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ILL-CONDITIONED MATRICES ARE COMPONENTWISE NEAR
TO SINGULARITY

SIEGFRIED M. RUMP∗

Abstract. For a square matrix normed to 1, the normwise distance to singularity is well known
to be equal to the reciprocal of the condition number. In this paper we give an elementary and self-
contained proof for the fact that an ill-conditioned matrix is also not far from a singular matrix in a
componentwise sense. This is shown to be true for any weighting of the componentwise distance. In
words: Ill-conditioned means for matrix inversion nearly ill-posed also in the componentwise sense.

1. Introduction. The classical normwise condition number measures the sensi-
tivity of the inverse of a matrix in a normwise sense. Given a real n × n matrix A,
which we always assume to be nonsingular, and a matrix norm || · ||, the condition
number may be defined by

κ(A) := lim
ε→0+

sup
||δA||≤ε·||A||

||(A + δA)−1 −A−1||
ε||A−1|| .

It is well known that this condition number can be characterized by

κ(A) = ||A−1|| ||A||.
For matrix norms subordinate to a vector norm and the matrix A normed to 1, it is
also well known that the reciprocal of the condition number is equal to the normwise
distance to the nearest singular matrix

min{0 ≤ α ∈ R | ∃Ã : ||Ã−A|| ≤ α · ||A|| and Ã singular} =
1

κ(A)

(see, for example, [14, Theorem 2.8]). Thus, an ill-conditioned matrix is nearby a
singular matrix in the normwise sense.

Here and in the following of the paper, absolute value and comparison of matrices
are always to be understood componentwise, for example |Ẽ| ≤ αE :⇔ |Ẽij | ≤
αEij for 1 ≤ i, j ≤ n.

Componentwise perturbation analysis for matrix inversion or the solution of linear
systems leads to the Bauer-Skeel condition number ([2], [13])

condBS(A,E) = || |A−1|E ||,(1)

where E is some nonnegative n× n weight matrix. Note that (1) defines a condition
number with respect tso the distance induced by E. The apparent contradiction,
that replacing E by 2E doubles condBS(A, E) resolves because the distance has been
changed. Usually, A and E should have norms of the same size. For the important
case of componentwise relative perturbations, E = |A|, this is naturally the case.

The condition number (1) is not independent of diagonal column scaling. The
optimal Bauer-Skeel condition (see [3]) has been defined by

cond(A,E) := inf
D

condBS(AD,ED).
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This condition number is independent of diagonal row and column scaling. The same
remark as above applies: The condition number is defined with respect to the distance
induced by E.

Denoting the spectral radius by ρ, it is for any p-norm (see [1])

cond(A,E) = ρ(|A−1|E) and cond(A, |A|) = inf
D1,D2

cond∞(D1AD2).(2)

That means for suitably scaled matrices and relative perturbations, the ∞-norm con-
dition number and the (componentwise) Bauer-Skeel condition number are identical,
and the reciprocal of this number is the ∞-norm distance to the nearest singular ma-
trix. Similar to the normwise case, it seems natural to ask whether a matrix being
ill-conditioned in the componentwise sense is not too far from a singular matrix in
the same componentwise sense.

Define the componentwise distance to the nearest singular matrix weighted by a
nonnegative matrix E by

σ(A,E) := min {α ≥ 0 | ∃Ẽ with |Ẽ| ≤ αE and A + Ẽ singular}.(3)

If no such α exists, we set σ(A, E) := ∞. The set {det Ã | |Ã−A| ≤ σ(A,E) ·E} and
a compactness argument show that the minimum instead of an infimum may be used
in (3).

The question above was, is the reciprocal cond(A, E)−1 of the componentwise
condition number not too far from the componentwise distance σ(A, E) to the nearest
singular matrix?

