
Tibor Csendes (ed.):

Developements in Reliable Computing,

pp. 77–104, Kluwer Academic Publishers, 1999

INTLAB - INTERVAL LABORATORY

SIEGFRIED M. RUMP∗

Abstract. INTLAB is a toolbox for Matlab supporting real and complex intervals, and vectors, full matrices and sparse

matrices over those. It is designed to be very fast. In fact, it is not much slower than the fastest pure floating point algorithms

using the fastest compilers available (the latter, of course, without verification of the result). Beside the basic arithmetical

operations, rigorous input and output, rigorous standard functions, gradients, slopes and multiple precision arithmetic is included

in INTLAB. Portability is assured by implementing all algorithms in Matlab itself with exception of exactly one routine for

switching the rounding downwards, upwards and to nearest. Timing comparisons show that the used concept achieves the

anticipated speed with identical code on a variety of computers, ranging from PC’s to parallel computers. INTLAB is freeware

and may be copied from our home page.

1. Introduction. The INTLAB concept splits into two parts. First, a new concept of a fast interval

library is introduced. The main advantage (and difference to existing interval libraries) is that identical

code can be used on a variety of computer architectures. Nevertheless, high speed is achieved for interval

calculations. The key is extensive (and exclusive) use of BLAS routines [19], [7], [6].

Second, we aim at an interactive programming environment for easy use of interval operations. Our choice

is to use Matlab. It allows to write verification algorithms in a way which is very near to pseudo-code used

in scientific publications. The code is an executable specification. Here, the major difficulty is to overcome

slowness of interpretation. This problem is also solved by exclusive use of high-order matrix operations.

The first concept, an interval library based on BLAS, is the basis of the INTLAB approach. The interval

library based on BLAS is very simple to implement in any programming language. It is a fast way to start

verification on many computers in a two-fold way: fast to implement and fast to execute.

There are a number of public domain and commercial interval libraries, among them [2], [5], [8], [9],[11], [12],

[13], [14], [15], [18] and [27]. To our knowledge, INTLAB is the first interval library building upon BLAS.

The basic assumption for INTLAB is that the computer arithmetic satisfies the IEEE 754 arithmetic standard

[10] and, that a permanent switch of the rounding mode is possible. Switching of the rounding mode

is performed by setround(i) with i ∈ {−1, 0, 1} corresponding to rounding downwards, to nearest, and

rounding upwards, respectively. We assume that, for example, after a call setround(-1) all subsequent

arithmetical operations are using rounding downwards, until the next call of setround. This is true for

almost all PC’s, workstations and many mainframes.

Our goal is to design algorithms with result verification the execution time of which is of the same order of

magnitude as the fastest known floating point algorithms using the fastest compiler available. To achieve

this goal, it is not only necessary to design an appropriate arithmetic, but also to use appropriate verification

algorithms being able to utilize the speed of the arithmetic and the computer. We demonstrate by means of

examples the well known fact that a bare count of operations is not necessarily proportional to the actual

computing time.

Arithmetical operations in INTLAB are rigorously verified to be correct, including input and output and

standard functions. By that it is possible to replace every operation of a standard numerical algorithm by

the corresponding interval operations. However, this frequently leads to dramatic overestimation and is not

recommended. By the principle of definition, interval operations deliver a superset of the result, which is

usually a slight overestimation. It is the goal of validated numerics to design verification algorithms in order

∗Inst. f. Informatik III, Technical University Hamburg-Harburg, Schwarzenbergstr. 95, 21071 Hamburg, Germany,

(rump@tu-harburg.de).

1

to diminish this overestimation, and even to (rigorously) estimate the amount of overestimation. Therefore,

for verified solution of numerical problems one should only use specifically designed verification algorithms.

Some examples are given in Section 5.

Many of the presented ideas are known in one way or the other. However, the combination produces a very

fruitful synergism. Development of validation algorithms is as easy as it could be using INTLAB.

The paper addresses the above mentioned two concepts and is organized as follows. In Section 2 the new

interval library approach based on BLAS is presented together with timings for an implementation in C

on scalar and parallel computers. Corresponding timings for the INTLAB implementation in the presence

of interpretation overhead is presented in Section 3. The latter timings are especially compared with pure

floating point. In Section 4 some details of programming in INTLAB are given and the question of correctness

of programming is addressed. In the following Section 5 we present some algorithms written in INTLAB

together with timing comparisons between verification algorithms and the corresponding pure floating point

(Matlab) implementation. We finish the paper with concluding remarks.

2. An interval library based on BLAS. Starting in the late 70’s an interface for Basic Linear

Algebra Subroutines was defined in [19], [7], and [6]. It comprises linear algebra algorithms like scalar

products, matrix-vector products, outer products, matrix multiplication and many more. The algorithms

are collected in level 1, 2 and 3 BLAS.

The ingenuous idea was to specify the interface, pass it to the manufacturers and leave the implementation

to them. Since BLAS became a major part of various benchmarks, it is the manufacturers own interest to

provide very fast implementations of BLAS for their specific computer. This includes all kinds of optimization

techniques to speed up code such as blocked code, optimal use of cache, taking advantage of the specific

architecture and much more.

In that way BLAS serves a mutual interest of the manufacturer and the user. No wonder, modern software

packages like Lapack [4] extensively use BLAS. Beside speed, the major advantage is the fact that a code

using BLAS is fast on a variety of computers, without change of the code.

This is the motivation to try to design an interval library exclusively using BLAS routines. At first sight

this seems impossible because all known implementations use various case distinctions in the inner loops. In

the following we will show how to do it. We assume the reader is familiar with basic definitions and facts of

interval arithmetic (cf. [3], [21]).

In the following we discuss implementations in a programming language like C or Fortran; interpretation

overhead, like in Matlab, is addressed in Section 3.

We start with the problem of matrix multiplication. Having fast algorithms for the multiplication of two

matrices at hand will speed up many verification algorithms. We have to distinguish three cases. We first

concentrate on real data, where a real interval A is stored by infimum A.inf and supremum A.sup. If A is a

vector or matrix, so is A.inf and A.sup.

2.1. Real Point matrix times real point matrix. First, consider the multiplication of two point

matrices (infimum and supremum coincide) A and B, both exactly representable within floating point. There

is a straightforward solution to this by the following algorithm.

setround(-1)

C.inf = A * B;

setround(1)

C.sup = A * B;

Algorithm 2.1. Point matrix times point matrix

2

We use original INTLAB notation for two reasons. First, the sample code is executable code in INTLAB, and

second it gives the reader a glimpse on readability of INTLAB notation (see the introduction for setround).

Note that this is only notation, interpretation overhead is addressed in Section 3.

Note that Algorithm 2.1 assures that

C.inf ≤ A*B ≤ C.sup(2.1)

including underflow and overflow (comparison of vectors and matrices is always to be understood entrywise);

estimation (2.1) is valid under any circumstances. Moreover, an effective implementation of the floating

point matrix multiplication A*B, like the one used in BLAS, will change the order of execution. This does

not affect validity of (2.1).

