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Abstract. Infimum-supremum interval arithmetic is widely used because of ease of implemen-
tation and narrow results. In this note we show that the overestimation of midpoint-radius interval
arithmetic compared to power set operations is uniformly bounded by a factor 1.5 in radius. This
is true for the four basic operations as well as for vector and matrix operations, over real and over
complex numbers. Moreover, we describe an implementation of midpoint-radius interval arithmetic
entirely using BLAS. Therefore, in particular, matrix operations are very fast on almost any com-
puter, with minimal effort for the implementation. Especially, with the new definition it is seemingly
the first time that full advantage can be taken of the speed of vector and parallel architectures. The
algorithms have been implemented in the Matlab interval toolbox INTLAB.
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1. Introduction and notation. Let R denote the set of real numbers, let C
denote the set of complex numbers, and denote the power set over one of these sets
by PR, PC, respectively. The two most frequently used representations for intervals
over K ∈ {R,C}, are the infimum-supremum representation

[a1, a2] := {x ∈ K : a1 ≤ x ≤ a2} for some a1, a2 ∈ K, a1 ≤ a2 ,(1)

where ≤ is the partial ordering x ≤ y :⇔ Rex ≤ Re y & Im x ≤ Im y for x, y ∈ C, and
the midpoint-radius representation

< a, α >:= {x ∈ K : |x− a| ≤ α} for some a ∈ K, 0 ≤ α ∈ R .(2)

The two representations are identical for real intervals, whereas for complex intervals
the first representation are rectangles, the second one represents discs in the complex
plane. We assume the reader to be familiar with the standard definitions of interval
arithmetic for the first and for the second representation [1, 7, 19, 21]. Recent lit-
erature on midpoint-radius or circular arithmetic includes [23] and the many papers
cited there.

Although the midpoint-radius representation seems to be more appropriate for
the complex case, today mostly the infimum-supremum arithmetic is used. There
are two main reasons for that. First, the standard definition of midpoint-radius arith-
metic causes overestimation for multiplication and division, and second, the computed
midpoint of the floating point result of an operation is, in general, not exactly rep-
resentable in floating point, thus again causing overestimation and additional com-
putional effort.

In this note we will show that the overestimation of operations using midpoint-
radius representation compared to the result of the corresponding power set operation
is limited by at most a factor 1.5 in radius. As has been mentioned by Prashant Batra
to the author, this is already included in [15] for complex intervals, where an area-
optimal complex circular arithmetic is introduced. Unfortunately, the computation
of midpoint and radius for this type of arithmetic requires the (verified) computation
of the roots of a cubic polynomial.

The main point of this paper is to show that the implementation of midpoint-
radius arithmetic is very simple, and that on today’s computer architectures it allows
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a much faster code than traditional infimum-supremum arithmetic. This includes in
particular vector and parallel computers.

Throughout the paper we refer by IK to intervals in midpoint-radius representation
(2), K ∈ {R,C}. Operations in IK are denoted by ⊕,ª,¯,®. The same symbols
are used for operations on interval vectors IKn and interval matrices IKm×n, and
operations among those. The corresponding power set operations are denoted by
+,−, ·, /.

Interval operations always satisfy the fundamental property of isotonicity:

∀a ∈ A ∀b ∈ B : a ◦ b ⊆ A } B for ◦ ∈ {+,−, ·, /}(3)

and all suitable A, B. Any representation and implementation of interval arithmetic
must obey isotonicity. The radius of a compact set X ⊆ C is defined by

rad(X) := 0.5 · max
x1,x2∈X

|x1 − x2| .

The overestimation of an interval operation with respect to the corresponding power
set operation is

ρ :=
rad(A } B)
rad(A ◦B)

for ◦ ∈ {+,−, ·, /} .(4)

For interval vectors or matrices, ρ is the maximum of the entrywise overestima-
tions. The numbers ρ will be our measure of overestimation. We mention that in
algorithms for “global verification” (for example, global optimization or inclusion of
all zeros of a system of nonlinear equations) the exclusion of zeros is the main prob-
lem. In this case a fairly small overestimation may lead to additional bisections, and
therefore any ratio might be inappropriate to compare midpoint-radius and infimum-
supremum arithmetic.

The paper is organized as follows. In the following section we prove that the
overestimation (4) of midpoint-radius arithmetic to power set operations is uniformly
bounded by 1.5 for the basic arithmetic operations as well as for vector and matrix
operations over R and C. For intervals of not too large radius the factor is quantified
to be near 1. In Section 3 we present corresponding algorithms over floating point
numbers, where special care has been taken for the error estimation of the midpoint.
In Section 4 performance issues are addressed and it is shown that midpoint-radius
arithmetic allows very easy and very fast implementation using BLAS [18, 6, 5, 2].
To the author’s knowledge, this is the first implementation of interval arithmetic
exclusively using BLAS. Timing comparisons on a Convex SPP 2000 parallel computer
are given.

In Section 5 computational evidence shows that the factor 1.5 for the individual
operation does not perpetuate when composing operations. In fact, the factor in ra-
dius against infimum-supremum arithmetic is around 1.0, and, surprisingly, sometimes
even less than 1.

2. Overestimation by midpoint-radius representation. In this section we
first consider real intervals

A = < a, α >= {x ∈ R : a− α ≤ x ≤ a + α} for a ∈ R, 0 ≤ α ∈ R and
B = < b, β >= {x ∈ R : b− β ≤ x ≤ b + β} for b ∈ R, 0 ≤ β ∈ R .