This has been conjectured for the important case of relative perturbations E = |A|
by Demmel and N. Higham [3], and Higham writes [5]: “This conjecture is both plau-
sible and aesthetically pleasing because σ(A, |A|) is invariant under two-sided diagonal
scalings of A and ρ(|A−1| · |A|) is the minimum ∞-norm condition number achievable
by such scalings.”

We solve this conjecture in the affirmative for arbitrary weight matrices E by
proving

1
ρ(|A−1|E)

≤ σ(A,E) <
(3 + 2

√
2)n

ρ(|A−1|E)
.(4)

We note that we cannot hope to find a computationally simple formula or even al-
gorithm for σ(A,E) since Poljak and Rohn [7] showed that computation of σ(A,E)
is NP-hard. We also note that the lower bound in (4) is well known and sharp, and
the upper bound in (4) is almost sharp in the sense that the factor (3 + 2

√
2) can-

not be replaced by 1. The latter is because there are general n × n examples with
σ(A, |A|) = n/ρ(|A−1||A|).

The result (4) has been proven in [9], and it uses extensively results obtained
in [10] and especially [11]. The latter paper develops a Perron-Frobenius theory for
matrices without sign restrictions. In the following, a self-contained, simplified and
elementary proof of (4) is presented using only basic facts from linear algebra.

The paper is organized as follows. In the second chapter we give some charac-
terizations of the componentwise distance to the nearest singular matrix. In those
results, the sign-real spectral radius ρS

0 , which is characterized in Chapter 3, plays a
key role. It turns out that lower bounds on ρS

0 imply upper bounds for σ(A,E), the
hard part in (4). Such bounds are derived in Chapter 4. Finally, the pieces are put
together in Chapter 5 to prove our main result (4).
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2. Characterizations of σ(A,E). Define the real spectral radius [8] by

ρ0(A) := max{|λ| | λ is real eigenvalue of A}.
We set ρ0(A) := 0 if A has no real eigenvalue. Let a nonsingular real n× n matrix A
and a nonnegative n× n matrix E be given, and denote the n× n identity matrix by
I. Recall that absolute value and comparison will always be used componentwise.

For |Ẽ| ≤ E and |λ| = ρ0(A−1Ẽ) 6= 0, the matrix λI − A−1Ẽ is singular. Mul-
tiplying by λ−1A yields that A − λ−1Ẽ is singular with |λ−1Ẽ| ≤ λ−1E. Therefore,
σ(A,E) ≤ λ−1 and

σ(A,E) ≤ 1
max
|Ẽ|≤E

ρ0(A−1Ẽ)
.(5)

Conversely, suppose A + F̃ is singular for |F̃ | ≤ αE and α := σ(A,E). Recall that
A is always assumed to be nonsingular and therefore α > 0. Then α−1I + A−1 ·
α−1F̃ is singular as well, and therefore ρ0(A−1 · α−1F̃ ) ≥ α−1. With Ẽ := α−1F̃
it is σ(A,E) = α ≥ {ρ0(A−1Ẽ)}−1 and |Ẽ| ≤ E. Together with (5) this proves
the following characterization for the componentwise distance to the nearest singular
matrix σ(A,E) as defined in (3):

σ(A, E) =
1

max
|Ẽ|≤E

ρ0(A−1Ẽ)
.(6)

This includes the case∞ = 1/0. In (6) the maximum is taken over infinitely many ma-
trices Ẽ. We mention (but do not need) that it is not difficult to see that the maximum
in (6) can be restricted to |Ẽ| = E. This is because det(λI −A−1Ẽ) depends linearly
on perturbations of a single entry of Ẽ, and for ρ0(A−1F ) = max

|Ẽ|≤E
ρ0(A−1Ẽ) = λ

and |Fij | < Eij one can conclude from the definition of ρ0 that det(λI − A−1F ) = 0
independent of Fij , so especially for Fij := Eij .