2.2. Real point matrix times real interval matrix. Next, consider multiplication of a real point

matrix A∈ Mm,n(IR) and a real interval matrix intB∈ IIMn,k(IR). The aim is to compute C = A*intB

with bounds. Consider the following three algorithms to solve the problem.

C.inf = zeros(size(A,1),size(intB,2));

C.sup = C.inf;

setround(-1)

for i=1:size(A,2)

C.inf = C.inf + min(A(:,i)*intB.inf(i,:) , A(:,i)*intB.sup(i,:));

end

setround(1)

for i=1:size(A,2)

C.sup = C.sup + max(A(:,i)*intB.inf(i,:) , A(:,i)*intB.sup(i,:));

end

Algorithm 2.2. Point matrix times interval matrix, first variant

By Matlab convention, the minimimum and maximum in rows 5 and 9 are entrywise, respectively, the result

is a matrix. The above algorithm implements an outer product matrix multiplication.

Aneg = min(A , 0);

Apos = max(A , 0);

setround(-1)

C.inf = Apos * intB.inf + Aneg * intB.sup;

setround(1)

C.sup = Aneg * intB.inf + Apos * intB.sup;

Algorithm 2.3. Point matrix times interval matrix, second variant

This algorithm was proposed by A. Neumaier at the SCAN 98 conference in Budapest. Again, the minimum

and maximum in lines 1 and 2 are entrywise, respectively, such that for example Apos is the matrix A with

negative entries replaced by zero. It is easy to see that both algorithms work correctly. The second algorithm

is well suited for interpretation.

setround(1)

Bmid = intB.inf + 0.5*(intB.sup-intB.inf);

Brad = Bmid - intB.inf;

setround(-1)

C1 = A * Bmid;

setround(1)

C2 = A * Bmid;

Cmid = C1 + 0.5*(C2-C1);

3

Crad = (Cmid - C1) + abs(A) * Brad;

setround(-1)

C.inf = Cmid - Crad;

setround(1)

C.sup = Cmid + Crad;

Algorithm 2.4. Point matrix times interval matrix, third variant

This algorithm first converts the second factor into midpoint/radius representation and needs three point

matrix multiplications. Recall that Algorithm 2.3 used four point matrix multiplications. This elegant way

of converting infimum/supremum representation into midpoint/radius representation was proposed by S.

Oishi during a visit of the author at Waseda university in fall 1998 [22].

2.3. Comparison of results of Algorithms 2.3 and 2.4. Without rounding errors, the results of all

algorithms are identical because overestimation of midpoint/radius multiplication occurs only for two thick

(non-point) intervals. Practically, i.e. in the presence of rounding errors, this remains true except for the

interval factor being of very small diameter. Consider the following test. For A being

I) the 5× 5 Hilbert matrix,

II) the 10× 10 Hilbert matrix,

III) a 100× 100 random matrix,

IV) a 100× 100 ill-conditioned matrix (cond(A)=1e12)

we calculated an approximate inverse R=inv(A) followed by a preconditioning R*midrad(A,e) for different

values of e. Here, midrad(A,e) is an interval matrix of smallest width such that A.inf ≤ A−e ≤ A+e ≤
A.sup. Let C3 and C4 denote the result achieved by Algorithm 2.3 and 2.4, respectively. The following table

displays the minimum, average and maximum of rad(C4)./rad(C3) for different values of the radius e.

case I) case II)

e | 1e-16 1e-15 1e-14 1e-16 1e-15 1e-14

minimum | 0.74 1.02 1.00 0.78 0.99 1.00

average | 0.85 1.04 1.01 0.90 1.02 1.00

maximum | 0.94 1.10 1.02 0.98 1.06 1.01

case III) case IV)

e | 1e-16 1e-15 1e-14 1e-16 1e-15 1e-14

minimum | 0.48 0.96 0.99 0.83 0.86 0.83

average | 1.09 1.00 1.00 1.02 1.01 1.02

maximum | 1.87 1.05 1.01 1.21 1.23 1.19

Table 2.5. Ratio of radii of Algorithm 2.4 vs. Algorithm 2.3

For very small radius of A, sometimes the one, sometimes the other algorithm delivers better results. However,

in this case the radii of the final result are very small anyway (of the order of few ulps).

We performed the same test for the solution of systems of linear equations with dimensions up to 500. In

this case, all computed results were identical in all components up to less than a hundredth of a per cent of

the radius. Therefore we recommend to use the faster Algorithm 2.4.

The two cases discussed, point matrix times point matrix and point matrix times interval matrix, are

already sufficient for many verification algorithms from linear to nonlinear systems solvers. Here, matrix

multiplication usually occurs as preconditioning.

4

2.4. Real interval matrix times real interval matrix. Finally, consider two interval matrices

intA ∈ IIMm,n(IR) and intB ∈ IIMn,k(IR). The standard top-down algorithm uses a three-fold loop with

an addition and a multiplication of two (scalar) intervals in the most inner loop. Multiplication of two scalar

intervals, in turn, suffers from various case distinctions and switching of the rounding mode. This slows

down computation terribly. An alternative may be the following modification of Algorithm 2.2.

C.inf = zeros(size(intA,1),size(intB,2));

C.sup = C.inf;

setround(-1)

for i=1:size(intA,2)

C.inf = C.inf + min(intA.inf(:,i)*intB.inf(i,:) , ...

intA.inf(:,i)*intB.sup(i,:) , ...

intA.sup(:,i)*intB.inf(i,:) , ...

intA.sup(:,i)*intB.sup(i,:));

setround(1)

for i=1:size(intA,2)

C.sup = C.sup + max(intA.inf(:,i)*intB.inf(i,:) , ...

intA.inf(:,i)*intB.sup(i,:) , ...

intA.sup(:,i)*intB.inf(i,:) , ...

intA.sup(:,i)*intB.sup(i,:));

end

Algorithm 2.6. Interval matrix times interval matrix

Correctness of the algorithm follows as before. For the multiplication of two n×n interval matrices, Algorithm

2.6 needs a total of 8n3 multiplications, additions and comparisons. At first sight this seems to be very

inefficient. In contrast, the standard top-down algorithm with a three-fold loop and a scalar interval product

in the most inner loop can hardly be optimized by the compiler. However, the timings to be given after the

next algorithm tell a different story.

A fast algorithm is possible when allowing a certain overestimation of the result. Algorithm 2.6 computes the

intervall hull in the sense of infimum/supremum arithmetic. When computing the result in midpoint/radius

arithmetic like in Algorithm 2.4, better use of BLAS is possible. Consider the following algorithm for the

multiplication of two interval matrices intA and intB.

setround(1)

Amid = intA.inf + 0.5*(intA.sup - intA.inf);

Arad = Amid - intA.inf;

Bmid = intB.inf + 0.5*(intB.sup - intB.inf);

Brad = Bmid - intB.inf;

setround(-1)

C1 = Amid*Bmid;

setround(1)

C2 = Amid*Bmid;

Cmid = C1 + 0.5*(C2 - C1);

Crad = (Cmid - C1) + ...