The basic operations are defined as usual ([19], [1], [21]):
Definition 2.1. For A =< a, α >∈ IR, B =< b, β >∈ IR, we define

A⊕B := < a + b, α + β >
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AªB := < a− b, α + β >

A¯B := < a · b, |a|β + α|b|+ αβ >(5)
1®B := < b/D, β/D > where D := b2 − β2 and 0 6∈ B

A®B := A¯ (1®B) for 0 6∈ B .

All operations satisfy the isotonicity property (3). The following theorem is well
known and easily verified.

Theorem 2.2. For all A,B ∈ IR, the result of addition, subtraction and in-
version as defined in (5) and the result of the corresponding power set operation is
identical:

A⊕B = A + B

AªB = A−B and
1®B = 1/B .

The remaining problem is multiplication. To derive proper bounds we use the
following definition.

Definition 2.3. A real interval A =< a, α > not containing 0 is said to be of
relative precision e, 0 ≤ e ∈ R, if

α ≤ e · |a| .
A real interval containing 0 is said to be of relative precision 1.

The wording is justified because for an interval A of relative precision e, the
relative error of any ã ∈ A with respect to the midpoint or to one of the endpoints of
A is at most e, respectively. By definition, it is always 0 ≤ e ≤ 1.

The following theorem estimates the overestimation of the interval multiplication
as defined in (5) with respect to the result of the power set operation.

Theorem 2.4. Let A =<a, α>∈ IR, B =<b, β >∈ IR, and denote the overesti-
mation of A¯B as defined by (5) with respect to A ·B by

ρ :=
rad(A¯B)
rad(A ·B)

,

where 0/0 is interpreted as 1. Then the following is true.
1) It is always

ρ ≤ 1.5 .

2) If one of the intervals A and B is of relative precision e, then

ρ ≤ 1 +
e

1 + e
.

3) If interval A is of relative precision e, and B is of relative precision f , then

ρ ≤ 1 +
ef

e + f
.

All estimations are sharp.
Proof. Let intervals A, B ∈ IR be given. By a straightforward continuity argument

we may assume a, b, α and β to be nonzero. Using A¯ (−B) = (−A)¯B = −(A¯B)
we have to distinguish three cases. In any case, by definition (5),

rad(A¯B) = |a|β + α|b|+ αβ .(6)
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i) Assume A ≥ 0 and B ≥ 0, and 0 < α ≤ e · a, 0 < β ≤ f · b. Then by the usual case
distinctions,

A ·B = {ãb̃ : ã ∈ A, b̃ ∈ B} = {x ∈ R : (a− α)(b− β) ≤ x ≤ (a + α)(b + β)} .

Therefore,

rad(A ·B) = aβ + αb ,

and by (6),

rad(A¯B)
rad(A ·B)

= 1 +
αβ

aβ + αb
= 1 +

1
a
α + b

β

≤ 1 +
ef

e + f
.

ii) Assume A ≥ 0, 0 ∈ B, and 0 < α ≤ e · a. Then

A ·B = {x ∈ R | (a + α)(b− β) ≤ x ≤ (a + α)(b + β)} .

Therefore,

rad(A ·B) = aβ + αβ ,

and using |b| ≤ β and (6),

rad(A¯B)
rad(A ·B)

= 1 +
α|b|

aβ + αβ
≤ 1 +

1
a
α + 1

≤ 1 +
e

1 + e
.

iii) Assume 0 ∈ A, and 0 ∈ B. Then the lower bound of A ·B is either (a + α)(b− β)
or (a−α)(b+β), and the upper bound of A ·B is either (a−α)(b−β) or (a+α)(b+β).
Using again A ¯ (−B) = (−A) ¯ B = −(A ¯ B) reduces the analysis to two cases.
Suppose

A ·B = {x ∈ R : (a + α)(b− β) ≤ x ≤ (a− α)(b− β)} ,

then

(a + α)(b− β) ≤ (a− α)(b + β) and (a + α)(b + β) ≤ (a− α)(b− β) ,

which implies αb ≤ aβ and αb ≤ −aβ. Using α ≥ 0 it follows b ≤ 0 and |a|β ≤ α|b|.
Hence, using β ≥ |b| and (6),

rad(A¯B)
rad(A ·B)

=
|a|β + α|b|+ αβ

−αb + αβ
≤ 1 +

α|b|
α|b|+ αβ

≤ 1.5 .

On the other hand, suppose

A ·B = {x ∈ R : (a + α)(b− β) ≤ x ≤ (a + α)(b + β)} .

Then

(a + α)(b− β) ≤ (a− α)(b + β) and (a− α)(b− β) ≤ (a + α)(b + β),

which implies αb ≤ aβ and −αb ≤ aβ, and using β ≥ 0,

a ≥ 0 and α|b| ≤ aβ .
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Hence, using α ≥ |a| and (6),

rad(A¯B)
rad(A ·B)

=
|a|β + α|b|+ αβ

aβ + αβ
≤ 1 +

aβ

aβ + αβ
≤ 1.5 .

Finally, define A :=< 1, e >, and B :=< 1, f >. Then setting e = f = 1, setting e < 1
and f = 1, and setting e < 1 and f < 1, respectively, shows that all three inequalities
are sharp.

Next, consider the complex case. For a, b ∈ C, 0 ≤ α, β ∈ R and complex intervals

A = < a, α > = {z ∈ C : |z − a| ≤ α}
B = < b, β > = {z ∈ C : |z − b| ≤ β} ,

(7)

we use again the symbols ⊕,ª,¯,® for midpoint-radius interval operations. The
elementary operations are defined as usual ([1],[19], [21]).

