.

4. Generalized eigenvalue problems. Let B ∈ Mn(K) be given with AX̃ ≈ λ̃BX̃ for an eigenvalue
cluster near λ̃. Then the following modification of Theorem 3.2 yields verified bounds for the generalized
eigenvalue problem.

Theorem 4.1. Let A,B ∈ Mn(K), X̃ ∈ Mn,k(K), λ̃ ∈ K, R ∈ Mn(K) and X ∈ IMn,k(K) be given, and let
U, V partition the identity matrix as defined in Section 1. Define

f(X) = −R(AX̃ − λ̃BX̃) + {I −R · ((A− λ̃B)UUT −B(X̃ + UUT X)V T
)} ·X.

Suppose

f(X) ⊆ int(X).

Then there exist M̂ ∈ Mk(K), Ŷ ∈ Mn,k(K) with M̂ ∈ λ̃Ik + V T X and Ŷ ∈ X̃ + UUT X such that

AŶ = BŶ M̂.

The proof follows the lines of the proof of Theorem 3.2 and is omitted.

The adaptation of Algorithm 3.3 is straightforward using

R ≈ (
(A− λ̃B)UUT −BX̃V T

)−1

as a preconditioner.

5. Sparse matrices. The previous discussion does not apply to sparse matrices because the precondi-
tioner R, as an approximate inverse, will, in general, be full. Therefore, we seek for an ”inverse-free” variant
of Theorems 3.2 and 4.1.

Consider (8) and define

G := (A− λ̃I)UUT − X̃V T .

An approximate inverse of G served as preconditioning matrix R. For the moment, suppose G is invertible
and set R := G−1. Then

I −R
(
(A− λ̃I)UUT − (X̃ + UUT X)V T

)
= I −RG + R · UUT XV T = R · UUT XV T ,

and inserting into (8) we may replace f by

f∗(X) = R(−AX̃ + λ̃X̃ + UUT XV T X).
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Hence, condition (9) for f∗, i.e. f∗(X) ⊆ int(X), is satisfied if G is invertible and the solution of every linear
system Gy = b, b ∈ −AX̃ + λ̃X̃ + UUT XV T X is included in the interior of X. By replacing f by f∗ in the
proof of Theorem 3.2, this proves the following result.

Theorem 5.1. With the notation of Theorem 3.2 and G := (A− λ̃I)UUT − X̃V T define

Y := {y : ∃b ∈ −AX̃ + λ̃X̃ + UUT XV T X and Gy = b}.

If G is nonsingular and

Y ⊆ int(X),(12)

then all assertions of Theorem 3.2 remain true.

This reduces the problem to the solution of a linear system with interval right hand side, and any algorithm
solving this problem for sparse matrices is suitable for computing verified bounds for eigenvalue clusters
for sparse matrices. Efficient methods based on a rigorous lower bound for the smallest singular value of
the system matrix have been presented in [18]. Those algorithms include the proof of nonsingularity of the
system matrix.

6. Computational results. For judging computational robustness of Algorithm 3.3 we are interested
in the quality of the results with respect to

1. the dimension of the matrix,
2. the dimension of the invariant subspace,
3. the size of the cluster,
4. the distance to the next eigenvalue or cluster,
5. defective eigenvalues, and
6. many clusters.

Those questions will be addressed in the following. All results are shown for real matrices; the results for
complex matrices are completely similar. All computations have been performed using INTLAB [19] in double
precision (∼16 decimals), an interval package for use under Matlab V5 [13]. The INTLAB implementation
of Algorithm 3.3 is available at our homepage www.ti3.tu-harburg.de/rump/intlab/.

The test matrices are generated by A = XLX−1 (multiplication and inversion in floating point), where the
anticipated eigenvalues are stored in the diagonal matrix L, and X is a random matrix with entries uniformly
distributed within [−1, 1]. All matrices A are then scaled to have norm 1. For this floating point matrix,
approximate eigenvalues and eigenvectors are computed by the Matlab routine eig through [V,D]=eig(A).
These approximations are used as input to our verification routine. The accuracy of these approximations
corresponds to the sensitivity of the problem. Especially for defective eigenvalues the accuracy may be very
poor.

The size k of the generated cluster is an implicit input through the number of columns of the approximation
X̃ to an invariant subspace. In a practical computation, k has to be determined by some heuristic. For the
following computations, we took λ̃ to be the center of the k nearest approximations in D to the anticipated
cluster. In our test, a straightforward heuristic specifying some minimum distance to other approximate
eigenvalues would for all successfully computed inclusions yield the same result k.

