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Abstract

In this paper we give very sharp bounds for the distance between regular-
ity and strong regularity. The solution of this problem uses a general matrix
analogue [18] of the Perron-Frobenius Theory. This theory has been graded as a
challenge problem for future research by the International Linear Algebra Society
[7].

An interval matrix [A] ∈ IIMn(IR) is called regular, if every A ∈ [A] is non-
singular, whereas [A] is called strongly regular, if M := mid

(
[A]

)
∈ Mn(IR) is

nonsingular and ρ(M−1 ·rad
(
[A]

)
< 1. Strong regularity implies regularity.

Consider a system of linear equations, the data of which are afflicted with
tolerances. The solution complex Σ

(
[A], [b]

)
:= {x ∈ IRn

∣∣ ∃ A ∈ [A] ∃ b ∈ [b] :
Ax = b } is bounded if [A] is regular. Self-validating algorithms provide methods
to compute an inclusion of the solution complex. However, many of those, e.g.
the methods based on preconditioning and the Krawczyk operator, require [A]
to be strongly regular [9], [11], [16]. This raises the question: “How far is strong
regularity from regularity?” More precisely, let matrices A and nonnegative ∆
be given and define

ρsreg(A, ∆) := sup{ r ∈ IR
∣∣ [A− r ·∆, A + r ·∆] strongly regular }

and
ρreg(A, ∆) := sup{ r ∈ IR

∣∣ A− r ·∆, A + r ·∆] regular },
where the values may range within [0,∞]. Then the question is: are there finite
bounds for the ratio ρreg(A, ∆)/ρsreg(A, ∆) independent on A and ∆ and only
depending on the dimension? And if so, how sharp are the bounds? In this
note we present an analysis of this question and, up to a small constant factor,
a complete answer.

0 Introduction

Let IIIRn denote the set of real interval vectors with n components, let Mn(IR) and
IIMn(IR) denote the set of n×n matrices with real and real interval entries, respectively.
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Let some [z] ∈ IIIRn and [C] ∈ IIMn(IR) be given. For some [X0] ∈ IIIRn define the
iteration

[Y k] := [X0] + [−ε, +ε]; [Xk+1] := [z] + [C] · [Y k] for 0 ≤ k ∈ IN, (1)

where 0 < ε ∈ IR is some constant. All operations in (1) are interval operations (cf.
[1], [12]). It is well known (cf. [16]) that the following statements are equivalent.

i) ∃ k ∈ IN : [Xk+1] ⊆ int
(
[Y k]

)
.

ii) ρ
(∣∣[C]

∣∣
)

< 1.
(2)

The absolute value of an interval matrix is defined by
∣∣[C]

∣∣
ij

:= max
{|c| ∣∣ c ∈ [C]ij

}
.

Note that the equivalence is independent of the choice of ε and of [X0]. Also, the
ε-inflation is crucial for the equivalence statement.

Our observation has a well known application to the numerical computation of en-
closures of Σ

(
[A], [b]

)
. For some preconditioner R ∈ Mn(IR) and some approximate

solution x̃ (e.g. of the midpoint system) set [z] := R ·([b]− [A] · x̃)
and [C] := I−R · [A].

Then

[z] + [C] · [X] ⊆ int
(
[X]

)

for some [X] ∈ IIIRn implies

[A] is regular and Σ
(
[A], [b]

) ⊆ x̃ + [X]

(cf. [16] and papers cited over there). In view of (2) this has two interesting implica-
tions:

I) If
∣∣I −R · [A]

∣∣ is convergent, then we will obtain a validated inclusion of
the solution complex Σ

(
[A], [b]

)
after a finite number of steps.

On the other hand we know that the precise midpoint inverse is the optimal precon-
ditioner ([12], Chapter 4 and [14]) and ρ

(∣∣[C]
∣∣
)

< 1 implies strong regularity of [A].
This leads to the second implication:

II) The ansatz for computing a validated inclusion of the solution complex
Σ

(
[A], [b]

)
will fail if [A] is not strongly regular.

