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Abstract

An iteration process for computing validated solutions of nonlinear systems is im-
proved for the dense case and for the sparse case. The improvement may result in
the reduction of the number of Jacobian or slope matrices to be computed. Possibly,
without the improvement no inclusion is computed at all.

Zusammenfassung

Es werden Sätze angegeben, wie ein Iterationsprozeß zur Bestimmung von vali-
dierten Einschließungen der Lösung dichtbesetzter sowie dünnbesetzter nichtlinearer
Gleichungssysteme verbessert werden kann. Die Anzahl der Berechnungen von Jacobi-
oder Steigungsmatrizen kann reduziert werden. U.U. wird die Berechnung einer Ein-
schließung überhaupt erst ermöglicht.
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0 Introduction

Let f(x) = 0, f : D ⊆ IRn → IRn be a system of nonlinear equations with continuous

f . For compact and convex ∅ 6= X ⊆ IRn with fixed x̃ ∈ D and x̃ + X ⊆ D, we assume

a linearization of f with respect to some x̃ to be given by means of a set-valued matrix

S(x̃, X) ⊆ IRn×n, i.e.

∀ x ∈ X ∃ M ∈ S(x̃, X) : f(x̃ + x)− f(x̃) = M · x. (1)
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For a wide class of functions, S(x̃, X) can be computed by means of slopes [7], [10] or,

if f is differentiable, by means of automatic differentiation [11], [4] together with interval

operations. This process is performed automatically, and essentially applies to functions

given by means of a program. For details see [11], [4], [7], [10].

A widely used validation algorithm for nonlinear equations is based on the Krawcyk-operator

[6], and the existence test by Moore [8]. There are several improvements of the original ideas,

basically leading to the following algorithm (see [13] and the literature cited over there).

1) Let an approximate solution x̃ ∈ D of f(x) = 0 be given.

2) Set X := x̃ · [−ε, ε], and calculate S(x̃, X) satisfying (1).

3) Let R ≈ mid(S(x̃, X))−1 be an approximate inverse, and Z ⊇ −R · f(x̃) be an

inclusion of −R · f(x̃); C := I −R · S(x̃, X); k = 0.

4) Calculate an inclusion

Y ⊇ Z + C ·X.

5) If Y ⊆ int(X) then

“there exists an x̂ ∈ Y with f(x̃ + x̂) = 0”; stop;

else

k = k + 1; X := Y · [1− eps, 1 + eps] + [−η, η];

if k ≤ kmax then calculate S(x̃, X) satisfying (0, 1) and goto 4)

Algorithm 1. Validated inclusion of a solution of a nonlinear system

The constant ε is usually around machine precision, η is the smallest positive machine number

and eps may be chosen around 0.1. For sparse nonlinear systems, the algorithm has to be

modified to avoid the approximate inverse R which, in general, ist full. We come to this in

Chapter 2. For more details and a convergence analysis see [13].

If x̃ is sufficiently accurate, only few iterations of steps 4 and 5 are necessary. In many

cases the algorithm finishes with k = 0. However, if an iteration is necessary, it is fairly

expensive, because a new slope matrix S(x̃, X) or Jacobian has to be computed. In the

following, an addition to algorithm 1 is presented which may calculate an inclusion of a

solution of f(x) = 0 with the information available. In chapter 2, the iteration process for

sparse systems is improved and accelerated.

In the following we denote the set of real intervals by IIIR = { [a, b] | a, b ∈ IR, a ≤ b }.
IIIRn, IIIRn×n are vectors, matrices over IIIR, respectively. For X ∈ IIIR we define |X| :=

max{ |x| | x ∈ X }. int(X) denotes the topological interior of X. For vectors and matrices,

absolute value, diameter and comparison is defined componentwise, while ρ denotes the

spectral radius. For a set T , ∂T denotes the topological boundary of T .
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For interval quantities A, B, operations between them are always interval operations. The

result is the smallest interval quantity containing the corresponding result when using power

set operations. For example,

A ∈ IIIRn×n, B ∈ IIIRn : A ·B :=
⋂ {C ∈ IIIRn | ∀ a ∈ A ∀ b ∈ B : a · b ∈ C }.

Interval operations are easy to implement on digital computers (see [9], [3], [10]; for a very

fast and public domain implementation for PCs and workstations see [5]).

For simplicity of notation, we allow in the following for empty interval vectors. Any operation

with those yields as the result the empty set. The basic property of interval operations is

the isotonicity, cf. the cited literature.