The following is displayed. For the test matrices, 100 samples each, inclusions L of the eigenvalues and
inclusions (UT X)ij for the corresponding invariant subspaces are computed. Note that we cannot expect
better accuracy than ε · ‖A‖ = ε, for ε denoting the relative rounding error unit. Therefore, for rad denoting
the radius of an interval, we display the average and maximum of rad (L) and rad((UT X)ij), respectively,
average and maximum taken over all 100 samples and all entries. The last column displays the number of
samples (out of 100) where Algorithm 3.3 failed.
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Before we address the above questions, we start with the well-known Wilkinson test matrix of dimension 21.
Note that the matrix is symmetric and could be treated by other techniques as well. However, it seems to
be a must for eigenvalue computations. Eigenvalues λ come in pairs with increasing distance. We treat 9
pairs from {0.98±3 ·10−15} to {0.19, 0.16}. The remaining three eigenvalues 0.09, 0.02 and -0.10 can hardly
be considered as ”cluster” (note that the Wilkinson matrix A has been normed to ‖A‖1 = 1). Inclusions for
all pairs are calculated with the following results.

λ rad L avge rad(UT X)ij max rad(UT X)ij failed
0.98 ± 3.2e-15 3.2e-15 1.7e-18 1.0e-17 -
0.84 ± 2.6e-12 2.6e-12 2.8e-18 1.0e-17 -
0.73 ± 3.2e-10 3.2e-10 3.7e-18 1.0e-17 -
0.64 ± 1.9e-08 1.9e-08 3.3e-18 1.0e-17 -
0.55 ± 7.5e-07 7.5e-07 3.5e-18 1.0e-17 -
0.45 ± 2.1e-05 2.1e-05 3.6e-18 1.0e-17 -
0.36 ± 3.8e-04 3.8e-04 4.0e-18 1.2e-17 -
0.27 ± 3.7e-03 3.7e-03 5.1e-18 1.5e-17 -
0.18 ± 1.5e-02 1.5e-02 7.0e-18 2.2e-17 -

Table 6.1. Wilkinson 21 matrix, inclusion of eigenvalue pairs (matrix normed to 1)

Although the larger eigenvalues are very close and the smaller eigenvalues are separated up to ±10%, all
error bounds were computed successfully (Table 6.1). In this example we have only one test matrix, therefore
the distinction between avge rad L and max rad L does not apply.

The 21 eigenvalues can also be treated as simple eigenvalues (which means k = 1 in Algorithm 3.3). This
is apparently difficult for the largest eigenvalues which are clustered to a relative distance of 3 · 10−15. The
results are shown in Table 6.2.

λ rad L avge rad(UT X)j max rad(UT X)j failed
0.97692674390031 1.6e-16 1.7e-05 1.6e-04 -
0.97692674390030 1.6e-16 1.6e-05 1.6e-04 -
0.83733442248739 1.6e-16 3.1e-08 1.9e-07 -
0.83733442248227 1.6e-16 2.8e-08 1.8e-07 -
0.73081282934809 1.6e-16 2.2e-10 1.2e-09 -
0.73081282871039 1.6e-16 2.2e-10 1.2e-09 -
0.63672292813897 8.0e-17 3.9e-12 2.0e-11 -
0.63672289078331 8.0e-17 4.2e-12 2.1e-11 -
0.54547582105311 8.0e-17 9.7e-14 4.9e-13 -
0.54547432020519 8.0e-17 9.1e-14 4.5e-13 -
0.45456767500017 8.0e-17 3.2e-15 1.6e-14 -
0.45452567979481 8.0e-17 3.4e-15 1.7e-14 -
0.36403218394917 8.0e-17 2.2e-16 1.1e-15 -
0.36327710921669 4.0e-17 2.2e-16 1.0e-15 -
0.27664539023444 4.0e-17 2.3e-17 1.0e-16 -
0.26918717128961 4.0e-17 2.3e-17 1.0e-16 -
0.19365538357841 4.0e-17 7.4e-18 2.5e-17 -
0.16266557751773 4.0e-17 8.3e-18 3.5e-17 -
0.08613948795721 2.0e-17 3.9e-18 1.5e-17 -
0.02307325609970 1.5e-17 3.6e-18 2.0e-17 -

-0.10231286564727 4.0e-17 3.6e-18 2.0e-17 -

Table 6.2. Wilkinson 21 matrix, inclusion of simple eigenvalues (matrix normed to 1)
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n avge rad L avge rad(UT X)ij max rad L max rad(UT X)ij failed
50 6.3e-14 7.5e-15 1.6e-12 1.5e-12 -

