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A NOTE ON EPSILON-INFLATION

S. M. RUMP∗

Abstract. The epsilon-inflation proved to be useful and necessary in many verification algo-
rithms. Different definitions of an epsilon-inflation are possible, depending on the context. Recently,
certain theoretical justifications and optimality results were proved for an epsilon-inflation without
absolute term. In this note we show that in currently used interval iterations the epsilon-inflation
without absolute term does not serve the purpose it is defined for. A new epsilon-inflation is proposed.

Many verification algorithms for calculating an inclusion of the solution of a given
problem use Banach’s or Brouwer’s Fixed Point theorem. The main point of those
algorithms is to verify that a certain interval is mapped into itself or into its interior.

We assume the reader is familiar with the fact that this self-mapping is the central
part of many verification algorithms for systems of linear or nonlinear equations,
algebraic eigenproblems, polynomial zeros and others. References include [2], [9],
[12], [13] and many more. For an overview see e.g. [7], commercial implementations
include [1], [3], [8], [16].

If this self-mapping cannot be verified for the initial test interval, an interval
iteration is started. To the author’s knowledge, it was first noted by Caprani and
Madsen [5] that it is useful to enlarge the computed iterates prior to the next iteration
in order to increase chances for a self-mapping.

The term epsilon-inflation was introduced in [13]. For a real interval X the original
definition is [13, Definition 2.6],

X ◦ ε :=
{

X + d(X) · [−ε, ε] for d(X) 6= 0
X + [−η, +η] otherwise,

where d denotes the diameter and η denotes the smallest representable positive ma-
chine number.

In later papers an analysis of the benefits of the epsilon-inflation was given (cf.
[14]). These results can be summarized as follows. Let Z, X0 ∈ IKn be interval
vectors, and let C ∈ IMn(K) be an n× n interval matrix for K ∈ {R,C}. Define the
interval iteration

Y k := Xk ◦ ε and Xk+1 := Z + C · Y k for k ≥ 0 .(1.1)

Using the simplified definition

X ◦ ε := X + d(X) · [−ε, ε] + [−η, +η](1.2)

of the epsilon-inflation in (1.1), the following is true (|C| is the matrix of entrywise
absolute values of C; ρ denotes the spectral radius):

I) If interval operations are used in the iteration (1.1) and ρ(|C|) < 1/(1 + 2ε),
then the inclusion

Xk+1 ⊆ int (Y k)

is satisfied for some k. If interval operations are used in the iteration (1.1)
and Xk+1 ⊆ int(Y k) for some k, then ρ(|C|) < 1.
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II) If power set operations are used in the iteration (1.1) and ρ(C) < 1/(1 + 2ε),
then the inclusion

Xk+1 ⊆ int (Y k)

is satisfied for some k. If power set operations are used in the iteration (1.1)
and Xk+1 ⊆ int(Y k) for some k, then ρ(C) < 1.

For ε = 0, which means that the epsilon-inflation contains only an absolute term,
we have the beautiful equivalence that Xk+1 ⊆ int(Y k) will be satisfied for some k if
and only if ρ(|C|) < 1 in case of interval operations, and if and only if ρ(C) < 1 in
case of power set operations, respectively.

The results are, in fact, more general; for details see [14]. The results have been
extended for P-contractions by Mayer in [11]. We mention that the results I) and II)
are valid for arbitrary positive η.

A number of different definitions of the epsilon-inflation can be found in the lit-
erature. Recently, Kreinovich, Starks and Mayer gave in [10] theoretical justifications
for the following epsilon-inflation used in PASCAL-XSC (see, e.g., [6]):

X ◦ ε := X + d(X) · [−ε, ε] .(1.3)

For this type of epsilon-inflation they show certain optimality results.
However, the epsilon-inflation as defined in (1.3) does not serve the purpose it

has been introduced for, because it lacks an absolute term. The most trivial example
is

Z = 0, C = 0, X0 = 0 ,

corresponding to a linear system 1 · x = 0. Obviously, Xk+1 ⊆ int (Y k) will never be
satisfied in this case. The problem is that the initial interval vector X0 has diameter
zero.

But even if this is not the case, the absolute term in X ◦ ε := X + d(X) · [−ε, ε] +
[−η, +η] is, in general, necessary. More precisely, the following is true.