Now we can prove the lower bound for σ(A,E) in (4). For each |Ẽ| ≤ E,

ρ0(A−1Ẽ) ≤ ρ(A−1Ẽ) ≤ ρ(|A−1Ẽ|) ≤ ρ(|A−1| · E),

which proves the left inequality in (4).
The real spectral radius need not be continuous in the matrix components as

A(ε) =
(

1 ε
−1 1

)
shows with ρ0(A(ε)) = 0 for ε > 0, and ρ0(A(0)) = 1. As a

matter of fact, σ(A,E) depends continuously on A and E [10, Lemma 6.1]. That
means the maximum in (6) must introduce some smoothing. We will identify this
smoothing in order to obtain a continuous quantity characterizing σ(A, E).

Define a signature matrix S to be diagonal with Sii ∈ {+1,−1}, that means
|S| = I. Then for any such S,

σ(A,E)−1 = max
|Ẽ|≤E

ρ0(A−1Ẽ)

= max
|Ẽ|≤E

ρ0(SA−1ẼS)(7)

= max
|Ẽ|≤E

ρ0(SA−1Ẽ).
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Since this equality holds for any signature matrix S, we define the sign-real spectral
radius by

ρS
0 (A) := max

S̃
ρ0(S̃A),(8)

where the maximum is taken over all signature matrices S̃. Then by (7) we may
replace ρ0 by ρS

0 in (6) and obtain the characterization

σ(A,E) =
1

max
|Ẽ|≤E

ρS
0 (A−1Ẽ)

.(9)

We note that Rohn [8] showed σ(A,E)−1 = maxS1,S2 ρ0(S1A
−1S2E). For the purpose

of proving (4) we only need (9).

3. Characterizations of ρS
0 . The sign-real spectral radius has been defined and

thoroughly investigated in [11]. In the following we list only those properties of ρS
0

(with new proofs) which are necessary to prove the right inequality in (4).
For nonsingular diagonal D, the set of eigenvalues of A and D−1AD are identical,

and signature matrices are idempotent. Hence, for signature matrices S1, S2,

ρS
0 (A) = ρS

0 (D−1AD) = ρS
0 (S1AS2).(10)

Moreover,

ρS
0 (αA) = |α| · ρS

0 (A) for α ∈ R.(11)

Using the characterization (9) yields for nonsingular diagonal D1, D2, and nonzero α,

σ(D1AD2, |D1ED2|) = σ(A,E) and

σ(αA, E) = σ(A, |α−1|E) = |α| · σ(A, E).
(12)

Next we derive a simple-to-compute lower bound for ρS
0 . This will be one of the

keys to prove the right inequality in (4). It will also yield a characterization of ρS
0

identifying it as the extension of the Perron-Frobenius theory to real matrices without
sign restriction.

We will use the linearity of the determinant subject to rank-1 updates. Although
well known, this result does not seem to belong to the repertoire of standard text
books. For an n× n matrix A and u, v ∈ Rn,

det(A + αuvT ) = det A + α · vT adj A · u,(13)

where adj denotes the classical adjoint. To prove (13) for nonsingular A use

det(A + αuvT ) = det A · det(I + αA−1uvT ) = det A ·∏ λi(I + αA−1uvT )
= det A ·∏(1 + αλi(A−1uvT )) = det A · (1 + αvT A−1u)(14)

denoting eigenvalues by λi and using the fact that the set of nonzero eigenvalues of
BC and CB is identical for B ∈ Mm,n(R), C ∈ Mn,m(R). For singular A use a
continuity argument.

Theorem 3.1. Suppose A is a real n× n matrix, 0 6= x ∈ Rn and 0 ≤ r ∈ R.
Then

|Ax| ≥ r · |x| ⇒ ρS
0 (A) ≥ r.
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Proof. Define diagonal D by

Dii :=
{

r|xi|/|(Ax)i| for (Ax)i 6= 0
0 otherwise.