100 4.2e-14 7.4e-15 4.1e-13 1.1e-12 -
200 8.9e-14 2.3e-14 2.0e-12 3.1e-12 -
500 1.7e-13 7.3e-14 3.6e-12 1.1e-11 -

Table 6.3. Different matrix dimensions, k = 10

k avge rad L avge rad (UT X)ij max rad L max rad(UT X)ij failed
1 5.4e-15 9.9e-16 2.2e-13 1.0e-13 -
2 8.3e-15 1.3e-14 1.5e-13 1.9e-12 -
5 1.5e-09 8.0e-15 1.5e-07 1.0e-12 -

10 4.8e-14 2.2e-14 3.7e-13 7.6e-12 -
20 1.7e-13 1.9e-14 7.3e-12 4.0e-12 -
50 3.3e-13 7.0e-15 7.9e-12 2.2e-12 -

Table 6.4. Different dimensions of invariant subspace, n = 100

For all eigenvalues including the largest ones, rigorous error bounds are successfully computed. Note that
for the largest eigenvalues the invariant subspace becomes ill-conditioned; this can be read off the poorer
inclusion.

To the first question. Matrices of different dimensions (100 samples each) were generated with k-fold eigen-
value 2 for k = 10, and all other n− k eigenvalues well separated in the unit circle.

Table 6.3 seems to show a weak dependency on the dimension of the matrices, possibly due to overestimations
by interval computations.

The Table 6.4 displays sensitivity to different dimensions of the invariant subspace. All matrices are of
dimension 100 with a k-fold eigenvalue 2 and n− k eigenvalues in the unit circle. Again, 100 samples each
are treated.

Not much dependency of the quality of the results on the dimension of the invariant subspace is visible.
There seems to be one exceptional sample for k = 5.

For the Table 6.5 we choose n = 100 and k = 5 with k eigenvalues uniformly and randomly distributed in
[2− e, 2 + e], and n− k eigenvalues in the unit circle. The uniform approximation to the eigenvalue cluster
is λ̃ = 2.

e avge rad L avge rad (UT X)ij max rad L max rad(UT X)ij failed
0 7.7e-14 1.9e-14 5.0e-12 2.5e-12 -

1e-13 2.7e-13 5.0e-15 1.0e-12 3.9e-13 -
1e-09 3.2e-08 4.0e-15 1.0e-07 3.1e-13 -
1e-08 3.3e-07 3.8e-15 1.1e-06 2.4e-13 3
1e-07 3.6e-06 2.1e-15 2.2e-05 1.3e-13 5
1e-06 4.5e-05 8.6e-16 1.4e-04 2.7e-14 41
1e-05 1.4e-04 5.8e-16 2.3e-04 4.1e-15 92

Table 6.5. Eigenvalue cluster in [2− e, 2 + e], n = 100, k = 5

Even a quite large width of the eigenvalue cluster seems to have no influence on the accuracy of the inclusion
of the basis of an invariant subspace; in fact, accuracy even improves. The radius of the inclusion of the
eigenvalue cluster is smaller than e because the matrix is scaled to norm 1 after generation. With increasing
size e of the cluster it becomes more and more difficult to obtain an inclusion at all. This seems natural
because the uniform approximation λ̃ := 2 becomes more and more poor. However, in the examples where
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the inclusion failed we may alternatively treat the eigenvalues as simple eigenvalues. We did this and in all
samples verified error bounds were computed.

Next we investigate the influence of a nearby second cluster. For n = 100 and k = 5 we generate a k-fold
eigenvalue 2, another k-fold eigenvalue 2 + e, and n− 2k eigenvalues in the unit circle.

e avge rad L avge rad (UT X)ij max rad L max rad(UT X)ij failed
1e-01 5.8e-14 9.5e-14 1.5e-12 8.2e-12 -
1e-04 2.0e-14 7.4e-11 1.6e-13 5.9e-09 1
1e-06 2.0e-14 4.3e-09 1.8e-13 1.5e-07 2
1e-07 1.7e-14 2.2e-08 2.7e-13 4.2e-07 13
1e-08 1.4e-14 1.9e-07 4.8e-14 6.9e-06 33
1e-09 1.2e-14 1.3e-06 4.7e-14 3.0e-05 68
1e-10 9.7e-15 4.8e-06 9.7e-15 1.3e-05 99

Table 6.6. Two k-fold eigenvalues 2 and 2 + e, n = 100, k = 5

Table 6.6 seems to show little influence on the accuracy of the inclusions of the eigenvalue cluster, but with
the second cluster moving into the first the inclusion of the invariant subspace becomes poorer. Again, as
we expect, too close clusters cannot be separated by verified bounds. However, for a cluster distance down
to about ε1/2 verified bounds are calculated, in agreement to the sensitivity. As before, in those examples
where Algorithm 3.3 failed we may alternatively treat the two clusters as one cluster of eigenvalues. Doing
this, for all samples rigorous error bounds were computed.