This means, for R := mid
(
[A]

)−1 we have the following dichotomy:
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Either, [A] is strongly regular and any starting interval [X0] and
any value of ε will lead to validated bounds for Σ

(
[A], [b]

)
,

or, the method will fail for any [X0] and ε.

This raises two questions. First, are there other methods which compute validated
bounds for Σ

(
[A], [b]

)
for [A] not being strongly regular? Second, “how far” is strong

regularity of [A] from regularity?

A method answering the first question in the affirmative is used for large systems of
linear and nonlinear equations. It uses

σn

(
mid

(
[A]

))
> σ1

(
rad

(
[A]

)) ⇒ [A] is regular, (3)

where σi denotes the i-th singular value of a matrix in decreasing order. It can be
shown ([17]) that there are examples of interval matrices not being strongly regular
where the radius matrix can be amplified by a factor up to n1/2, where regularity can
still be verified using (3). On the other hand, the criterion (3) can be arbitrarily weak
compared to strong regularity [17].

The method proposed by Shary [20] assumes regularity of the interval matrix. The
method proposed by Jansson [8] seems promising to calculate the true interval hull of
the solution complex of an interval linear system. It proves regularity of an interval
matrix, and it has polynomially bounded computing time in the number of orthants
with nonempty intersection with the solution set of the linear interval system. The
worst case computing time, however, is exponential in the number of unknowns. It is
very likely, unless NP = P , that no polynomially bounded algorithm exists, because
Poljak and Rohn showed that checking regularity of a general interval matrix is NP -
hard [13].

Now to answer the second question. It turns out that this question has much attention
in modern numerical analysis. The buzz word in this context is componentwise dis-
tances and componentwise error estimates. Consider the componentwise distance of
some matrix A ∈ Mn(IR) to the nearest singular matrix weighted by some nonnegative
weight matrix E ∈ Mn(IR):

σ(A, E) := min{α ∈ IR
∣∣ ∃ Ẽ ∈ Mn(IR) : |Ẽ| ≤ α · E and A + Ẽ singular} . (4)

If no such α exists, we set σ(A,E) := ∞. Absolute value and order relation are to
be understood componentwise. It is σ(A,E) = ρreg(A,E)−1. Such a componentwise
distance is of high practical interest. For a normwise distance we have explicit formulas,
for example

min{ ‖∆‖2
∣∣ A + ∆ singular } = σn(A).

This can be extended to other norms (cf. [21]), and also a corresponding ∆, which
is of rank 1, can be explicitly calculated. However, a normwise distance favours large
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matrix entries. Consider Hamming’s example [5]

A =




3 2 1
2 2ε 2ε
1 2ε −ε


 ⇒ σn(A) ≈ 2 · ε , but σ

(
A, |A|) > 0.3.

That means, a very small normwise perturbation suffices to run into a singular matrix,
but any relative perturbations of the entries of A less than 30 % produces only regular
matrices. Moreover, specific components of A like system zeros or constants may be
left unaltered by the componentwise approach by setting the corresponding entry in
the weight matrix E to zero.

The connection between our question and σ(A,E) is the following. Let A ∈ Mn(IR)
and nonnegative E ∈ Mn(IR) be given, Then α := σ(A,E) is the smallest value
such that [A − α · E, A + α · E] is singular. On the other hand, for β := ρ

(|A−1| ·
E

)−1, any matrix [A − β′ · E,A + β′ · E] with β′ < β is strongly regular. The ratio
σ(A,E)/ρ