If (Ax)i = 0, then |(Ax)i| ≥ r|xi| implies rxi = 0. Therefore, D · |Ax| = r · |x| with
0 ≤ Dii ≤ 1. There are signature matrices S1, S2 with S1Ax = |Ax| and x = S2|x|,
and for D̂ := S2DS1 it follows D̂Ax = rx. Now x 6= 0 yields

det(rI − D̂A) = 0 with − 1 ≤ D̂ii ≤ 1.(15)

We construct a signature matrix S with det(rI−SA) ≤ 0. For fixed index i, 1 ≤ i ≤ n,
define D̃ = D̃(α) by

D̃νν :=
{

D̂νν for ν 6= i
α for ν = i.

Then the difference between rI − D̂A and rI − D̃A is of rank 1, and using (13), (15)
and especially −1 ≤ D̂ii ≤ 1 it follows that det(rI − D̃A) ≤ 0 for α = 1 or α = −1.
Repeating this argument for all indices i, 1 ≤ i ≤ n, we obtain a signature matrix S
with

det(rI − SA) ≤ 0.

This is the value of the characteristic polynomial P (t) = det(tI − SA) of SA at the
nonnegative point t = r. Because P (t) → +∞ for t → +∞, P (t) must cross the real
axis for some t∗ ≥ r. Now (10) implies

r ≤ t∗ ≤ ρ0(SA) ≤ ρS
0 (A).

The last argument in the proof of Theorem 3.1 also implies that SA must have
a real eigenvalue λ for some S ∈ S (recall that A need not have a real eigenvalue if
n is even) because for at least half of all 2n signature matrices, det(rI − SA) ≤ 0 at
r = 0.

The following characterization of ρS
0 shows the striking similarity to the Perron

root of nonnegative matrices. For nonnegative A it is (see, for example, Corollary
8.3.3 in [6])

ρ(A) = max
x≥0
x6=0

min
xi 6=0

(Ax)i

xi
for A ≥ 0.

Removing the sign restriction for A we have the following characterization of ρS
0 .

Theorem 3.2. Suppose A is a real n× n matrix. Then

ρS
0 (A) = max

x∈Rn

x6=0

min
xi 6=0

∣∣∣∣
(Ax)i

xi

∣∣∣∣ .

Proof. Let S be a signature matrix such that SAz = λz, 0 6= z ∈ Rn with
|λ| = ρS

0 (A). Then

min
zi 6=0

∣∣∣∣
(Az)i

zi

∣∣∣∣ = |λ| = ρS
0 (A),
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and

ρS
0 (A) ≤ max

x∈Rn

x6=0

min
xi 6=0

∣∣∣∣
(Ax)i

xi

∣∣∣∣ .

Conversely, Theorem 3.1 implies for any nonzero vector x

ρS
0 (A) ≥ min

xi 6=0

∣∣∣∣
(Ax)i

xi

∣∣∣∣ .

The theorem is proved.
Theorem 3.1 implies, similar to Perron-Frobenius theory, inheritance of ρS

0 : going
to a principal submatrix cannot increase the sign-real spectral radius. To see this let Ã

be a principal submatrix, and Let 0 6= z ∈ Rk with ρS
0 (Ã) = min

zi 6=0

∣∣∣ (Ãz)i

zi

∣∣∣. Augmenting

z with zeros to a vector x ∈ Rn and using Theorem 3.1 proves the following result.
Corollary 3.3. Suppose A is a real n×n matrix. Then ρS

0 has the inheritance
property:

ρS
0 (A) ≥ ρS

0 (Ã) for any principal submatrix Ã of A.(16)

Combining (9) and Theorem 3.2 yields

σ(A,E) =
1

max
|Ẽ|≤E

max
x∈Rn

x6=0

min
xi 6=0

∣∣∣ (A−1Ẽx)i

xi

∣∣∣
.

That means any Ẽ with |Ẽ| ≤ E and any x 6= 0 yield an upper bound for σ(A,E).
Following, we will identify suitable Ẽ and x for proving the upper bound in (4).