Definition 2.5. For A,B ∈ IC as in (7), we define

A⊕B := < a + b, α + β >
AªB := < a− b, α + β >
A¯B := < a · b, |a|β + α|b|+ αβ >
1®B := < b̄/D, β/D > where D := bb̄− β2 and 0 6∈ B
A®B := A¯ (1®B) for 0 6∈ B .

(8)

As in the real case, for all A, B ∈ IC the result of addition, subtraction or
inversion as defined in (8) and the result of the corresponding power set operation is
identical. We extend the definition of relative precision to complex intervals.

Definition 2.6. A complex interval A =< a, α >, a ∈ C, 0 ≤ α ∈ R, not
containing 0 is said to be of relative precision e, 0 ≤ e ∈ R, if

α ≤ e · |a| .

A complex interval containing 0 is said to be of relative precision 1.
For the analysis of overestimation of complex multiplication and division, observe

eiϕ ·A =
{
eiϕ · z : |z − a| ≤ α

}
=

{
z : |z − eiϕa| ≤ α

}
=< eiϕa, α >

for any ϕ ∈ R, thus

rad(eiϕ ·A) = rad(A) .

For A =< a, α >, B =< b, β > and a = r1e
iϕ1 , b = r2e

iϕ2 , rad(A · B) = rad(A′ · B′)
with A′ := e−iϕ1A, B′ := e−iϕ2B, where A′ and B′ have a real midpoint. Carefully
going through the proof of Theorem 2.4 shows that all the estimations in Theorem
2.4 hold, mutatis mutandis, for complex intervals as well.

Furthermore, for matrix and vector operations we observe that the components
are computed by scalar products, which are sums of products. Since the addition
does not cause overestimation at all, neither in the real nor in the complex case, the
estimations in Theorem 2.4 can be generalized to real and complex vector and matrix
operations as well.

Summarizing we obtain the following proposition.
Proposition 2.7. The midpoint-radius interval operations defined by (5) and (8)

cause the following overestimations compared to the corresponding power set operation:
i) For A and B being real or complex intervals, midpoint-radius interval addi-

tion, subtraction and inversion does not cause any overestimation.



6 SIEGFRIED M. RUMP

ii) For A being a real or complex interval of relative precision e, and for B
being a real or complex interval of relative precision f , the overestimation of
multiplication and division is bounded by

1 +
ef

e + f
.

In any case, the overestimation is uniformly bounded by 1.5.
iii) For A and B being real or complex interval vectors or matrices, midpoint-ra-

dius interval addition and subtraction does not cause any overestimation.
iv) For A being a real or complex interval vector or matrix with all components

of relative precision e, and for B being a real or complex interval vector or
matrix with all components of relative precision f , the overestimation of each
component of the result of multiplication is bounded by

1 +
ef

e + f
.

In any case, the overestimation is uniformly bounded by 1.5.
Note that multiplication in iv) is ordinary matrix-vector or matrix-matrix multi-

plication, respectively, it is not entrywise multiplication (Hadamard product). How-
ever, the assertion holds trivially for the Hadamard product as well. For the proof of
iv) note that

rad(A¯B + C ¯D) = rad(A¯B) + rad(C ¯D)
≤ ρ1 · rad(A ·B) + ρ2 · rad(C ·D)
≤ max(ρ1, ρ2) · rad(A ·B + C ·D) .

An induction argument completes the proof. Finally, we mention that all given esti-
mations are sharp and are worst case bounds.

3. Implementation issues. Before we discuss the practical implementation,
properties of the midpoint-radius arithmetic are summarized; later they are discussed
in detail.

The major advantage is that the midpoint-radius matrix operations use exclu-
sively pure floating point matrix operations. Therefore, the fastest (floating point)
library routines can be used. This includes vector and parallel algorithms, frequently
designed for a specific hardware. To our knowledge this is the first time that full
advantage can be taken of the speed of modern computers. This is possible with
minimal effort on the part of the user: only one miniature assembly language routine
for switching the rounding mode is necessary. All the rest is written in a higher level
language like FORTRAN, C or Matlab.

In the computer implementation of interval arithmetic, special care has to be
taken for the rounding. Consider a set F ⊆ R of real floating point numbers, and
define

IF := {<ã, α̃> : ã, α̃ ∈ F, α̃ ≥ 0} .

As before, we set

<ã, α̃>:= {x ∈ R : ã− α̃ ≤ x ≤ ã + α̃} .(9)

Then IF ⊆ IR. Note that the pair of floating point numbers ã, α̃ ∈ F describes
an infinite set of real numbers for α̃ 6= 0. Also note that in general there need
not be floating point numbers ã1, ã2 ∈ F with [ã1, ã2] =< ã, α̃ >. Moreover, the
smallest nonzero relative precision of an interval in infimum-supremum representation
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is limited by the relative rounding error unit ε, whereas much narrower intervals are
possible in midpoint-radius representation.

Throughout this section we will denote floating point numbers and results of float-
ing point operations by small letters attached with a tilde.

We assume the floating point arithmetic to satisfy the IEEE 754 arithmetic stan-
dard [9]. Among others, this implies (and the following properties are in fact those
we need) availability of rounding modes: rounding to nearest, rounding downwards
(towards −∞) and rounding upwards (towards +∞). For the remainder of the paper
we assume that no overflow or exception (division by zero etc.) occurs (which usually
terminates computation anyway). However, we allow underflow. It will be shown
that all computed results are correct, including the presence of underflow.