Theorem 1.1. For all δ > 0, there is an iteration matrix C ∈ M2(R) and an
interval vector X0 ∈ IR2 satisfying the following properties:

i) ρ(|C|) < δ ,
ii) d(X0

i ) > 0 for i ∈ {1, 2} ,
iii) For k ≥ 0, let Xk+1, Y kbe defined by the iteration (1.1) with

the epsilon-inflation (1.3). Then for all ε > 0 it is always

Xk+1 6⊆ Y k for all k ≥ 0 .

Proof. For arbitrary 0 < a < 1 define

C =
(

0 1
a 0

)
, X0 =

(
[0, 4]
[0, 2a]

)
and Z =

(
0
0

)
.(1.4)

For the analysis it is more convenient to use a midpoint-radius representation. Define

mX ± rX := [mX − rX, mX + rX] for mX, rX ∈ R2 .

Then

X0 =
(

2
a

)
±

(
2
a

)
,
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and a short computation using

C · (mX ± rX) = C ·mX ± |C| · rX

yields

X2k = ak ·
((

2
a

)
±

(
2
a

)
· (1 + 2ε)2k

)
, X2k+1 = ak+1 ·

((
1
2

)
±

(
1
2

)
· (1 + 2ε)2k+1

)
.

Then

X2k+1 = ak ·
((

a

2a

)
±

(
a

2a

)
· (1 + 2ε)2k+1

)
6⊆ ak ·

((
2
a

)
±

(
2
a

)
· (1 + 2ε)2k+1

)

= Y 2k ,

X2k+2 = ak+1 ·
((

2
a

)
±

(
2
a

)
· (1 + 2ε)2k+2

)
6⊆ ak+1 ·

((
1
2

)
±

(
1
2

)
· (1 + 2ε)2k+2

)

= Y 2k+1 .

Choosing any a with 0 < a < δ2 proves the theorem.
The reason for the observed behaviour is that the matrix C is not primitive, and

therefore the power iteration for the Perron root of C does not necessarily converge
for every starting vector (see [4] or [15]). This is the reason why (1.1) contains an
absolute term like [−η, η]. An alternative is to replace C by some perturbed C ′ in
order to force the new C ′ to be primitive.

As has been mentioned before, the results I) and II) are true for any choice of
positive η. Choosing η too small increases the number of iterations, a large value of
the absolute term η increases the diameter of the computed solution set. The choice
of ε in (1.2) is critical: Choosing ε a little too large may make an inclusion impossible
if ρ(|C|) · (1 + 2ε) ≥ 1.

From a practical point of view the following heuristic may be used:

X ◦ ε := X + d(Y 0) · [−e, +e] + [−η, η] where Y 0 := Z + CX0 .(1.5)

Note that the epsilon-inflation in (1.5) contains only an absolute term, independent
of the current iterate. The reasoning for this heuristic is as follows. First of all,
according to I) we have the best possible convergence behaviour:

Xk+1 ⊆ int(Y k) for some k ∈ N iff ρ(|C|) < 1.

Furthermore, one might use d(X0) · [−e, +e] instead of d(Y 0) · [−e,+e] in the absolute
term of (1.5). However, X0 may consist of zero or small components due to a bad
choice of the initial X0 or bad scaling. In this case, only the very small absolute term
[−η, +η] would be operative, resulting in many iterations. Therefore, we choose the
first iterate Y 0 := Z + CX0 to define the absolute term. It is not likely that Y 0 still
contains a zero component, and if, the additive term [−η, +η] will do. Otherwise,
the heuristic has the advantage that the components of Y 0 are already “adjusted”
to the subsequent iteration, and they are of appropriate magnitude. To the author’s
experience, e = 0.1 or e = 0.2 are reasonable values if the error with respect to an
approximate solution is to be included.

For e = 0.1 or e = 0.2, the iteration (1.1) with epsilon-inflation (1.5) stops for the
data (1.4) for a = 0.25 (corresponding to ρ(C) = 0.5) after 5 iterations. For a = 0.64
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(corresponding to ρ(C) = 0.8), 7 iterations for e = 0.2 and 9 iterations for e = 0.1 are
necessary.
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