For examples including defective eigenvalues we proceed as before but generate a direct sum of Jordan
blocks. The first example comprises of a 10-fold eigenvalue 2 in 5 Jordan blocks each of size 2 for different
dimensions n. Furthermore, the matrix is generated to have one eigenvalue 1 and n−11 randomly distributed
eigenvalues within [−1, 1]. Again, 100 samples are generated. The results are shown in Table 6.7. Note that
the theoretical sensitivity of the eigenvalues is approximately ε1/2 = 1.5 · 10−8.

n avge rad L avge rad (UT X)ij max rad L max rad(UT X)ij failed
50 1.5e-06 2.0e-15 8.5e-05 1.7e-13 1

100 1.5e-07 5.3e-15 1.2e-06 4.8e-13 12
200 3.3e-07 5.7e-15 8.4e-06 3.4e-13 20
500 4.2e-07 7.1e-15 1.8e-06 1.7e-13 65

Table 6.7. Five Jordan blocks of size 2

In all examples up to now the matrix A = XLX−1 was generated by floating point matrix inversion and
product. In general, this alters a multiple eigenvalue of L into a cluster of small size. This seems not too
important for non-defective eigenvalues. For defective eigenvalues we may want to be sure that the matrix
has indeed a multiple and defective eigenvalue. We assure this by calculating an inclusion Y ∈ IIMn(K)
of X−1, i.e. X−1 ∈ Y. This can be done for example using the algorithm described in [17]. Then,
we calculate A = X · L · Y using interval multiplications. By the inclusion isotonicity (1), this implies
XLX−1 ∈ A. For this interval matrix A ∈ IIMn(K), we apply the mentioned interval version of Algorithm
3.3. Input approximations λ̃, X̃ are, as always, calculated by the Matlab routine eig, in this case applied to
the midpoint matrix of A. For the same data as before, 5 Jordan blocks each of size 2 for the eigenvalue 2,
the results are shown in Table 6.8.

n avge rad L avge rad (UT X)ij max rad L max rad(UT X)ij failed
50 1.2e-06 2.9e-15 5.1e-05 1.9e-13 6

100 2.3e-07 3.9e-15 2.3e-06 1.6e-13 10
200 3.6e-07 5.8e-15 2.9e-06 1.7e-13 32
500 4.2e-07 8.2e-15 1.3e-06 8.4e-14 56

Table 6.8. Five Jordan blocks of size 2 with defective eigenvalues, interval matrix
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The results are surprisingly similar to Table 6.7, although the input matrix A now comprises of (narrow)
intervals. This is because the sensitivity of the double eigenvalues is of the order 10−8, and a perturbation
of the order 10−16 in the matrix elements plays a less important role. Note that the computed inclusion L
and X are valid for all A ∈ A, especially for the matrix with five pairs of defective eigenvalues.

Finally, we increase the size of the Jordan blocks and generate one k-fold eigenvalue 2 of geometric multiplicity
1, and otherwise one eigenvalue 1 and n − k − 1 randomly choosen eigenvalues in [−1, 1]. The matrix
A = XLX−1 is computed in floating point, the dimension is always n = 100.

k avge rad L avge rad (UT X)ij max rad L max rad(UT X)ij failed
2 2.3e-08 1.8e-15 3.7e-07 1.7e-13 1
3 8.9e-06 6.5e-16 2.6e-04 1.9e-14 13
4 8.9e-05 3.4e-16 3.1e-04 3.3e-15 54
5 6.7e-04 3.7e-16 7.5e-04 1.1e-15 98

Table 6.9. One Jordan block of different size (approximate matrix)

The increased number of failures reflects the ill-conditionedness of the problem, see Table 6.9. Note the
theoretical sensitivity ε1/5 ∼ 7.4 · 10−4 for k = 5. The same problem for interval input matrix A = X ·L ·Y,
where Y is an inclusion of X−1, produces the following results. The dimension is again n = 100.

k avge rad L avge rad (UT X)ij max rad L max rad(UT X)ij failed
2 3.4e-08 2.9e-15 2.1e-07 3.1e-13 1
3 1.2e-05 9.8e-16 1.0e-04 5.1e-14 24
4 1.6e-04 5.3e-16 5.7e-04 4.8e-15 71
5 - - - - 100

Table 6.10. One Jordan block of different size (interval matrix)

As before, there is not too much difference to pure floating point input because the sensitivity of the defective
eigenvalue predominates by far the effect of the uncertainty of the matrix elements. From this follows that
Algorithm 3.3 is not too sensitive to defective eigenvalues.