4. Lower bounds on ρS
0 . Using (9), any lower bound on ρS

0 implies an upper
bound on σ(A,E), and this is what we need to make progress with the right inequality
of (4). Corollary 3.3 already gives such lower bounds, among them

ρS
0 (A) ≥ max |Aii|.(17)

By using the inheritance property (16), a lower bound on the sign-real spectral radius
of any 2× 2 principal submatrix of A is a lower bound for the matrix A as well.

Lemma 4.1. Suppose A is a real 2× 2 matrix with A =
(

a b
c d

)
. Then

ρS
0 (A) ≥

√
|bc|.(18)

Proof. Using (10) we may assume without loss of generality bc ≥ 0. Then the
eigenvalues (a + d±

√
(a− d)2 + 4bc)/2 of A are both real, and (18) follows.

As a consequence of Lemma 4.1 and Corollary 3.3, we note

ρS
0 (A) ≥ max

√
|Aij ·Aji| for all i, j.(19)

This concept can be extended to k × k submatrices as follows. A not necessarily
ordered subset ω = (ω1, ..., ωk) of k ≥ 1 mutually distinct integers out of {1, ..., n}
defines a cycle

(Aω1ω2 , Aω2ω3 , ..., Aωkω1)
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in A. Note that different from other definitions [4], [12] a diagonal element Aii is

a cycle of length 1. The geometric mean of a cycle product Aω :=
k∏

i=1

Aωiωi+1 with

ωk+1 := ω1 is

∣∣∣
∏

Aω

∣∣∣
1/|ω|

=

∣∣∣∣∣
k∏

i=1

Aωiωi+1

∣∣∣∣∣

1/k

with ωk+1 := ω1 and |ω| := k.

The lower bounds (17) and (19) are geometric means of cycle products of length 1 and
2, respectively. The aim of this chapter is to derive a similar lower bound depending
on the geometric mean of cycles of length greater than 2. Before we proceed on this
we need the following technical lemma.

Lemma 4.2. Suppose L is a strictly lower triangular matrix, suppose D is a
diagonal matrix, and suppose x is a vector. Then there exists a signature matrix S
with

|(L + D)Sx| ≥ |DSx|.(20)

Proof. We show by induction over the rows k that |(L + D)Sx|k ≥ |DSx|k for a
suitable signature matrix S. For k = 1 there is nothing to prove because L is strictly
lower triangular. Suppose there exists some signature matrix S satisfying (20) for
rows i, 1 ≤ i < k. If (LSx)k has the same sign as (DSx)k, (20) is already satisfied
for i = k:

|(L + D)Sx|k = |LSx|k + |DSx|k ≥ |DSx|k.

Otherwise, set Skk := −1. Then (20) is still satisfied for 1 ≤ i < k because L
is strictly lower triangular, and by construction it is also satisfied for i = k. The
induction finishes the proof.

In preparation for the general case we start with a lower bound on ρS
0 depending

on cycle products in a special case.
Lemma 4.3. Suppose A is an n× n matrix with |Aij | ≤ 1, 1 ≤ i, j ≤ n. For the

full cycle ω = (1, 2, ..., n) suppose Aωiωi+1 = 1 for 1 ≤ i ≤ n and ωn+1 := ω1. Then

ρS
0 (A) > (3 + 2

√
2)−1.(21)

Proof. Define the permutation matrix P by Pωiωi+1 = 1 for 1 ≤ i ≤ n. Then all
diagonal elements of PT A are equal to one. Define the splitting

PTA = L + I + U(22)

into the strictly lower triangular matrix L, the identity matrix I, and the strictly
upper triangular matrix U . In order to be able to apply Theorem 3.1 we will identify
a positive vector y ∈ Rn with |ASy| > (3 + 2

√
2)−1 · |y| for some signature matrix S.