(|A−1| · E)−1 can therefore be interpreted as the distance between strong
regularity and regularity. There is another interesting connection to the condition
number of A. In a normwise sense, an ill-conditioned matrix is “not too far” from a
singular matrix. For a componentwise distance we need a condition number reflecting
the weight matrix E. This is the Bauer-Skeel condition number

condBS(A,E) := ‖ |A−1| · E‖
for some matrix norm ‖ · ‖. The Bauer-Skeel condition number may be large due to
improper scaling. Therefore we consider the optimal Bauer-Skeel condition number

condOBS(A,E) := inf
D

condBS(AD,ED),

where D is a nonsingular diagonal matrix. Interestingly, there is an explicit formula
for this number for all p-norms [4]:

condOBS(A,E) = ρ
(|A−1| · E)

. (5)

This is exactly the inverse of the supremum of all β′ such that [A− β′ ·E,A + β′ ·E]
is strongly regular. Any strongly regular matrix is regular, and therefore

1
ρ
(|A−1| · E) ≤ σ(A,E).

The question of distance between strong regularity and regularity, or the ratio
σ(A,E)/ρ

(|A−1| · E
)−1, has therefore the following interpretation: If the optimal

Bauer-Skeel condition number is large, is it then true that not too far away in a
componentwise sense there exists a singular matrix? This is the pendant to the corre-
sponding statement for norms. That means, the question is whether there exist real
constants γ(n) ∈ IR, only depending on the dimension, with

1
ρ
(|A−1| · E) ≤ σ(A,E) ≤ γ(n)

ρ
(|A−1| · E) (6)
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for all A,E. For relative perturbations this has been conjectured by J. Demmel and
N. J. Higham [4]. We define γ(n) by

γ(n) := sup{σ(A,E) · ρ(|A−1| · E) ∣∣ A ∈ Mn(IR), 0 ≤ E ≤ Mn(IR) } . (7)

We show that γ(n) is well defined and is finite, and that they therefore satisfy (6).
Furthermore, we give very sharp lower and upper bounds for γ(n). The bounds differ
only by a small constant factor.

The major difficulty in finding bounds for γ(n) is that we need upper bounds α for
σ(A,E), thus proving existence of a singular matrix within [A−α ·E, A+α ·E]. Note
that computation of σ(A, E) is NP -hard [13].

1 A Perron-Frobenius Theory for general matrices

For singular A ∈ Mn(IR), we have σ(A, E) = 0 for any weight matrix E, and there
is nothing to prove. Therefore, we assume A to be regular for this chapter. For
e ∈ Mn(IR), |e| ≤ E, there holds

A− e = A · (I −A−1 · e). (8)

That means, singularity of A−e is equivalent to the fact that A−1 ·e has the eigenvalue
1. Let ρ0(A) denote the real spectral radius of A (cf. [15]), i.e.

ρ0(A) := max{ |λ|
∣∣ λ real eigenvalue of A }.

If A has no real eigenvalue, we define ρ0(A) := 0. Then (8) implies

σ(A,E) = { max
|e|≤E

ρ0(A−1e) }−1. (9)

Formula (9) is not suitable for a computation of σ(A, E), because infinitely many
matrices |e| ≤ E have to be checked. There is an explicit formula by Rohn, where
only finitely many matrices have to be checked [15]:

σ(A,E) = {max
S1,S2

ρ0(S1A
−1S2E) }−1. (10)

Here S1, S2 ∈ S, the set of all signature matrices, that is diagonal matrices with diago-
nal entries +1 or −1. In short notation S ∈ S ⇔ |S| = I. The exponential number
of matrices to be checked in (10) corresponds to the NP -hardness of computation of
σ(A,E).

For our purpose, for the estimation of the distance between strong regularity and
regularity of an interval matrix, it turns out that (9) is useful. However, not in this
form because the real spectral radius is an unpleasant number. For example, it is not
continuous in the entries of A because real eigenvalues may become complex under
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arbitrary small perturbations. Consider A(ε) :=
(

1 −ε
1 1

)
. Then ρ0

(
A(ε)

)
= 0 for

any ε > 0, whereas ρ
(
A(0)

)
= 1.