Arad * (abs(Bmid) + Brad) + abs(Amid) * Brad ;

setround(-1)

C.inf = Cmid - Crad;

setround(1)

C.sup = Cmid + Crad;

Algorithm 2.7. Interval matrix multiplication by midpoint/radius

5

Unlike Algorithm 2.4, there may be an overestimation of the result. However, we want to stress that the

overestimation is globally limited, independent of the dimension of the matrices. For narrow intervals the

overestimation is very small (for quantification see [25]), for arbitrary intervals it is always globally limited

by a factor 1.5. That means the radii of the intervals computed by Algorithm 2.7 are entrywise not larger

than 1.5 times the radii of the result computed by power set operations. This has already been observed by

Krier [17] in his Ph.D. thesis. For details see also [25]. The analysis holds for rounding-free arithmetic.

Note that Amid, Arad, Bmid and Brad are calculated in Algorithm 2.7 in such a way that

Amid − Arad ≤ A.inf ≤ A.sup ≤ Amid + Arad and

Bmid − Brad ≤ B.inf ≤ B.sup ≤ Bmid + Brad

is assured. It is easily seen that this is indeed always satisfied, also in the presence of underflow.

2.5. Timing for real interval matrix multiplication. An advantage of Algorithm 2.7 is that only

4n3 multiplications and additions plus a number of 0(n2) operations are necessary. With respect to memory

and cache problems those four real matrix multiplications are very fast. A disadvantage is the 0(n2) part of

the algorithm with some memory operations for larger matrices.

Let A, B ∈ Mn(IR) and intA, intB ∈ IIMn(IR), where intA and intB are assumed to be thick inter-

val matrices. An operation count of additions and multiplications for the different cases of real matrix

multiplication is as follows.

A * B n3 for floating point multiplication,

A * B 2n3 for verified bounds, using Algorithm 2.1,

A * intB 4n3 using Algorithm 2.3,

A * intB 3n3 using Algorithm 2.4,

intA * intB 8n3 using Algorithm 2.6,

intA * intB 4n3 using Algorithm 2.7

Table 2.8. Operation count for real matrix multiplication

The following table shows computing times of C-routines for multiplication of two interval matrices for the

standard top-down approach with scalar interval operations in the most inner loop compared to Algorithms

2.6 and 2.7. The timing is on our Convex SPP 2000 parallel computer. Computations have been performed

by Jens Zemke.

dimension | 100 200 500 1000

--

standard | 0.30 2.40 72.3 613.6

Algorithm 2.6 | 0.42 8.9 245 1734

Alg. 2.6 parallel | 1.14 10.7 216 1498

Algorithm 2.7 | 0.02 0.17 3.30 20.2

Alg. 2.7 parallel | 0.02 0.11 0.93 5.9

Table 2.9. Computing times interval matrix times interval matrix (in seconds)

The data of the interval matrices were generated randomly such that all intervals entries were strictly positive.

That means that no case distinction was necessary at all for the standard top-down approach. It follows

that in the examples the standard algorithm needed only 4n3 multiplications, additions and comparisons,

but also additional 4n3 switching of the rounding mode.

The timing clearly shows that the bare operation count and the actual computing time need not be propor-

tional. Obviously, inefficient use of cache and memory slow down the outer product approach Algorithm 2.6

significantly. The lines 3 and 5 in Table 2.9 display the computing time using 4 processors instead of 1. We

6

stress that the same code was used. The only difference is that first the sequential BLAS, then the parallel

BLAS was linked. For the standard top-down algorithm, use of 1 or 4 processors makes no difference.

For the other operations like addition, subtraction, reciprocal and division, may be used standard imple-

mentations combined with the above observations. We skip a detailed description and refer to the INTLAB

code.

2.6. Complex point matrix multiplication. The next problem are complex operations. Again, we

are mainly interested in matrix multiplication because this dominates the computing time of a number of

verification algorithms.

Our design decision was to use midpoint/radius representation for complex intervals. For various reasons

this is more appropriate for complex numbers than infimum/supremum representation using partial ordering

of complex numbers. The definition of midpoint/radius arithmetic goes at least back to Sunaga [26].

In the multiplication of two point matrices A and B a new problem arises, namely that the error during

midpoint calculation has to be treated separately. The following algorithm solves this problem.

setround(-1)

C1 = real(A)*real(B) + (-imag(A))*imag(B) + ...

(real(A)*imag(B) + imag(A)*real(B)) * j ;

setround(1)

C2 = real(A)*real(B) + (-imag(A))*imag(B) + ...

(real(A)*imag(B) + imag(A)*real(B)) * j ;

C.mid = C1 + 0.5 * (C2-C1);

C.rad = C.mid - C1;

Algorithm 2.10. Complex point matrix times point matrix

First, the implementation assures
C1 ≤ A * B ≤ C2

in the (entrywise) complex partial ordering. Second, the midpoint and radius are both calculated with

rounding upwards. A calculation shows that indeed

C.mid− C.rad ≤ A * B ≤ C.mid + C.rad

is always satisfied, also in the presence of underflow.

2.7. Complex interval matrix multiplication. The multiplication of two complex interval matrices

does not cause additional problems. The algorithm is as follows, again in original INTLAB code.

setround(-1)

C1 = real(intA.mid)*real(intB.mid) + (-imag(intA.mid))*imag(intB.mid) + ...

(real(intA.mid)*imag(intB.mid) + imag(intA.mid)*real(intB.mid)) * j ;

setround(1)

C2 = real(intA.mid)*real(intB.mid) + (-imag(intA.mid))*imag(intB.mid) + ...

(real(intA.mid)*imag(intB.mid) + imag(intA.mid)*real(intB.mid)) * j ;

C.mid = C1 + 0.5 * (C2-C1);

C.rad = abs(C.mid - C1) + ...

intA.rad * (abs(intB.mid) + intB.rad) + abs(intA.mid) * intB.rad ;

Algorithm 2.11. Complex interval matrix times interval matrix

Note that the radius is calculated with only two additional point matrix multiplications. Also note that

again midpoint and radius of the result are computed with rounding upwards. Correctness of the algorithm

7

is easily checked. The other complex operations are implemented like the above and do not cause additional

difficulties.

We want to stress again that Algorithms 2.10 and 2.11 exclusively use BLAS routines. This assures fast

execution times. Let A, B ∈ Mn(C) and intA, intB ∈ IIMn(C), where intA and intB are assumed to

be thick interval matrices. An operation count of additions and multiplications for the different cases of

complex matrix multiplication is as follows.

A * B 4n3 for floating point multiplication,

A * B 8n3 for verified bounds,

A * intB 9n3 for verified bounds,

intA * intB 10n3 for verified bounds.

Table 2.12. Operation count for complex matrix multiplication

The factor between interval and pure floating point multiplication is smaller than in the real case; it is only

2, 2.25 and 2.5, respectively.

Finally we mention that, as in the real case, the overestimation of the result of interval matrix multiplication

using the above midpoint/radius arithmetic cannot be worse than a factor 1.5 in radius compared to power

set operations ([17], [25]), and is much better for narrow interval operands [25].