Denote the relative rounding error unit by ε, set ε′ = 1
2ε, and denote the smallest

representable (unnormalized) positive floating point number by η. In IEEE 754 double
precision, ε = 2−52 and η = 2−1074. If an expression is to be evaluated in floating
point arithmetic, we put the expression in parentheses with a preceding rounding
symbol. Note that all operations within the expression are performed with the same
rounding. The following rounding modes are used:

2 rounding to nearest,
5 rounding downwards,
4 rounding upwards.

This can be accomplished by a small assembly language routine setround(rnd) with
rnd ∈ {−1, 0, 1}. For example,

c̃ = 5(ã− ã · b̃)
implies that floating point multiplication and subtraction is used both with rounding
towards −∞. Note that this does not necessarily imply 5(ã− ã · b̃) ≤ ã− ã · b̃. The
following error estimates are valid for any rounding mode:

∀a, b ∈ F a ◦ b = rnd(a ◦ b)(1 + ε1) + η1 for ◦ ∈ {·, /},
∀a, b ∈ F a ◦ b = rnd(a ◦ b)(1 + ε2) = rnd(a ◦ b)(1 + ε3)−1 for ◦ ∈ {+,−},(10)

where rnd ∈ {2, 5, 4} and

|εi| ≤ ε∗, |η1| ≤ η, ε1η1 = 0 and
ε∗ = ε′ for rounding to nearest,
ε∗ = ε otherwise .

Note that for addition and subtraction there is no extra constant η1 covering under-
flow. This is known to be true if the result is a normalized floating point number,
and if the result of addition or subtraction is in the gradual underflow range then it
is a fortiori a floating point number. To our knowledge this has not been observed in
the literature. Furthermore, ã ∈ F implies −ã ∈ F and therefore |ã| ∈ F in IEEE 754
arithmetic. For an excellent treatment of floating point arithmetic and error estimates
see [8].

With these preliminaries we can define algorithms for the midpoint-radius interval
arithmetic in floating point. Special care is necessary compared to (5) because ã ◦ b̃
is, in general, not a floating point number.

For the remainder of the section let

A = <ã, α̃>∈ IF and B = <b̃, β̃>∈ IF
be given. Then interval addition and subtraction C := A } B ∈ IF, ◦ ∈ {+,−}, with
C =<c̃, γ̃ > is defined by the following algorithm.
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c̃ = 2(ã ◦ b̃)
γ̃ = 4(ε′ · |c̃|+ α̃ + β̃)

(11)

Algorithm 3.1. Addition and subtraction in IF.

We have to verify the fundamental property (3), the isotonicity. Let ā ∈ A, b̄ ∈ B for
ā, b̄ ∈ R by given. Then by definition (9),

|ā− ã| ≤ α̃ and |b̄− b̃| ≤ β̃ .

The error estimate (10), observing the rounding modes, yields for ◦ ∈ {+,−},

|ā ◦ b̄− c̃| ≤ |ã ◦ b̃− c̃|+ α̃ + β̃ ≤ ε′ · |c̃|+ α̃ + β̃ ≤ γ̃ .(12)

The interval multiplication C = A¯B is defined by the following algorithm.

c̃ = 2(ã · b̃)
γ̃ = 4(η + ε′ · |c̃|+ (|ã|+ α̃)β̃ + α̃|b̃|)(13)

Algorithm 3.2. Multiplication in IF.

The proof of isotonicity is almost the same as for addition and subtraction. Note that
in the computation of γ̃ small terms are added first (from left to right) in order to
diminish accumulation of rounding errors.

Instead of Definition 2.1 we use the following definition for the interval reciprocal
C = 1©/ B in IF. We assume β̃ < |b̃|.

c̃1 = 5((−1)/(−|b̃| − β̃))
c̃2 = 4((−1)/(−|b̃|+ β̃))
c̃ = 4(c̃1 + 0.5 · (c̃2 − c̃1))
γ̃ = 4(c̃− c̃1)
c̃ = sign(b̃) · c̃

(14)

Algorithm 3.3. Inversion in IF.

This definition uses infimum-supremum arithmetic to compute the endpoints of
1 ©/ B. The elegant transformation of infimum-supremum representation back to
midpoint-radius representation was given by Oishi [22]. The proof of isotonicity (3)
is straightforward. Algorithm 14 requires only 2 switches of the rounding mode.

Finally, interval division C = A®B is defined as before by

C = A¯ (1®B) ,(15)

and preserves, of course, isotonicity.
Our estimations in the previous section show that the overestimation of midpoint-

radius interval arithmetic increases with the radii of the operands. Therefore, this
representation will be disadvantageous in applications where many operations among
very wide intervals occur. This may be the case, for example, in global optimization.

On the other hand, it looks like as if midpoint-radius interval arithmetic is always
worse than infimum-supremum arithmetic. This is indeed true for the theoretical
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operations in IR where no final rounding of the results is necessary. However, this
changes when looking at operations in IF.

First, the midpoint-radius representation offers the possibility to define very ac-
curate intervals such as < 1, 10−25 >, whereas the relative accuracy of infimum-
supremum representation is restricted to the machine precision. This may occasionally
be useful.

Second, the result of an operation using midpoint-radius representation in IF
may be narrower than the corresponding result of infimum-supremum arithmetic.
For example, consider a 2-digit decimal arithmetic and the two intervals

A =<1.3, 0.1> and B =<9.2, 0.1> .(16)

Both have exactly representable endpoints, and a corresponding (exact) infimum-
supremum representation is

A = [1.2, 1.4] and B = [9.1, 9.3] .

In rounded 2-digit decimal arithmetic we obtain for the infimum-supremum represen-
tation

A ·B = [1.2, 1.4] · [9.1, 9.3] ⊆ [10, 14] .