We define the signature-real spectral radius by

ρS
0 (A) := max

S∈S
ρ0(S ·A) . (11)

This number turns out to have very interesting (and pleasant) properties, and it helps
to solve our problem. In fact, the signature-real spectral radius allows to extend a
number of properties of the Perron root (the spectral radius) of a nonnegative ma-
trix to an arbitrary matrix. We first mention some basic properties of ρS

0 (A). The
corresponding theorems are proved in [19].

For A ∈ Mn(IR), signature matrices S1, S2 ∈ S, permutation matrix P and regular
diagonal matrix D there holds

ρS
0 (A) = ρS

0 (S1AS2) = ρS
0 (AT ) = ρS

0 (PT AP ) = ρS
0 (D−1AD),

ρS
0 (AD) = ρS

0 (DA) and ρS
0 (αA) = |α| · ρS

0 (A) for α ∈ IR.
(12)

For lower or upper triangular A it is ρS
0 (A) = max

i
|Aii|. On the other hand, even for

orthogonal Q, in general ρS
0 (QT AQ) 6= ρS

0 (A). Also, in general ρS
0 (AB) 6= ρS

0 (BA).

But it can be proved [18] that the signature-real spectral radius depends continuously
on the entries of A. Furthermore, we can characterize ρS

0 (A) = 0 by

ρS
0 (A) = 0 ⇔ A is permutationally similar to a strictly

upper triangular matrix.

Moreover, there exist always signature matrices S1, S2 such that x ∈ IRn, x ≥ 0 is
eigenvector of S1AS2 to the eigenvalue ρS

0 (A):

S1AS2 · x = ρS
0 (A) · x.

Another characterisation is

ρS
0 (A) = inf{ 0 ≤ b ∈ IR

∣∣ b · I − S ·A is P -matrix for all S ∈ S },
where B ∈ Mn(IR) is called P -matrix, if all principle minors are positive. The Perron
root of a nonnegative matrix has the inheritance property, that is it cannot increase
when going to a principle submatrix. The same is true for the signature-real spectral
radius:

ρS
0 (A) ≥ ρS

0

(
A[ω]

)
for all ω ∈ Qkn, 1 ≤ k ≤ n (13)

(we use standard notation from matrix theory, cf. [6], [10]: Qkn denotes the set of
strictly increasing sequences of k integers out of {1, . . . , n}, and for ω ∈ Qkn, A[ω] is
the k × k principle submatrix of A with entries Aij , i, j ∈ ω). Especially,

ρS
0 (A) ≥ max

i
|Aii|. (14)
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The following explicit relation between the componentwise distance to the nearest
singular matrix and the signature-real spectral radius

σ(A,E) = ρS
0

(
0 E

A−1 0

)−2

shows that the computation of ρS
0 is also NP -hard. ρS

0 (A) ≤ ρ(A) is not true in
general, but

ρS
0 (A) ≤ ‖A‖p for 1 ≤ p ≤ ∞, max

Q orthogonal
ρS
0 (QA) = ‖A‖2 and

A = AT ⇒ ρS
0 (A) = ‖A‖2 = ρ(A).

We can prove [18] the following max min characterisation, which is almost exactly the
same as for nonnegative matrices [3]:

ρS
0 (A) = max

x∈IRn
min
xi 6=0

∣∣∣∣
(Ax)i

xi

∣∣∣∣ . (15)

As for general nonnegative matrices the corresponding min max equality is, in general,
not true. The characterisation (15) will be the key to the solution of our problem.
For nonnegative A, decreasing a single entry cannot increase the Perron root. The
corresponding property for ρS

0 (A) is

ρS
0 (A + α · eie

T
j ) ≥ ρS

0 (A)

either for all α ≥ 0, or for all α ≤ 0 and any 1 ≤ i, j ≤ n.

There are many more interesting properties of the signature-real spectral radius. For
details the reader is referred to [18].