There seems to be room for inprovement in case of defective eigenvalues. One problem is that the approx-
imation of the k-dimensional basis for the invariant subspace delivered by eig is extremely ill-conditioned
for larger k.

Next, we generate many clusters to observe robustness in that practical situation. For given N , we generate
a matrix having a k-fold eigenvalue in each of the N Chebyshev nodes. The dimension of the matrix is then
n = N · k. The following table displays the results for k = 5 and different number of nodes. Inclusion is
calculated for the eigenvalue near 1.

n N rad L avge rad (UT X)ij max rad(UT X)ij failed
50 10 7.4e-15 3.9e-15 1.2e-14 -

100 20 1.5e-14 3.6e-14 9.0e-14 -
150 30 5.3e-14 1.1e-12 5.8e-12 -
200 40 2.1e-14 3.9e-13 1.1e-12 -
250 50 4.8e-14 2.6e-12 9.3e-12 -
300 60 2.9e-14 8.5e-13 3.3e-12 -
350 70 4.3e-14 2.5e-12 7.9e-12 -
400 80 1.1e-13 3.6e-11 1.8e-10 -
450 90 3.1e-14 1.2e-11 4.1e-11 -
500 100 3.0e-14 2.8e-12 1.1e-11 -

Table 6.11. Clusters in N Chebyshev nodes, k = 5

12



As Table 6.11 shows, the algorithm has no trouble in separating the busiest eigenvalues near 1, and also the
others are included without problems. The eigenvalues are computed to high accuracy, only the accuracy
of the bounds for the invariant subspaces decreases with narrowing clusters. For N = 50 the two largest
eigenvalues of the resulting matrix of dimension 500 are 0.9999 and 0.9989.

Finally we compare computing times for dimensions n = 100 and n = 200 with k = 10, a 10-fold eigenvalue.
We compare i) Algorithm 3.3 for error bounds of the cluster with ii) the Matlab built-in routine eig (to
approximate all eigenvalues).

n = 100 n = 200
time for Algorithm 2.1 0.35 sec 2.36 sec
time for eig 0.46 sec 4.12 sec

Time is measured on a 300 Mhz PC. The computing time does not depend on k for k ¿ n, for k approaching
n it increases by about a factor 2.
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[11] O. Knüppel. PROFIL / BIAS — A Fast Interval Library. Computing, 53:277–287, 1994.

[12] R. Krawczyk. Fehlerabschätzung reeller Eigenwerte und Eigenvektoren von Matrizen. Computing, 4:281–293, 1969.

[13] MATLAB User’s Guide, Version 5. The MathWorks Inc., 1997.

[14] G. Mayer. Enclosures for Eigenvalues and Eigenvectors. In L. Atanassova and J. Herzberger, editors, Computer Arithmetic

and Enclosure Methods, IMACS, pages 49–67. Elsevier Science Publisher B.V., 1992.

[15] G. Mayer. Success in epsilon-inflation. In G. Alefeld et al., editor, Scientific computing and validated numerics. Proceedings

of the international symposium on scientific computing, computer arithmetic and validated numerics SCAN-95,

Wuppertal, Germany, September 26-29, 1995, Math. Res. 90, pages 98–104, Berlin, 1996. Akademie Verlag.

[16] A. Neumaier. Interval Methods for Systems of Equations. Encyclopedia of Mathematics and its Applications. Cambridge

University Press, 1990.

[17] S.M. Rump. Kleine Fehlerschranken bei Matrixproblemen. PhD thesis, Universität Karlsruhe, 1980.

[18] S.M. Rump. Verification Methods for Dense and Sparse Systems of Equations. In J. Herzberger, editor, Topics in Validated

Computations — Studies in Computational Mathematics, pages 63–136, Elsevier, Amsterdam, 1994.

[19] S.M. Rump. INTLAB - INTerval LABoratory. In Tibor Csendes, editor, Developments in Reliable Computing, pages

77–104. Kluwer Academic Publishers, Dordrecht, 1999. http://www.ti3.tu-harburg.de/english/index.html.

[20] J.H. Wilkinson. The Algebraic Eigenvalue Problem. Clarendon Press, Oxford, 1965.

[21] J.H. Wilkinson. Error bounds for computed invariant subspaces. Technical Report 81-02, Proc. of Rutishauser Symposium
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