By assumption (10) it follows for our model arithmetic ε′ = 0.05, and Algorithm 3.2
for midpoint-radius representation yields the result

c̃ = 12 and γ̃ = 1.7 , which means A¯B =< 12, 1.7 >= [10.3, 13.7] .

This compares to the result [10, 14] in rounded infimum-supremum arithmetic. Thus,
the radius of the result of midpoint-radius representation is only 85% of the radius of
the result of infimum-supremum representation.

As the next step towards vector and matrix operations consider a scalar product
AT B for A,B ∈ IFn, A =<ã, α̃>, B =<b̃, β̃> with ã, b̃, α̃, β̃ ∈ Fn, α̃, β̃ ≥ 0 (compar-
ison and absolute value of vectors and matrices is always to be understood entrywise).
We have to estimate

|2(ãT b̃)− ãT b̃| .
This is simple if a precise scalar product as proposed by Kulisch [16] is available. On
a general computer hardware with arithmetic according to IEEE 754 we may use the
well known error estimate due to Wilkinson. In the notation of [8] we set

γn :=
nε′

1− nε′
,(17)

and, if no underflow occurs, it is for quantities |Θj | ≤ γj , |Θ′n| ≤ γn,

|fl(ãT b̃)− ãT b̃| ≤ ã1b̃1 ·Θn + ã2b̃2 ·Θ′n + ã3b̃3 ·Θn−1 + ... + ãnb̃n ·Θ2 .(18)

We note that this estimate is valid for almost every computer arithmetic, even for
those without a guard digit. The right hand side of (18) is expensive to compute and
is frequently replaced by

|2(ãT b̃)− ãT b̃| ≤ γn · |ãT ||b̃| .
The final forward error estimation taking underflow into account is

|2(ãT b̃)− ãT b̃| ≤ γn · (|ãT ||b̃|+ η) =: ρn .(19)
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This estimation can be improved as follows. The definition of the rounding modes
imply

5(p̃ ◦ q̃) ≤ p̃ ◦ q̃ ≤ 4(p̃ ◦ q̃) for p̃, q̃ ∈ F, ◦ ∈ {+,−, ·, /} ,(20)

and therefore 5(ãT b̃) ≤ ãT b̃ ≤ 4(ãT b̃). Hence, the following algorithm can be used
for the scalar product in IFn.

c̃1 = 5(ãT b̃)

c̃2 = 4(ãT b̃)
c̃ = 4(c̃1 + 0.5(c̃2 − c̃1))

γ̃ = 4((c̃− c̃1) + (|ãT |+ α̃T )β̃ + α̃T |b̃|)

Algorithm 3.4. Scalar product in IFn.

Note the sequence of summation in the last line of Algorithm 3.4. For execution
from left to right we add the small terms first in order to diminish accumulation of
rounding errors.

It is clear from the definition and especially from the used rounding modes that
Algorithm 3.4 satisfies the isotonicity property

∀a ∈<ã, α̃> ∀b ∈<b̃, β̃> : aT b ∈<c̃, γ̃ > .(21)

This is also true in the presence of underflow.
Notice that all estimations are independent of the order of summation. Therefore,

midpoint-radius arithmetic may take full advantage of any computational scheme to
compute scalar and matrix products. This includes especially vector and parallel
architectures, blocked algorithms etc., where frequently the order of summation is
changed for improved performance.

The main advantage of using Algorithm 3.4 instead of (19) appears for narrow
intervals. The following table compares the results for point intervals. For each value
of n, 1000 random sample scalar products were computed with vector components
uniformly distributed in [−1, 1].

n min(γ̃/ρn) average(γ̃/ρn) max(γ̃/ρn)
10 0.07600 0.20000 0.4700

100 0.01400 0.03900 0.1200
1000 0.00380 0.01200 0.0360

10 000 0.00092 0.00370 0.0120
100 000 0.00033 0.00120 0.0037

1 000 000 0.00011 0.00037 0.0011

Table 3.1. Improvement of γ̃ compared to (19).

Obviously, making use of the actual data in Algorithm 3.4 is better than the general
estimation (19), and for scalar products with cancellation it is much better. The
algorithms for matrix operations use Algorithms 3.1 and 3.4, and the algorithms for
complex operations including vector and matrix operations can be written in a similar
way.
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4. Computational speed. The core of many numerical algorithms is the solu-
tion of systems of linear equations. The popular Krawczyk-type iteration [14, 24] for
the verified solution of dense linear systems requires computation of an approximate
inverse R as preconditioner, and the verified computation of the residual I − RA.
For sparse systems of linear equations [25] an approximation of the smallest singular
value (for example, by inverse iteration) and an estimation of a matrix residual is
computed.

In any case, those algorithms split i) into a pure floating point part and ii) into a
verification part. For the first part, the fastest floating point algorithm may be used,
and there are many choices available. When just counting operations, regardless
whether (floating) point or interval operations, both parts have roughly the same
operation count. Therefore, the second part with the verified computation of a matrix
product is the computationally intensive part.

In other words, the computational speed of the verified solution of a linear system
is determined by the computational speed of verified matrix multiplication.

We have to distinguish two cases. First, assume the matrix data of the linear
system is exactly representable in floating point on the computer, i.e. the system ma-
trix is a point matrix with representable entries. Then, both for dense and for sparse
systems, the computationally intensive part is a point matrix multiplication, both
operands being exact. In this case we do not have to distinguish between infimum-
supremum and midpoint-radius arithmetic at all. In either case Algorithm 3.4 may
be used with the radii being zero by definition. The result of infimum-supremum
arithmetic is just [c̃1, c̃2].