2 The distance between strong regularity and regu-
larity

Our main result can be derived by combining the results of the previous chapter. From
(9), (12) and (15) we know for regular A and any nonnegative E,

σ(A,E) =
1

max
|Ẽ|≤E

ρ0(A−1Ẽ)
=

1
max
|Ẽ|≤E

ρS
0 (A−1Ẽ)

=

=
1

max
|Ẽ|≤E

max
x∈IRn

min
xi 6=0

∣∣∣∣∣
(A−1Ẽx)i

xi

∣∣∣∣∣

.

(16)
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The key is to construct a proper matrix Ẽ and proper x in order to obtain an upper
bound for σ(A,E).

For this purpose we derive lower bounds for the signature real spectral radius of A
using cycles of A, which in turn will imply an upper bound for σ(A,E). A cycle
ω = (i1, . . . , ik) is a collection of mutually different elements out of {1, . . . , n}. The
cycle ω defines a cycle product ΠωA := Ai1i2 · . . . · Aik−1ik

· Aiki1 on A. We denote
|ω| := k, such that |ΠωA|1/|ω| is the geometric mean of the elements of the cycle ω of
A.

A key observation is that for any cycle ω, with proper choice of a matrix Ẽ on the
boundary of [−E, +E], a matrix C̃ := A−1Ẽ can be obtained with |C̃| ≤ |A−1| ·
E =: C and |C̃ω| = Cω. That means, for ω := {i1, . . . , ik} there holds |C̃i1i2 | =
Ci1i2 , . . . , |C̃ik−1ik

| = Cik−1ik
and |C̃iki1 | = Ciki1 . Moreover, we are free in the choice

of the signs of the elements C̃iνiν+1 of a cycle. Next we need the following lower bound
on the signature real spectral radius based on the geometric mean of cyclic products.

Lemma 1. Let A ∈ Mn(IR) and ω := {i1, . . . , ik} ∈ {1, . . . , n}k be given. Denote the
geometric mean of the elements of |A| defined by the cycle ω by |ΠωA|1/|ω|. Then

ρS
0 (A) ≥ (3 + 2 ·

√
2)−1 · |ΠωA|1/|ω|.

It is remarkable that the constant (3 + 2
√

2)−1 in Lemma 1 does not depend on k or
n. The constant can be improved for specific values of k, for example

ρS
0 (A) ≥ |ΠωA|1/|ω| for |ω| ∈ {1, 2}. (17)

For |ω| = 1 this has been observed in (14). Note that (17) is not valid for |ω| ≥ 3.
Consider (cf. [17])

A :=



−0.3 1 −0.8
−0.8 −0.3 1

1 −0.8 −0.3


 and ω := {1, 2, 3}.

Then ΠωA = 1, whereas ρS
0 (A) < 0.95.

Now we have the tools to prove bounds for the distance between strong regularity and
regularity. First, we observe that σ(A,E) depends continuously on the entries of A
and E (cf. [17]). This allows to transform A and E in such a way that |A−1| ·E is row
stochastic. Next, we can prove that there exists a cycle of |A−1| · E with geometric
mean not less than n−1. Combining this with Lemma 1 and the previous results we
obtain the following theorem.

Theorem 2. Let A,E ∈ Mn(IR), A regular and E ≥ 0. Then
1

ρ
(|A−1| · E) ≤ σ(A,E) ≤ (3 + 2

√
2) · n · 1

ρ
(|A−1| · E) .
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Furthermore, the constants γ(n) in (7) satisfy

n ≤ γ(n) ≤ (3 + 2
√

2) · n. (18)

The lower bound in (18) cannot be improved for every n ∈ IN.

In terms of interval analysis and self-validating algorithms this result means the fol-
lowing. Given an interval matrix [A−∆, A + ∆], which is not strongly regular. That
means, self-validating algorithms based on the methods described in Chapter 0 cannot
work. Then increasing the radius by at most the factor (3 + 2

√
2) · n produces an

interval matrix which is not regular.