3. The interval library and timings in INTLAB. In the preceding section we discussed a general

interval library - for implementation in a to-compile programming language like Fortran or C. When moving

to an implementation in Matlab, the interpretation overhead becomes a big issue: The ”interpretation count”

becomes much more important than the operation count. That means algorithms should be designed loop-

free using few computing intensive operators. This is true for most of the fast algorithms developed in the

previous section. All following computing times are generated on a 120 Mhz Pentium I Laptop and using

Matlab V5.1.

3.1. Real matrix multiplication. The first example is real matrix multiplication. In many applica-

tions this is a computing intensive part of the code. We compare the computing time of the built-in pure

floating point routines with INTLAB times for verified computations. Both approaches use extensively BLAS

routines. In Table 2.9 we listed the computing times for C-routines on a parallel computer for compiled code;

following are INTLAB times including interpretation overhead on the 120 Mhz Laptop. The following code,

for the example n = 200, is used for testing.

n=200; A=2*rand(n)-1; intA=midrad(A,1e-12); k=10;

tic; for i=1:k, A*A; end, toc/k

tic; for i=1:k, intval(A)*A; end, toc/k

tic; for i=1:k, intA*A; end, toc/k

tic; for i=1:k, intA*intA; end, toc/k

The first line generates an n× n matrix with randomly distributed entries in the interval [−1, 1]. INTLAB

uses Algorithms 2.1, 2.4 and 2.7. The command tic starts the wall clock, toc is the elapsed time since the

last call of tic. The computing times are as follows.

pure verified verified verified

dimension floating point A*A A*intA intA*intA

--

100 0.11 0.22 0.35 0.48

200 0.77 1.60 2.84 3.33

500 15.1 29.1 44.7 60.4

Table 3.1. Real matrix multiplication (computing time in seconds)

8

Going from dimension 100 to 200 there is a theoretical factor of 8 in computing time. This is achieved in

practice. From dimension 200 to 500 the factor should be 2.53 = 15.6, but in practice the factor is between

18 and 19. This is due to cache misses and limited memory.

The INTLAB matrix multiplication algorithm checks whether input intervals are thin or thick. This ex-

plains the difference between the second and third column in Table 3.1. According to Algorithms 2.1, 2.4,

2.7 and Table 2.8, the theoretical factors between the first and following columns of computing times are

approximately 2, 3 and 4, respectively. This corresponds very good to the practical measurements, also for

n = 500. Note that the timing is performed by the Matlab wall clock; actual timings may vary by some 10

per cent.

For the third case, point matrix times interval matrix, alternatively Algorithms 2.3 and 2.4 may be used.

The computing times are as follows.

dimension Algorithm 2.3 Algorithm 2.4

100 0.45 0.35

200 3.79 2.85

500 59.2 44.7

Table 3.2. Algorithms 2.3 and 2.4 for point matrix times interval matrix (computing time in seconds)

The theoretical ratio 0.75 is achieved in the practical implementation, so we use Algorithm 2.4 in INTLAB.

3.2. Complex matrix multiplication. The computing times for complex matrix multiplication using

Algorithms 2.10 and 2.11 are as follows.

pure verified verified verified

dimension floating point A*A A*intA intA*intA

--

100 0.35 1.00 1.11 1.25

200 3.08 6.92 7.80 8.71

500 79.7 119.3 135.4 147.9

Table 3.3. Complex matrix multiplication (computing time in seconds)

For n = 500, again cache misses and limited memory in our Laptop slow down the computing time. Ac-

cording to Table 2.12, the theoretical factors between the first and following columns of computing times

are approximately 2, 2.25 and 2.5, respectively. This corresponds approximately to the measurements. The

timing depends (at least for our Laptop) on the fact that for A, B ∈ Mn(C) the built-in multiplication A

* B is faster than the multiplication used in Algorithm 2.10 for smaller dimensions, but slower for larger

dimensions. Consider

A=rand(n)+j*rand(n); B=A; k=10;

tic; for i=1:k, A * B; end, toc/k

tic; for i=1:k, real(A)*real(B)+(-imag(A)*imag(B);

real(A)*imag(B)+imag(A)*real(B); end, toc/k

for different dimensions n. The timing is as follows.

real/imaginary

n A * B part separately

100 0.37 0.47

200 3.35 3.35

500 81.2 68.7

9

Table 3.4. Different ways of complex matrix multiplication (computing time in seconds)

3.3. Interval matrix multiplication with and without overestimation. Up to now we used the

fast version of interval matrix times interval matrix. Needless to say that the standard approach with three

loops and case distinctions in the inner loop produces a gigantic interpretation overhead. INTLAB allows

to switch online between Algorithms 2.7 and 2.6. A timing is performed by the following statements.

n=100; A=midrad(2*rand(n)-1,1e-12);

IntvalInit(’FastIVMult’); tic; A*A; toc

IntvalInit(’SharpIVMult’); tic; A*A; toc

Computing times are

0.4 seconds for fast mulitplication according to Algorithm 2.7, and

23.0 seconds for sharp multiplication according to Algorithm 2.6.

The difference is entirely due to the severe interpretation overhead. It is remarkable that, in contrast to

compiled code, for the interpreted system now Algorithm 2.6 is apparently the fastest way to compute the

product of two thick interval matrices without overestimation. However, we will see in Section 5 that the

overestimation in Algorithm 2.7 due to conversion to midpoint/radius representation is negligable in many

applications.

4. The INTLAB toolbox. Version 5 of Matlab allows the definition of new classes of variables together

with overloading of operators for such variables. The use and implementation is as easy as one would expect

from Matlab. However, quite some interpretation overhead has to be compensated. Remember that the goal

is to implement everything in Matlab.

4.1. The operator concept. For example, a new type intval is introduced by defining a subdirectory

@intval under a directory in the search path of Matlab. This subdirectory contains a constructor intval.

The latter is a file intval.m containing a statement like

c = class(c,’intval’);

This tells the Matlab interpreter that the variable c is of type intval, although no explicit type declaration

is necessary. Henceforth, a standard operator concept is available with a long list of overloadable operators

including +, -, *, /, \, ’, ~, [], {} and many others.

It has been mentioned before that our design decision was to use infimum/supremum representation for real

intervals, and midpoint/radius representation for complex intervals. From the mathematical point of view

this seems reasonable. Therefore, our data type intval for intervals is a structure with five components:

x.complex boolean, true if interval is complex,

x.inf, x.sup infimum and supremum for real intervals (empty for complex intervals),

x.mid, x.rad midpoint and radius for complex intervals (empty for real intervals).

The internal representation is not visible for the user. For example,

inf(x) or x.inf or get(x,’inf’)

accesses the infimum of the interval variable x independent of x being real or complex. Operations check the

type of inputs to be real or complex.

INTLAB offers three different routines to define an interval:

- by the constructor intval, e.g. x = intval(3);

- by infimum and supremum, e.g. x = infsup(4.3-2i,4.5-.1i);

- by midpoint and radius, e.g. x = midrad(3.14159,1e-5);

10

The first is a bare constructor, the following define an interval by infimum and supremum or by midpoint

and radius, respectively. The second example defines a complex interval using partial ordering.