The main point is that no case distinctions, switching of rounding mode inner
loops, etc. are necessary, only pure floating point matrix multiplications. And for
those the fastest algorithms available may be used, for example, BLAS. The latter
bear the striking advantages that i) they are available for almost every computer
hardware, and that ii) they are individually adapted and tuned for specific hardware
and compiler configurations. This gives an advantage in computational speed which
is difficult to achieve by other implementations.

The advantage is not only speed but portability together with speed. The only ma-
chine dependent routine is the assembly language routine for switching the rounding
mode.

Things change in the second case, for interval linear systems, i.e. the matrix is
afflicted with tolerances. Consider R ∈ Fn×n and A ∈ IFn×n. We have to calculate
an inclusion of R · A. The well known problem for infimum-supremum arithmetic is
that the result of c := RikAkj depends on the sign of Rik:

if Rik ≥ 0 then inf(c) = 5(Rik · inf(Akj)); sup(c) = 4(Rik · sup(Akj))
else inf(c) = 5(Rik · sup(Akj)); sup(c) = 4(Rik · inf(Akj)) .

Algorithm 4.1. Inner loop of matrix multiplication: the top-down approach.

This approach is used in almost all current implementations of interval libraries.
It is a top-down approach starting with the usual three-loop definition of matrix
multiplication. However, this standard approach to interval matrix multiplication
requires some n3 comparisons and switches of the rounding mode. More important,
the extensive compiler optimization techniques for accelerating scalar product code
are of virtually no use. It has been observed by Knüppel [13] that the code can be
rewritten in order to reduce the number of comparisons and switches of rounding
mode to n2:
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for i = 1 .. n do
for k = 1 .. n do

if Rik ≥ 0 then
setround(-1)
for j = 1 .. n do inf(Cij) = inf(Cij) + Rik · inf(Akj)
setround(1)
for j = 1 .. n do sup(Cij) = sup(Cij) + Rik · sup(Akj)

else
setround(-1)
for j = 1 .. n do inf(Cij) = inf(Cij) + Rik · sup(Akj)
setround(1)
for j = 1 .. n do sup(Cij) = sup(Cij) + Rik · inf(Akj)

Algorithm 4.2. Improved infimum-supremum matrix multiplication.

Using an independent test suite [3] it has been shown [13] that the PROFIL/BIAS
library, which is based on Algorithm 4.2, is faster by up to two orders of magnitude
compared to existing interval libraries [10, 11, 17]. In Knüppel’s implementation the
inner j-loops are scalar products, free of comparisons or rounding switches. But still,
only BLAS-1 can be used. An implemention following Algorithm 3.4 with result
<C̃, Γ̃>⊇ R · A looks as follows.

setround(-1)
C̃1 = R ·mid(A)
setround(1)
C̃2 = R ·mid(A)
C̃ = C̃1 + 0.5(C̃2 − C̃1)
Γ̃ = (C̃ − C̃1) + |R| · rad(A)

.

Algorithm 4.3. Midpoint-radius matrix multiplication.

At first sight, one recognizes three floating point matrix multiplications, resulting
in 3n3 operations. However, these may make use of full optimization techniques, these
are BLAS-3 and therefore readily available and very fast on almost any platform.

Finally we remark that optimized BLAS may change the order of computation of
a scalar product. Notice that the error estimations following Algorithm 3.4 are inde-
pendent of the order of execution. Therefore, all results are reliable with taking full
advantage of increased performance by use of BLAS. Especially, the full performance
of vector and parallel architectures is achievable. The algorithms above, especially
Algorithm 4.3, may convince the reader that this is possible with minimal effort on
the part of the user.

Below we will exploit this performance impact in more detail. We will compare
the three different approaches:

i) the standard approach (Algorithm 4.1),
ii) the improved approach by BIAS (Algorithm 4.2),

iii) the new approach (Algorithm 4.3).
The algorithms are implemented on a parallel computer Convex SPP 2000 using up
to 4 processors. The comparisons were performed by Jens Zemke. The programs are
written in C with full optimization by the compiler.

The first example measures multiplication of a point matrix and an interval ma-
trix for different matrix sizes. This type of matrix multiplication occurs typically in
the verified solution of an interval linear or nonlinear system when multiplying by a
preconditioning matrix.
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The computations have been performed in scalar and parallel mode. All of the
following tables show computing time in seconds.

dimension 100 200 500 1000
i) standard 0.31 2.48 71.4 570.8

ii) BIAS 0.03 0.33 13.4 107.6
iii) new 0.02/0.01 0.07/0.03 1.76/0.63 12.3/3.8

Table 4.1. Computing times for point matrix times interval matrix.

For the new method, two computing times are given: the first for scalar mode,
the second for parallel mode with 4 processors. For larger dimensions, the code is
almost fully parallelized. This is in fact the parallelization of the Convex BLAS
library (veclib).

For the methods i) and ii), we give only one computing time because scalar
and parallel times are identical. For the standard method it would be difficult to
parallelize the code because of the switching of rounding modes in the inner loop. For
the second, the BIAS approach (Algorithm 4.2), a parallelization would be possible
and would improve the computing time. However, this has to be done on the part
of the user. And this is the fundamental advantage of the new approach: The BLAS
library is already parallelized by the manufacturer. This guarantees a most easy and
fast implementation of the new algorithms.

The second example is the multiplication of two interval matrices. In this case
the BIAS implementation is almost identical to the standard approach. There are
case distinctions together with switching of the rounding mode in the most inner
loop. That means we expect computing times of the standard approach and BIAS
approach to be similar.