The interpretation in terms of traditional numerical analysis is that the inverse of
the optimal Bauer-Skeel condition number is a lower bound for the componentwise
distance to the nearest singular matrix weighted by E, whereas (3 + 2

√
2) · n times

this number is an upper bound:

1
ρ
(|A−1| · E) ≤ σ(A,E) ≤ (3 + 2

√
2) · n

ρ
(|A−1| · E)

.

In a practical application this bound can be improved by using Lemma 1 and the
following bounds for smaller values of n.

Theorem 3. Let A,E ∈ Mn(IR), A regular and E ≥ 0. Then

1
ρ
(|A−1| · E) ≤ σ(A,E) ≤ ψ|ω|

(Πω |A−1| · E)1/|ω| (19)

for any cycle ω, where (cf. [19])

ψ1 = 1, ψ2 = 2, ψ3 = 1.59, ψ4 = 1.97, ψ5 = 2.30 . . .

In its simplest form, (19) reads for |ω| = 1 and |ω| = 2 as follows.

Corollary 4. Let A, E ∈ Mn(IR), A regular and E ≥ 0. Then

1
ρ(C)

≤ σ(A,E) ≤ 1
max

i
|Cii| and (20)

1
ρ(C)

≤ σ(A,E) ≤ 1
max

i,j

√|Cij · Cji|
, (21)



10 Siegfried M. Rump

where C := |A−1| · E.

The factors in (20) and (21) are easy to calculate, and frequently they give reasonable
bounds for the distance between regularity and strong regularity. It can be combined
with the following observation [17]. Let S ∈ Mn(IR) be a matrix with

Sij :=





+1 if (A−1)ij > 0
−1 if (A−1)ij < 0
−1 or + 1 otherwise

.

In other words, S is the matrix of signs of the elements of A−1, where the sign of 0
can be interpreted to be −1 or +1. The latter gives possible freedom in choosing S.
For any such matrix S there holds

rank(S) = 1 ⇒ σ(A,E) =
{

ρ
(|A−1| · E)}−1

. (22)

This is true, for example, for M -matrices. In other words, for M -matrices regularity
and strong regularity are identical.

As an example, we estimated the distance between regularity and strong regularity
for all interval matrices in the test examples in the paper by Shary [20]. We used (20)
and (21), and possibly (22) for the estimation.

Shary’s first example is taken from [2]
(

[2, 4] [−2, 1]
[−1, 2] [2, 4]

)
. (23)

His second example is the same with a different right hand side; the next example is
taken from [20] 


[2, 4] [−5,−1] [−2, 3]

[−3, 1] [5, 7] [4, 6]
[−1, 1] [−2, 1] [−7,−2]


 . (24)

The other examples are



[3, 4] [−5,−2] [−2, 2]
[−3,−1] [6, 7] [5, 6]
[−1, 0] [−1, 1] [−4, 1]


 , (25)

and finally



[4, 6] [−9, 0] [0, 12] [2, 3] [5, 9] [−23,−9] [15, 23]
[0, 1] [6, 10] [−1, 1] [−1, 3] [−5, 1] [1, 15] [−3,−1]
[0, 3] [−20,−9] [12, 77] [−6, 30] [0, 3] [−18, 1] [0, 1]

[−4, 1] [−1, 1] [−3, 1] [3, 5] [5, 9] [1, 2] [1, 4]
[0, 3] [0, 6] [0, 20] [−1, 5] [8, 14] [−6, 1] [10, 17]

[−7,−2] [1, 2] [7, 14] [−3, 1] [0, 2] [3, 5] [−2, 1]
[−1, 5] [−3, 2] [0, 8] [1, 11] [−5, 10] [2, 7] [6, 82]




. (26)



The distance between regularity and strong regularity 11

First, we set E := rad(A), i.e. we consider the original examples given in Shary’s
paper. The following table shows from left to right the

number of the example,{
ρ
(|A−1| · E)}−1

, the lower bound for σ
(
A,E

)
,

σ
(
A,E

)
, if known,

the upper bound β1 for σ
(
A,E

)
by criterion in (20),

the upper bound β2 for σ
(
A,E

)
by criterion in (21).