4.2. Rigorous input and output. If the input data is not exactly representable in floating point,

the (decimal) input data and the internally stored (binary) data do not coincide. This is a problem to all

libraries written in a language like Fortran 90, C++ or Matlab. The well known example

x = intval(0.1)(4.1)

converts 0.1 into the nearest floating number, and then assigns that value to x.inf and x.sup. However,

0.1 is not exactly representable in binary finite precision so that 1/10 will not be included in x.

This is the I/O problem of every interval library. Sometimes, the internal I/O routines do not even satisfy

a quality criterion, or at least this is not specified and/or not guaranteed by the manufacturer (during

implementation of INTLAB we found plenty of such examples). We had to solve this problem for rigorous

input and to guarantee validity of displayed results.

We did not want to execute the assignment (4.1) in a way that a small interval is put around 0.1. One of

the reasons not to do this is that intval(-3) would produce an interval of nonzero radius. Another reason

is that the routine intval is also used just to change the type of a double variable, and the user would not

want to get back an enlarged interval. The better way is to use

x = intval(’0.1’)

instead. In this statement the character string ’0.1’ is converted into an enclosing interval by means of

the INTLAB conversion routine str2intval with result verification. For exactly representable input like

intval(’1’) this does not cause a widening of the interval; this is also true, for example, for intval

(’0.1e1-1.25i’). Constants with tolerances may be entered directly by replacing uncertainties by ’_’. For

example,

x = intval (’3.14159_’)

produces the interval [3.14158, 3.14160]. The underscore _ in input and output is to be interpreted as

follows: A correct inclusion is produced by subtracting 1 from and adding 1 to the last displayed figure.

We want to stay with our philosophy to use only Matlab code and not any C-code or assembly language

code except the routine for switching the rounding mode. There are two problems in writing a conversion

routine in INTLAB. First, the result should be as narrow as possible and second, there should not be too

much interpretation overhead. Both problems are solved by a simple trick. We computed 2 two-dimensional

arrays power10inf and power10sup of double floating point numbers with the property

power10inf(m,e) ≤ m ∗ 10e ≤ power10sup(m,e),(4.2)

for all m ∈ {1, 2, . . . , 9} and e ∈ {−340,−339, . . . , 308}. These are one-digit mantissa floating point numbers

with exponents corresponding to IEEE 754 double format. Those 11682 numbers were computed off-line and

stored in a file. The numbers are sharp. The computation used a rudimentary long arithmetic, all written

in INTLAB, and takes less than half a minute on a 120 Mhz Pentium I Laptop.

With these numbers available, conversion is straightforward. For example,

x = 0.m1m2 . . .mk · 10e ⇒
k∑

i=1

power10inf(mi, e− i) ≤ x ≤
k∑

i=1

power10sup(mi, e− i).(4.3)

For sharp results, summation should be performed starting with smallest terms. This method using (4.3)

together with (4.2) can also be vectorized. This allows fast conversion of long vectors of input strings. The

sign is treated seperately.

11

The output of intervals is also accomplished using (4.2) and (4.3). We convert a double number into a string,

convert the string back into double with directed rounding and check whether the result is correct. If not,

the string has to be corrected. This would be terribly slow if performed for every single component of an

output vector or matrix. However, the code is vectorized such that the interpretation overhead is about the

same for scalar or vector argument. The user hardly recognizes a difference in time of internal input/output

and rigorous input/output. Summarizing, input and output is rigorously verified to be correct in INTLAB.

4.3. Automatic differentiation, pure floating point and rigorous. Most of the other features

in INTLAB are more or less straightforward implementations of an interval library using the algorithms

described in Section 2 and by using the operator concept in Matlab. It also allows, for example, the

implementation of automatic differentiation. For some scalar, vector or matrix x,

gx = initvar(x)

initializes gx to be the dependent variables with values as stored in x. The corresponding data type is

gradient. An expression involving gx is computed in forward differentiation mode with access to value and

gradient by substructures .x and .dx. Consider, for example, the evaluation of the function y = f(x) =

sin(0.1 · π · x). The following m-file

function y = f(x)

y = sin(0.1*pi*x);
(4.4)

may be used to evaluate f(x) by y=f(x) for x being a real or complex scalar, vector or matrix, or a sparse

matrix. By Matlab convention, evaluation of standard functions with vector or matrix argument is performed

entrywise. Similarly,

gy = f(gx)

gives access to gy.x, the same as f(x), and to the partial derivatives gy.dx. For [m,n] being the size of

gx, [m,n,k] is the size of gy.dx, where k is the number of dependent variables. This is true unless n=1, in

which case the size of gy.dx is [m,k]. That means, the gradient information is put into an extra dimension

with length equal to the number of dependent variables. For example, the input

X = initvar([3;-4]); Y = f(X)

produces the output

gradient value Y.x =

0.8090

-0.9511

gradient derivative(s) Y.dx =

0.1847 0

0 0.0971

The operator concept follows the usual rules how to choose the appropriate operator. For example, if one of

the operands is of type interval, the computation will be carried out in interval arithmetic with verified result.

If none of the operands are of type interval, the result is calculated in ordinary floating point arithmetic.

4.4. A problem and its solution. For example,

a = 0.1; x = intval(4); (a-a)*x

will produce a point interval consisting only of zero, although the multiplication is actually an interval

multiplication. However, the left factor is exactly zero. In contrast,

a = intval(’0.1’); x = intval(4); (a-a)*x

12

produces a small interval around zero. For a function defined in an m-file, like the one defined in (4.4), this

might cause problems. The statement

X = intval([3;-4]); Y = f(X)

evaluates the first product 0.1*pi in floating point, and only the following multiplication and the sin is

performed with directed roundings. In order to avoid this, additional knowledge about the type of the

input variable x is needed: In case x is floating point, all operations are floating point, in case x is of type

intval, only interval operations should be used. In fact, the problem is more complicated. In definition

(4.4) we used the built-in variable pi, an approximation of the transcendental number π. For pure floating

point calculations, this is legitimate, but not for interval calculations. Alternatively, we may use an interval

constant like in the following algorithm:

function y = f(x)

cPi = midrad(pi,1e-15);

y = sin(0.1*cPi*x);

(4.5)

But this causes problems in the pure floating point case because the result would always be of type intval.

Our solution to this is a type adjustment by the following algorithm.

function y = f(x)

cPi = typeadj(midrad(pi,1e-15) , typeof(x));

y = sin(0.1*cPi*x);

(4.6)

The function typeadj adjusts the type of the left input argument, in this case cPi, to the right argument.

If x is of type intval, nothing happens, cPi is equal to midrad(pi,1e-15). If x is floating point, so will be

cPi by taking the midpoint of midrad(pi,1e-15), which is pi again. In the same way, the statements

X = initvar([3;-4]); Y = f(X)

X = initvar(intval([3;-4])); Y = f(X)

will work with definition (4.6). In the first case, a pure floating point gradient calculation is performed, and

in the second case an interval gradient calculation. That means in the second case, Y.x and Y.dx are of type

intval being inclusions of the function value and the true gradient.