We have to distinguish two cases. First, not both intervals contain zero, second,
both intervals contain zero. For the standard and BIAS approach that means the
following. In the first case (which splits into 8 subcases due to different sign combi-
nations), the operands determining the lower and upper bound can be calculated in
advance. That means 2 multiplications are necessary in the inner loop. In the second
case, the operands determining the lower and upper bound cannot be calculated in
advance but have to be detected within the loop resulting in 4 multiplications and
various switching of the rounding mode in the inner loop (cf. [1, 19, 21]).

In the new approach, no case distinctions are necessary at all. This is the main
reason for its speed. Therefore, it does not matter for the computing time whether
the input intervals contain zero or not.

The first table gives computing times for interval matrix times interval matrix,
where all interval components are generated not to contain zero. This is most advan-
tageous for the standard and for the BIAS approach. In fact we generate the intervals
to be positive such that the very first case distinction for interval multiplications is
satisfied in every component. In other words, the computing times in Table 4.2 are
the best possible for the first and for the second approach.

dimension 100 200 500 1000
i) standard 0.30 2.40 72.3 613.6

ii) BIAS 0.29 2.30 71.0 581.8
iii) new 0.02/0.02 0.15/0.10 2.77/0.79 16.2/4.8

Table 4.2. Times for interval matrix times interval matrix, no zero intervals.
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In case of interval matrix times interval matrix the new approach requires 5 point
matrix multiplications (Algorithm 4.3 adapted according to Algorithm 3.4). This
seems a lot at first sight. However, our previous argument applies: In the practical
implementation on today’s computer architectures the possibility to optimize code
is far more important than the naked floating point operations count. As the table
shows, the new approach is again faster by a factor 20 to 100. And again, the speedup
by having and using more processors on a parallel machine applies one to one to the
new method, whereas the parallelization of the standard approach is at least difficult,
if possible at all. The times in scalar and parallel mode for the first and for the second
approach are again identical.

dimension 100 200 500 1000
i) standard 0.58 4.66 106.4 855.9

ii) BIAS 0.44 3.56 90.1 735.5
iii) new 0.02/0.02 0.15/0.10 2.78/0.79 16.1/4.8

Table 4.3. Times for interval matrix times interval matrix, only zero intervals.

Finally, we give the computing times for interval matrix times interval matrix
when all intervals contain zero.

The computing times for the new approach are, of course, the same as before.
The additional case distinctions in the standard and BIAS approach cost some extra
20 to 50 % computing time. Note the speed up by more than two orders of magnitude
by the new method using four processors.

In the following section a number of model problems are numerically investigated
to check overestimations in some practical computations.

5. Computational results. The estimations of the ratio between the result of
midpoint-radius interval operations and power set operations are worst case. The
question is whether the worst case factor 1.5 is attained in practical computations,
and whether it perpetuates for composed operations. All computations in this section
are performed using IEEE 754 double precision corresponding to approximately 16
decimal digits.

The first test problem is the solution of systems of linear equations. We use the
popular Krawczyk-type iteration [14] with improvements such as inclusion of the error
with respect to an approximate solution [24]. For different values of n we generate

A = (2 · rand(n)− 1) · (1± e), b = A · (2 · rand(n, 1)− 1) ,(22)

that means the midpoint of Aij is a random number uniformly distributed in [−1, 1],
the intervals Aij are of relative accuracy e, and the right hand side is generated such
that the solution of the midpoint linear system is a random vector.

Let X denote the inclusion vector computed by midpoint-radius arithmetic, and
let Y denote the inclusion vector computed by infimum-supremum arithmetic. In the
following table we display the average entrywise ratio

sum(rad(X)./rad(Y ))/n(23)

for 10 samples each, and for combinations of n and e (the above is Matlab notation).
A number greater than one implies that (on the average) the radius of the components
of the inclusion vector computed by midpoint-radius arithmetic is larger by this factor
than the corresponding radius for infimum-supremum arithmetic.



FAST AND PARALLEL INTERVAL ARITHMETIC 15

n e = 10−6 e = 10−9 e = 10−12 e = 10−15

10 1.0000 1.0000 1.0000 0.9426
20 1.0000 1.0000 1.0000 0.9395
50 1.0000 1.0000 1.0000 0.9405

100 0.9970 1.0000 0.9999 0.9435
200 0.9945 1.0000 0.9999 0.9402
500 0.9830 0.9998 0.9998 0.9199

Table 5.1. Ratio mid-rad/inf-sup for linear systems.

By the proof of Proposition 2.7 one may expect the ratio to increase for larger di-
ameters. This is not the case. On the contrary we observe even an improvement
compared to infimum-supremum arithmetic, similar to example (16). Another reason
for that behaviour is the fact that, rather than computing an inclusion of the solution
itself, an inclusion of the difference of the exact solution and an approximate solution
is computed.

The next two examples concern the validated inclusion of all solutions of a system
of nonlinear equations within a certain domain. We use the algorithm proposed by
Knüppel [12]. The first well-known example is due to Price [4],[12, Problem 5.1]:

f1(x) = 2x3
1x2 − x3

2

f2(x) = 6x1 − x2
2 + x2 within − 10 ≤ xi ≤ 10, i ∈ {1, 2} .

There are three zeros within that domain. For this example the midpoint-radius
arithmetic used 19.7% more bisections yielding inclusion intervals with relative error
less than 2% worse than infimum-supremum arithmetic.