For the moment, let x ∈ Rn be an arbitrary positive vector. By Lemma 4.2 and
(22), there exists a signature matrix S with

|ASx| = P · |(L + I + U)Sx| ≥ P · {|(L + I)Sx| − |USx|}
≥ P · {|Sx| − |USx|} = Px− P · |USx|.(23)
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By assumption, |Uij | ≤ 1, and therefore (P · |USx|)i ≤
n∑

ν=i+2

xν for 1 ≤ i ≤ n − 1

and (P · |USx|)n ≤
n∑

ν=2
xν . Together with (23) it follows that for any positive x ∈ Rn

there exists a signature matrix S with

|ASx|i ≥ xi+1 −
n∑

ν=i+2

xν for 1 ≤ i ≤ n− 1, and

|ASx|n ≥ x1 −
n∑

ν=2
xν .

(24)

Our specific choice y = x is

yi := qi for 1 ≤ i ≤ n with q := 1−
√

2/2 .

Then 1−
n∑

ν=1
qν > 1− q/(1− q) = 2− 2

√
2, and by (24)

|ASy|i ≥ yi+1 −
n∑

ν=i+2

yν > qi · q · (2−√2) = (3 + 2
√

2)−1 · yi for 1 ≤ i ≤ n− 1,

|ASy|n ≥ y1 −
n∑

ν=2
yi > q · (2−√2) > (3 + 2

√
2)−1 · yn .

Hence |ASy| > (3 + 2
√

2)−1 · |y|, and Theorem 3.1, ρS
0 (A) = ρS

0 (AS) and a continuity
argument finish the proof.

With these preparatory lemmas we can prove a lower bound for the sign-real
spectral radius using cycle products.

Theorem 4.4. Suppose A is an n× n matrix, and suppose ω = (ω1, ..., ωk) is a
cycle. Then

ρS
0 (A) > (3 + 2

√
2)−1 ·

∣∣∣
∏

Aω

∣∣∣
1/|ω|

.

Proof. Without loss of generality we may assume ζ := |∏ Aω|1/|ω| to be the
maximum geometric mean of the cycle products of A.

Set B := ζ−1 · A[ω] ∈ Mk(R) with A[ω] being the principal submatrix of A with
rows and columns in ω. Then |∏Bω̃| = 1 for the full cycle ω̃ = (1, ..., k), and this is
the maximum absolute value of a cycle product in B (because otherwise ζ would not
be maximal in A). Diagonal similarity transformations leave cycle products invariant.
Define the k × k diagonal matrix D by

Dii :=
k∏

ν=i

Bν,ν+1 for 1 ≤ i ≤ k and Bk,k+1 := Bk1.

A computation using
∣∣∣∣

k∏
ν=1

Bν,ν+1

∣∣∣∣ = 1 yields

|(D−1BD)i,i+1| = 1 for 1 ≤ i ≤ k and k + 1 interpreted as 1.

Hence, the absolute value of all elements of the full cycle ω̃ = (1, ..., k) of C := D−1BD
is equal to 1. Furthermore, it is |Cij | ≤ 1, because otherwise there would exist a cycle
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product of C and henceforth of B larger than 1 in absolute value. Finally, for a
suitable signature matrix S it is (SC)i,i+1 = 1 for 1 ≤ i ≤ k, k + 1 interpreted as
1. Hence SC = SB−1DB satisfies the assumptions of Lemma 4.3. Using (10), (11),
(16), the definition of B and Lemma 4.3 yield

ρS
0 (A) ≥ ρS

0 (A[ω]) = ζ · ρS
0 (B) = ζ · ρS

0 (SD−1BD) > (3 + 2
√

2)−1 · ζ.

The proof is finished.
We mention that the constant (3 + 2

√
2)−1 in Theorem 4.4 cannot be replaced

by a constant larger than 1/2.