Similar to the gradient toolbox, there is a slope toolbox in INTLAB for expanding a function with respect

to an expansion ”point” xs (which may, in fact, be an inverval) within an expansion interval x. The above

remarks for typeof and typeadj apply accordingly.

INTLAB makes use of the data types already offered in Matlab, like sparse matrices or complex data. All

the functionality of Matlab concerning for example sparse matrix calculations are immediately available in

INTLAB. For example, the algorithms listed in Section 3 are suitable for sparse matrices without change.

This is the one of the big advantages of the extensive use of BLAS routines.

4.5. Correctness of programming. There are various sources of errors in numerical algorithms. To

achieve rigorously verified results not only the verification ansatz need to be correct but also the implemen-

tation itself. Needless to say that all algorithms in INTLAB are examined by a large number of test routines.

This improves confidence in the library but is no proof of correctness. However, we will give two arguments

applying to INTLAB but not to other numerical algorithms which may imply some additional safety.

The first argument applies to every verification algorithm, namely the necessity of correctness of results. For

example, p = 3.141592653589792 is an excellent approximation for the transcendental number π; however,

the interval p± 10−15 is a wrong answer for the smallest positive zero of sin(x). It turns out, as a practical

experience, that errors sometimes decover by such ”inclusions” being only slightly off the true answer. Other

examples are inclusions like [5, 5 + 10−16] if the integer 5 is the true result. For many verification algorithms

this is much likely pointing to an implementation error.

13

The second argument applies specifically to INTLAB. Due to the interpretative language algorithms are

formulated in a very high level language. Therefore, the algorithms are more like executable specifications,

and therefore very short, and correspondingly easy to check for correctness.

5. Programming and applications in INTLAB. In the following we give some sample programs

to demonstrate the use of INTLAB. All examples are given in original and executable code. Also, we give

execution times with comparisons to pure floating point algorithms (those are frequently near the fastest

achievable for the computer in use). All of the following computing times are again generated on our 120

Mhz Pentium I Laptop using Matlab V5.1.

5.1. Dense linear system. The first example is the solution of a dense system of linear equations.

The following code is used in INTLAB.

function X = denselss(A,b) % linear system solver

R = inv(mid(A)) ; % for dense matrices

xs = R * mid(b) ;

Z = R * (b-intval(A)*xs) ; % residual correction

C = speye(size(A)) - R*intval(A); % residual of preconditioner

Y = Z;

E = 0.1*rad(Y)*hull(-1,1) + midrad(0,10*realmin);

k = 0; kmax = 15; ready = 0;

while ~ready & k<kmax % interval iteration

k = k+1;

X = Y + E;

Y = Z + C * X;

ready = in0(Y,X); % check inclusion in interior

end

if ready % verified inclusion

X = xs + Y;

else

disp(’no inclusion achieved for \’);

X = NaN;

end

Algorithm 5.1. Solution of dense linear systems

This is a well known algorithm for solving systems of linear equations based on the Krawczyk operator [16],

[20]. The algorithm computes an inclusion of the difference of the true solution and the approximate solution

xs. It is identical to the one presented in [23].

The 4th line Z = R*(b-intval(A)*xs) is a typical statement to ensure interval calculation of the residual.

Note that a statement like, for example, Z = R*intval(b-A*xs) would not work correctly in general. The

timing in seconds of Algorithm 5.1 for randomly generated real and complex linear systems of equations is

as follows. The second column refers to both point matrix and right hand side, whereas for the third column

both matrix and right hand side are thick.

pure verified verified

dimension floating point point interval

--

100 0.09 0.53 0.70

200 0.56 3.35 4.23

500 8.2 50.9 67.6

Table 5.2. Solution of real linear systems (computing time in seconds)

14

Algorithm 5.1 requires computation of an approximate inverse and subsequent multiplication of a point

matrix times the system matrix. All other computing times are dominated by 0(n2). Hence, the computing

time in the real case is 3n3 for point and 4n3 for interval linear systems, respectively. Hence, the theoretical

factor between the first column of computing times and following columns is 9 and 12, respectively.

The actual computing times are much better than this. The reason is that the n3 operations for matrix

inversion and matrix multiplication take less than three times the computing time of Gaussian elimination.

This is because code for matrix products can be better blocked and optimized. Consider

n=200; A=2*rand(n)-1; b=A*ones(n,1); k=10;

tic; for i=1:k, inv(A); end, toc/k

tic; for i=1:k, A*A; end, toc/k

tic; for i=1:k, A\b; end, toc/k

taking

1.24 seconds for matrix inversion,

0.78 seconds for matrix multiplication, and

0.56 seconds for Gaussian elimination

on the 120 Mhz Laptop. The practical ratio of computing time for Gaussian elimination to inversion is 2.2

instead of a theoretical 3, and the ratio to matrix multiplication only 1.4 instead of 3.

The computing times for the solution of complex systems of linear equations are as follows. As before, point

refers to both matrix and right hand side being thin, and interval refers to both being thick. For n = 500,

again the effect of cache misses is visible.

pure verified verified

dimension floating point point interval

--

100 0.22 1.92 2.05

200 1.65 13.1 15.1

500 34.0 234 246

Table 5.3. Solution of complex linear systems (computing time in seconds)

As an example of ease of use of programming in INTLAB, we display the code for the verified solution of over-

and underdetermined systems. It is done by solving a larger linear system with square matrix. Brackets

are overloaded interval operators to define matrices by means of blocks. The statement isnan is true if

verification of the constructed square linear system failed. Otherwise, the code is hopefully self-explaining.

Note that the right hand side may be a matrix.

[m k] = size(A); [m1 n] = size(b);

if k~=m1

error(’linear system solver: inner matrix dimensions must agree’)

end

if m==k % linear system with square matrix

X = denselss(A,b);

else

if m>k % least squares problem

Y = denselss([A -eye(m) ; zeros(k) A’] , [b ; zeros(k,n)]);

if ~isnan(Y)

X = Y(1:k,:);

end

else % minimal norm solution

15

Y = denselss([A’ -eye(k) ; zeros(m) A] , [zeros(k,n) ; b]);

if ~isnan(Y)

X = Y(m+1:m+k,:);

end

end

end

Algorithm 5.4. Over- and underdetermined linear systems

5.2. Sparse linear systems. As has been mentioned before, INTLAB supports interval sparse matri-

ces. We use the algorithm for symmetric positive definite systems as presented in [24]. The INTLAB code

is as follows.

function X = sparselss(A,b) % linear system solver for sparse matrices

[s,xs] = singmin(mid(A),mid(b));

As = mid(A) - s*speye(size(A));

C = chol(As);

setround(-1)

p1 = C’*C - As;

setround(1)

p2 = C’*C - As;

r = norm(p2-p1,1);

setround(-1)

minsvd = s - r;

if minsvd<0

disp(’matrix too ill-conditioned’)

X = NaN;

else

setround(1)

X = midrad(xs , norm(A*xs-b)/minsvd) ;

end

setround(0)

Algorithm 5.5. Sparse linear systems

The algorithm uses the routine singmin for a guess of a lower bound of the smallest singular value of A. This

is a straightforward implementation using an approximate Cholesky factorization of A and inverse power

iteration.