The second example is Powell’s almost singular function [4],[12, Problem 5.5]:

f1(x) = x1 + 10x2

f2(x) =
√

5(x3 − x4)
f3(x) = (x2 − 2x3)2

f4(x) =
√

10(x1 − x4)2 within − 3 ≤ xi ≤ 4 for i ∈ {1, ..., 4} .

Here, the zero vector is the unique solution within that domain. For this example,
the number of bisections and final results are identical for both kinds of arithmetic.

In the final examples, pure evaluation of functions is tested. The first is Brown’s
almost linear function [20], [12, Problem 5.7]:

fi(x) = xi +
∑

xj − (n + 1) for 1 ≤ i ≤ n− 1

fn(x) =
∏

xi − 1 .

We evaluate f near the solution (1, ..., 1)T of f(x) = 0 for interval arguments of
different radii. We use

x =<1 + 0.01 · y, e> ,

where y is a vector with entries uniformly distributed within [−1, 1]. For different
dimensions n and radii e we list again the average ratio for some 10 samples. The
results are as follows.
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n e = 10 e = 1 e = 0.1 e = 10−2 e = 10−12 e = 10−15

10 1.01 1.10 1.04 1.00 1.00 1.03
20 1.01 1.05 1.04 1.00 0.99 1.03
50 1.00 1.02 1.02 1.00 1.00 1.01

Table 5.2. Ratio mid-rad/inf-sup for Brown’s almost linear function.

For e between 10−11 and 10−3 the ratio was always 1.00, for all n ∈ {10, 20, 50}.
The next example is designed to test whether the worst case factor 1.5 for the

overestimation of a single multiplication in midpoint-radius arithmetic may perpet-
uate for several successive multiplications. For x, x1, ..., xn randomly distributed in
[−10, 10] define

f(X) =
n∑

i=1

n∏
j=1
j 6=i

(X − xj) ,(24)

where X := [x−e, x+e]. The following table shows results for different combinations
of n and e.

n e = 10 e = 1 e = 0.1 e = 10−2 e = 10−12 e = 10−15

10 1.09 1.63 1.14 1.01 1.00 0.98
20 1.05 1.30 1.24 1.03 1.00 0.92
50 1.02 1.21 1.59 1.12 1.00 0.90
100 1.01 1.11 1.82 1.22 1.00 0.84

Table 5.3. Ratio mid-rad/inf-sup for (24).

The worst overestimations of midpoint-radius arithmetic are observed for e around 1.
This confirms Theorem 2.4. For e larger than 1, the midpoint of X moves towards zero
(on the average), thus reducing the overestimation. For the same reason the overesti-
mation grows with n for smaller e, but reduces with growing n for large values of e. For
e between 10−4 and 10−11, the ratio was always 1.00 for all n ∈ {10, 20, 50, 100}. For
very small values of e we observe the same behaviour as in example (16), namely that
midpoint-radius arithmetic becomes better than infimum-supremum representation.

Finally, we repeat this test for Griewank’s function [27]

f(x) =
n∑

ν=1

x2
ν

4000
−

n∏
ν=1

cos
(

xν√
ν

)
+ 1

with test vectors

x =<10y, e>

and random vector y with entries uniformly distributed within [−1, 1]. The results
for different radii e are as follows.

n e = 10 e = 1 e = 0.1 e = 10−2 e = 10−12 e = 10−15

10 1.09 1.21 1.12 1.02 0.99 0.88
20 1.15 1.12 1.01 1.00 0.99 0.97
50 1.21 1.09 1.01 1.00 0.99 0.91

Table 5.4. Ratio mid-rad/inf-sup for Griewank’s function.
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As before, the ratio was always 1.00 for e between 10−11 and 10−3, for all n ∈
{10, 20, 50}. We observe that for small radius the midpoint-radius arithmetic yields
better results than infimum-supremum arithmetic, a behaviour similar to example
(16).

6. Conclusion. We proved error estimates for the maximal overestimation of
midpoint-radius interval arithmetic compared to power set operations. We saw that
this overestimation is uniformly bounded by a worst case factor 1.5. There is numerical
evidence that this factor is much smaller in practical computations and does not
perpetuate.

The main advantage of our algorithms for midpoint-radius interval arithmetic is
that full speed of modern computer architectures can be utilized. To our knowledge
this is the first time that the peak performance of vector and parallel computers is
approached for interval calculations.

We showed that the implementation is easy, and it requires only one small assem-
bly language routine for switching the rounding mode. No cumbersome case distinc-
tions, which may slow down the computation by orders of magnitude, are necessary.

All algorithms including real and complex vectors and matrices have been imple-
mented in the Matlab interval toolbox INTLAB [26], which is available for unlimited
non-profit use from

http://www.ti3.tu-harburg.de/rump/intlab/index.html.

Beside the algorithms described in this note it comprises of a gradient toolbox for
real/complex points, vectors and matrices (full and sparse) as well as intervals over
those, a similar slope toolbox, rigorous input/output routines, rigorous and fast stan-
dard functions for point and interval input and more.
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[13] O. Knüppel. PROFIL / BIAS — A Fast Interval Library. Computing, 53:277–287, 1994.
[14] R. Krawczyk. Newton-Algorithmen zur Bestimmung von Nullstellen mit Fehlerschranken. Com-

puting, 4:187–201, 1969.
[15] R. Krier. Komplexe Kreisarithmetik. PhD thesis, Universität Karlsruhe, 1973.
[16] U. Kulisch. Grundlagen des numerischen Rechnens (Reihe Informatik 19). Bibliographisches

Institut, Mannheim, Wien, Zürich, 1976.
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