5. Main result. We now turn to the proof of (4). The working horses will be
(9), Theorem 3.2 and Theorem 4.4. First, we mention that the right inequality in (4)
is sharp up to the constant factor 3 + 2

√
2. This is because for

A =




1 1
1 0 1

1 0
. . . . . .

0 1
1 s




with s = (−1)n+1(25)

it is

σ(A, |A|) =
n

ρ(|A−1| |A|) .(26)

This can be seen because on the one hand, |A−1| · |A| = (1)nn, the matrix with all 1’s,
and therefore ρ(|A−1| · |A|) = n for all n. On the other hand, the determinant of A is
equal to the sum of two full cycles in A, both being equal to 1 in absolute value, and s
is choosen such that |det A| = 2. Therefore, any relative change of the components of
A less than 100% cannot produce a singular matrix, henceforth σ(A, |A|) = 1. Note
that the matrix in (25) is symmetric and relative perturbations are used. In [?] a
similar example with weakly diagonally dominant A is given.

For the proof of the right inequality in (4) let a nonsingular n× n matrix A and
a nonnegative n× n matrix E be given, and set B := |A−1| ·E. If ρ(B) = 0, then (9)
implies σ(A, E)−1 = max

|Ẽ|≤E
ρS
0 (A−1Ẽ) ≤ ρ(|A−1|E) = 0, and (4) is satisfied. For the

following assume r := ρ(B) > 0.
Using the irreducible normal form of the nonnegative matrix B, there is an ir-

reducible k × k principal submatrix C of B with ρ(C) = ρ(B) = r. If B itself is
irreducible, then C = B. Let x be the positive eigenvector of C to the positive Perron
root ρ(C) = r. Let diagonal D have the elements of x in the diagonal, and denote by
(1) the vector with all components equal to 1. Then

D−1CD · (1) = r · (1).

Therefore, in each row of the nonnegative matrix D−1CD there exists an element
greater or equal to r/k, and there is a cycle (D−1CD)ω̃, ω̃ out of {1, ..., k}, with

r/k ≤
∣∣∣
∏

(D−1CD)ω̃

∣∣∣
1/|ω̃|

=
∣∣∣
∏

Cω̃

∣∣∣
1/|ω̃|
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(recall that diagonal transformations leave cycle products invariant). The cycle ω̃
in the principal submatrix C of B defines a cycle Bω in B, ω = (ω1, ..., ωk) out of
{1, ..., n}, with

r/n ≤ r/k ≤
∣∣∣
∏

Cω̃

∣∣∣
1/|ω̃|

=
∣∣∣
∏

Bω

∣∣∣
1/|ω|

=
∣∣∣
∏

(|A−1|E)ω

∣∣∣
1/|ω|

.(27)

The elements of the cycle (|A−1|E)ω are located in mutually different rows and
columns, respectively. Therefore, the signs of the elements of an n × n matrix F
with |F | = E can be chosen such that A−1F and |A−1|E have coinciding elements in
the cycle ω:

(A−1F )ωiωi+1 = (|A−1|E)ωiωi+1 for 1 ≤ i ≤ k, ωk+1 := ω1.

Hence, (9) together with Theorem 4.4 and (27) yields

σ(A,E)−1 = max
|Ẽ|≤E

ρS
0 (A−1Ẽ) ≥ ρS

0 (A−1F ) > (3 + 2
√

2)−1 ·
∣∣∣
∏

(A−1F )ω

∣∣∣
1/|ω|

≥ (3 + 2
√

2)−1 · r/n =
ρ(|A−1|E)
(3 + 2

√
2)n

.

This proves the right inequality of (4) and together with (25), (26) we have the
following proposition.

Proposition 5.1. Suppose A is a nonsingular n×n matrix, and suppose E is a
nonnegative n× n matrix. Then

1
ρ(|A−1|E)

≤ σ(A,E) <
(3 + 2

√
2) · n

ρ(|A−1|E)
.

The constant 3 + 2
√

2 cannot be replaced by 1.
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