For timing we use the Matlab functions sprand to generate a sparse matrix of dimension 1000 with random

entries and random pattern. We add the identity matrix to ensure nonsingularity, and use A*A’ to ensure

symmetric positive definiteness. The generation statement is as follows, the density is 0.9% on the average.

n=1000; A=sprand(n,n,2/n)+speye(n); A=A*A’; b=A*ones(n,1);

Algorithm 4.8 performs a factorization of the matrix. Therefore it is important to reduce fill-in, for example

by minimum degree reordering. The Matlab code

p = symmmd(A); C = chol(A(p,p));

produces a Cholesky factor of the reordered matrix with density of about 11%, without reordering it is

more than 50%. We solve the linear system in pure floating point and with verification using the following

commands.

tic; A(p,p)\b(p); toc

tic; verifylss(A(p,p),b(p)); toc

16

The timing is

2.8 seconds for pure floating point solution, and

18.9 seconds with verification.

For larger dimensions the Matlab routine symmmd becomes very slow; the built-in solver and the verified

solver work well for larger dimensions. The latter will be demonstrated for band matrices. The following

statements produce a random band matrix with 21 nonzero elements per row and test the built-in linear

system solver against our verification algorithm.

k=5; A=spdiags(2*rand(n,2*k+1)-1,-k:k,n,n)+speye(n); A=A*A’; b=A*ones(n,1);

tic, A\b; toc

tic, verifylss(A,b); toc

The computing time is slowed down by the fact that the matrix is not stored as a band matrix but as a

sparse matrix. All matrix operations are general sparse matrix operations. The timing on the 120 Mhz

Laptop is as follows.

n floating point verified

1000 0.12 1.10

2000 0.24 2.26

5000 0.60 5.71

10000 1.21 15.0

20000 4.1 183

Table 5.6. Timing for banded linear systems (in seconds)

Starting with dimension 10000 the timing is dominated by swapping, displaying mainly lack of memory on

our Laptop and a slow disc. Note that due to the sparse matrix storage scheme, Matlab needs for dimension

n = 20000 already 14.6 MByte of storage for the matrix.

5.3. Nonlinear systems. Finally, consider the solution of systems of nonlinear equations. In the

formulation of the function it is important to reduce interpretation overhead. That means, any possibility to

use high order vector and matrix operations should be used. This is the drawback of interactive environments.

This is in particular true when using overloaded operators. Consider, for example,

tic; for i=1:1000, y=sqrt(exp(x)-x); end; toc(5.1)

The computing time is

0.1 seconds for x=0.1, and

9.5 seconds for x=intval(0.1) .

In contrast, the following does the same in vector notation.

X=x*ones(1000,1); tic; Y=sqrt(exp(X)-X); toc

Now the computing time is

0.006 seconds for x=0.1, and

0.024 seconds for x=intval(0.1) .

We also mention that interpretation is particularly slow on the 120 Mhz Pentium I Laptop. The statement

(5.1) executed on a 266 Mhz Pentium II PC needs

0.017 seconds for x=0.1, but

1.51 seconds for x=intval(0.1) ,

17

a speed-up factor 6 compared to the 120 Mhz Laptop. On the other hand, interpretation is at least partially

compensated by the ease of notation. Consider the INTLAB code for the solution of a system of nonlinear

equations. It is assumed that a call f(x) calculates the function value at x. An example for a function f is

given below. The algorithm uses a modified Krawczyk operator [24].

function [X , xs] = verifynlss(f,xs)

% floating point Newton iteration

n = length(xs);

xsold = xs;

k = 0;

while (norm(xs-xsold)>1e-10*norm(xs) & k<10) | k<1

k = k+1; % at most 10, at least 1 iteration performed

xsold = xs;

x = initvar(xs); % initialization of gradient calculation

y = feval(f,x); % f(x) using gradient variable x

xs = xs - y.dx\y.x; % Newton correction

end

% interval iteration

R = inv(y.dx); % approximate inverse of Jacobian

Z = - R * feval(f,intval(xs)); % initialization of interval iteration

X = Z;

E = 0.1*rad(X)*hull(-1,1) + midrad(0,realmin);

ready = 0; k = 0;

while ~ready & k<10

k = k+1;

Y = hull(X + E , 0); % epsilon inflation

Yold = Y;

x = initvar(xs+Y); % interval gradient initialization

y = feval(f,x); % f(x) and Jacobian by

C = eye(n) - R * y.dx; % automatic differentiation

i=0;

while ~ready & i<2 % improved interval iteration

i = i+1;

X = Z + C * Y;

ready = in0(X,Y);

Y = intersect(X,Yold);

end

end

if ready

X = xs+Y; % verified inclusion

else

X = NaN; % inclusion failed

end

Algorithm 5.7. Verified solution of nonlinear systems

The first part is a pure floating point iteration, the second part is to calculate an inclusion. Note that the

18

floating point evaluation of f at x with gradient is performed by

x = initvar(xs);

y = feval(f,x);

in the first part, and the verified evaluation at xs+Y, again with gradient, is performed by

x = initvar(xs+Y);

y = feval(f,x);

As an example consider a problem given by Abbott and Brent in [1], the discretization of

3y”y + y′2 = 0 with y(0) = 0 and y(1) = 20.

We solve the discretized system, not the continuous equation. In the paper, the initial approximation is a

vector all entries of which are equal to 10, the true solution is 20x0.75. The discretized problem is specified

by the following INTLAB function.

function y = f(x)

y = x;

n = length(x); v=2:n-1;

y(1) = 3*x(1)*(x(2)-2*x(1)) + x(2)*x(2)/4;

y(v) = 3*x(v).*(x(v+1)-2*x(v)+x(v-1)) + (x(v+1)-x(v-1)).^2/4;

y(n) = 3*x(n).*(20-2*x(n)+x(n-1)) + (20-x(n-1)).^2/4;

Note the vectorized formulation of the function. The dimension of the nonlinear system is determined by

the number of elements of the specified approximation. The timing for the solution of the nonlinear system

by the following statement

tic; X = verifynlss(’f’,10*ones(n,1)); toc

is

5.4 seconds for dimension n = 50,

8.5 seconds for dimension n = 100, and

20.3 seconds for dimension n = 200.