example
{

ρ
(|A−1| · E)}−1

σ
(
A, E

)
β1 β2

(23) 1.06 1.23 2.47 1.85
(24) 0.38 0.38 0.85 0.85
(25) 0.15 0.15 0.30 0.30
(26) 0.11 0.41 0.41

Table 1. Estimated distance between regularity and strong regularity

Except in the first example, the bounds β1 and β2 are equal. In examples (24) and
(25) we could use (22) to show equality between regularity and strong regularity. We
did not calculate σ

(
A,E

)
for the last example, but the bounds show that regularity

and strong regularity cannot be too far apart. Note that the ratio between β1, β2 and{
ρ
(|A−1| · E)}−1

is better than n = 7, which is, due to Theorem 2, an achievable
ratio.

Next, we treated the same examples for relative perturbations, i.e. E = |A|.

example
{

ρ
(|A−1| · |A|)

}−1

σ
(
A, |A|) β1 β2

(23) 0.76 1 1 1
(24) 0.32 0.32 0.58 0.58
(25) 0.11 0.11 0.26 0.26
(26) 0.07 0.24 0.24

Table 2. Estimated distance between regularity and strong regularity
for relative perturbations

The same examples for absolute perturbations, i.e. Eij = 1 for all i, j, look as follows.
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example
{

ρ
(|A−1| · (1)

)}−1

σ
(
A, (1)

)
β1 β2

(23) 1.32 1.54 2.64 2.64
(24) 0.56 0.56 1.06 1.06
(25) 0.16 0.16 0.41 0.41
(26) 0.30 1.09 1.09

Table 3. Estimated distance between regularity and strong regularity
for absolute perturbations

The amount of overestimation is comparable. In the last example the difference be-

tween
{

ρ
(|A−1| · E)}−1

and β1, β2 is not too big, as it was the case for relative
perturbations. As before, (22) is applicable to examples (24) and (25). Note that
validity of the assumptions of (22) is independent of the weight matrix E.

For test matrices like Hilbert matrices

Hij := 1/(i + j − 1),

Pascal matrices

Pij :=
(

i + j

i

)
or Pij =

(
i + j − 1

i

)
,

Boothroyd matrices

Bij :=

(
n+i−1

i−1

) · n · (n−1
n−j

)

i + j − 1
,

the criterion (22) applies, that means regularity and strong regularity are identical for
all of those matrices. This is also true for the inverses of all of those matrices.

Finally, we tested randomly generated matrices. The entries Aij are chosen randomly
out of [−1, 1] with uniform distribution. The results are as follows, where in the left
half of Table 3 we chose E := |A|, whereas in the right half it is E := (1). The ratio
is (maxCii)−1/

(
ρ
(|A−1| ·E)−1

)
. For each dimension we calculated 10 test cases and

display the arithmetic mean of the results.

relative perturbations absolute perturbations
n ρ

(|A−1| · E)−1 (max Cii)−1 ratio ρ
(|A−1| · E)−1 (max Cii)−1 ratio

10 2.24e-02 1.19e-01 5.1 1.14e-02 6.59e-02 5.4
20 8.40e-03 8.83e-02 9.5 4.10e-03 3.99e-02 9.1
50 2.97e-03 6.42e-02 21.5 1.48e-03 3.25e-02 22.0

100 8.74e-04 3.82e-02 38.3 4.34e-04 1.86e-02 37.3
150 4.97e-04 2.85e-02 52.6 2.48e-04 1.42e-02 52.8
200 1.97e-04 1.31e-02 64.6 9.87e-05 6.50e-03 64.0

Table 3. Estimated distance between regularity and strong regularity
for random matrices
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The bounds achieved by estimation (21) are almost identical with the displayed num-
bers achieved by the bound (20).

Finally, we note that in many other examples (20) gave already reasonable bounds for
the distance between regularity and strong regularity, although, as has been mentioned,
the bound may be arbitrarily weak.
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