The first and last components of the inclusion for n = 200 are

X(1:4)’

intval ans =

0.346256418326_ 0.6045521734322 0.8305219234696 1.0376691412984

X(197:200)’

intval ans =

19.7005694833674 19.775568557350_ 19.8504729393822 19.9252832242374

Finally, it may be interesting to analyze the computing intensive parts of the algorithm. This is possible by

the Matlab profile function. The statements

profile verifynlss; n=200; verifynlss(’f’,10*ones(n,1));

profile report; profile done

produce the following output:

Total time in "c:\matlab\toolbox\intlab\intval\verifynlss.m": 21.41 seconds

100% of the total time was spent on lines:

[18 33 34 19 24 38 23 17 26 32]

19

16: xsold = xs;

0.10s, 0% 17: x = initvar(xs);

10.47s, 49% 18: y = feval(f,x);

1.26s, 6% 19: xs = xs - y.dx\y.x;

20: end

22: % interval iteration

0.15s, 1% 23: R = inv(y.dx);

0.42s, 2% 24: Z = - R * feval(f,intval(xs));

25: X = Z;

0.03s, 0% 26: E = 0.1*rad(X)*hull(-1,1) + midrad(0,realmin);

27: ready = 0; k = 0;

31: Yold = Y;

0.02s, 0% 32: x = initvar(xs+Y);

6.07s, 28% 33: y = feval(f,x); % f(x) and Jacobian by

2.68s, 13% 34: C = eye(n) - R * y.dx; % automatic differentiation

35: i=0;

37: i = i+1;

0.16s, 1% 38: X = Z + C * Y;

39: ready = in0(X,Y);

Table 5.8. Profiling nonlinear system solver

From the profile follows that more than half of the computing time is spent for the improvement of the poor

initial approximation and, that most of the time is spent for the function evaluations in lines 18 and 33.

Note that the matrix inversion of the 200 × 200 Jacobian in line 23 takes only 1 % of the computing time

or about 0.2 seconds. The reason seems that the Jacobian is tridiagonal and Matlab matrix inversion takes

advantage of that.

6. Future work and conclusions. INTLAB is an interval toolbox for the interactive programming

environment Matlab. It allows fast implementation of prototypes of verification algorithms. The goal has

been met that the computing time for matrix operations or solution of linear systems is of the order of

comparable pure floating point algorithms. For nonlinear systems, the computing time is usually dominated

by interpretation overhead for the evaluation of the nonlinear function in use. This overhead is diminished

proportional to the possibility of vectorization of the code for the nonlinear function.

Up to now we stay with our philosophy to have everything written in INTLAB, that is Matlab code, except

for the routine for switching the rounding mode. This strategy implies greatest portability and high speed

on a variety of architectures. Whereever Matlab and IEEE 754 arithmetic with the possibility of switching

the rounding mode is available, INTLAB is easy to install and to use.

The (freeware) INTLAB toolbox may be freely copied from the INTLAB home page

http://www.ti3.tu-harburg.de/~rump/intlab/index.html .

Acknowledgement. The author is indebted to two anonymous referees for their thorough reading and for

their fair and constructive remarks. Moreover, the author wishes to thank Shin’ishi Oishi and his group for

many fruitful discussions during his stay at Waseda university, and Arnold Neumaier and Jens Zemke who

contributed with their suggestions to the current status of INTLAB. The latter performed all test runs on

our parallel computer.

20

REFERENCES

[1] J.P. Abbott and R.P. Brent. Fast Local Convergence with Single and Multistep Methods for Nonlinear Equations. Austr.

Math. Soc. 19 (Series B), pages 173–199, 1975.

[2] ACRITH High-Accuracy Arithmetic Subroutine Library, Program Description and User’s Guide. IBM Publications, No.

SC 33-6164-3, 1986.

[3] G. Alefeld and J. Herzberger. Introduction to Interval Computations. Academic Press, New York, 1983.

[4] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney,

S. Ostrouchov, and Sorensen D.C. LAPACK User’s Guide, Resease 2.0. SIAM Publications, Philadelphia, second

edition edition, 1995.

[5] ARITHMOS, Benutzerhandbuch, Siemens AG, Bibl.-Nr. U 2900-I-Z87-1 edition, 1986.

[6] J.J. Dongarra, J.J. Du Croz, I.S. Duff, and S.J. Hammarling. A set of level 3 basic linear algebra subprograms. ACM

Trans. Math. Software, 16:1–17, 1990.

[7] J.J. Dongarra, J.J. Du Croz, S.J. Hammarling, and R.J. Hanson. An extended set of Fortran basic linear algebra

subprograms. ACM Trans. Math. Software, 14(1):1–17, 1988.

[8] D. Husung. ABACUS — Programmierwerkzeug mit hochgenauer Arithmetik für Algorithmen mit verifizierten Ergebnis-

sen. Diplomarbeit, Universität Karlsruhe, 1988.

[9] D. Husung. Precompiler for Scientific Computation (TPX). Technical Report 91.1, Inst. f. Informatik III, TU Hamburg-

Harburg, 1989.

[10] ANSI/IEEE 754-1985, Standard for Binary Floating-Point Arithmetic, 1985.

[11] R.B. Kearfott, M. Dawande, K. Du, and C. Hu. INTLIB: A portable Fortran-77 elementary function library. Interval

Comput., 3(5):96–105, 1992.

[12] R.B. Kearfott, M. Dawande, and C. Hu. INTLIB: A portable Fortran-77 interval standard function library. ACM Trans.

Math. Software, 20:447–459, 1994.

[13] R. Klatte, U. Kulisch, M. Neaga, D. Ratz, and Ch. Ullrich. PASCAL-XSC — Sprachbeschreibung mit Beispielen. Springer,

1991.

[14] O. Knüppel. PROFIL / BIAS — A Fast Interval Library. Computing, 53:277–287, 1994.

[15] O. Knüppel. PROFIL/BIAS and extensions, Version 2.0. Technical report, Inst. f. Informatik III, Technische Universität

Hamburg-Harburg, 1998.

[16] R. Krawczyk. Newton-Algorithmen zur Bestimmung von Nullstellen mit Fehlerschranken. Computing, 4:187–201, 1969.

[17] R. Krier. Komplexe Kreisarithmetik. PhD thesis, UniversitätKarlsruhe, 1973.

[18] C. Lawo. C-XSC, a programming environment for verified scientific computing and numerical data processing. In E.

Adams and U. Kulisch, editors, Scientific computing with automatic result verification, pages 71–86. Academic Press,

Orlando, Fla., 1992.

[19] C.L. Lawson, R.J. Hanson, D. Kincaid, and F.T. Krogh. Basic Linear Algebra Subprograms for FORTRAN usage. ACM

Trans. Math. Soft., 5:308–323, 1979.

[20] R.E. Moore. A Test for Existence of Solutions for Non-Linear Systems. SIAM J. Numer. Anal. 4, pages 611–615, 1977.

[21] A. Neumaier. Interval Methods for Systems of Equations. Encyclopedia of Mathematics and its Applications. Cambridge

University Press, 1990.

[22] S. Oishi. private communication, 1998.

[23] S.M. Rump. Kleine Fehlerschranken bei Matrixproblemen. PhD thesis, Universität Karlsruhe, 1980.

[24] S.M. Rump. Validated Solution of Large Linear Systems. In R. Albrecht, G. Alefeld, and H.J. Stetter, editors, Computing

Supplementum, volume 9, pages 191–212. Springer, 1993.

[25] S.M. Rump. Fast and parallel interval arithmetic. BIT, 39(3):539–560, 1999.

[26] T. Sunaga. Theory of an Interval Algebra and its Application to Numerical Analysis. RAAG Memoirs, 2:29–46, 1958.

[27] J. Zemke. b4m - BIAS for Matlab. Technical report, Inst. f. Informatik III, Technische Universität Hamburg-Harburg,

1998.

21