1 Dense nonlinear systems

Algorithm 1 provides an existence test for some x̂ ∈ X with f(x̃ + x̂) = 0. In this case,

x̂ ∈ Y ⊆ X can be shown. This is in the spirit of [8]. However, if the condition Y ⊆ int(X)

is not satisfied, then an iteration has to be started. This iteration is expensive because

each time a new expansion matrix (Jacobian or slope) has to be computed, and the matrix

multiplication R · S(x̃, X) has to be performed. This is because for x ∈ Y \X the matrix

S(x̃, X) does no longer expand f w.r.t. x̃.

In the following, we show how the information already available in step 4 of Algorithm 1 can

be used to prove x̂ ∈ X with f(x̃ + x̂) = 0. A criterion for f(x̃ + x) 6= 0 for all x ∈ X is

given as well.

Theorem 1. Let f : D ⊆ IRn → IRn be continuous, x̃ ∈ D, and R ∈ IRn×n fixed but

arbitrary. Let X ∈ IIIRn with x̃ + X ⊆ D, and let S(x̃, X) ∈ IIIRn×n be given with

∀ x ∈ X ∃ M ∈ S(x̃, X) : f(x̃ + x)− f(x̃) = M · x. (2)

Let C ∈ IIIRn×n, Z ∈ IIIRn be given with I−R ·S(x̃, X) ⊆ C and −R · f(x̃) ∈ Z, and define

X0 := X; X i+1 := (Z + C ·X i) ∩X i for 0 ≤ i ∈ IN. (3)

Then for 0 ≤ k ∈ IN holds

i) Xk+1 6= ∅ and Xk+1 ⊆ int(X0) ⇒ ∀ 1 ≤ µ ∈ IN ∃ x̂ ∈ Xk+µ : f(x̃ + x̂) = 0.

ii) ∀ x ∈ X0\Xk : f(x̃ + x) 6= 0.
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Especially

iii) Xk+1 = ∅ ⇒ ∀ x ∈ X0 : f(x̃ + x) 6= 0.

With the assumptions of i) also follows regularity of R and every M ∈ S(x̃, X).

Remark. We want to stress that the matrix S(x̃, X) can be calculated by means of an

automized process using forward or backward differentiation [11], [4] or slopes [7], [10]. I

denotes the n×n identity matrix, all operations are interval operations. Especially, Z + C ·
X i ∈ IIIRn and X i ∈ IIIRn imply (Z +C ·X i)∩X i ∈ IIIRn, that is the topological intersection

of two interval vectors is a (possibly empty) interval vector. Therefore X i+1 ∈ IIIRn is well-

defined.

Proof. Define g(x) := x−R · f(x̃ + x). Then g is continuous and

∀ x ∈ X ∃ z ∈ Z ∃ M ∈ S(x̃, X) : g(x) = x−R · {f(x̃) + M · x} = z + {I −RM}x.

Hence

∀ x ∈ X0 g(x) ∈ Z + C · x. (4)

For x̂ ∈ X0 with f(x̃ + x̂) = 0 follows g(x̂) = x̂, and by (3) and (4)

x̂ ∈ X0 and f(x̃ + x̂) = 0 ⇒ x̂ ∈ X i for 0 ≤ i ∈ IN. (5)

This proves proposition ii) and also iii). Assume Xk+1 6= ∅ and Xk+1 ⊆ int(X0) for some

0 ≤ k ∈ IN. Then

∅ 6= Xk+1 ⊆ Xk ⊆ · · · ⊆ X1 ⊆ X0. (6)

First we prove Z + C ·Xk ⊆ int(X0). Assume x ∈ (Z + C ·Xk) ∩ ∂X0. Then we show by

induction that x ∈ X i for 0 ≤ i ≤ k + 1. This is true for i = 0, and assuming x ∈ X i and

using Xk ⊆ X i yields

x ∈ (Z + C ·Xk) ∩X i ⊆ (Z + C ·X i) ∩X i = X i+1.

Therefore, x ∈ Xk+1 which condradicts our assumption Xk+1 ⊆ int(X0). This implies

(Z + C ·Xk) ∩ ∂X0 = ∅. Now, Z + C ·Xk is nonempty and connected, and ∅ 6= (Z + C ·
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Xk)∩Xk = Xk+1 ⊆ int(X0) shows that there are points of Z +C ·Xk in the interior of X0.

This proves Z + C ·Xk ⊆ int(X0). Extensively using (6), this implies

Z + C ·Xk+1 ⊆ Z + C · ( k⋂
i=0

X i) ⊆ k⋂
i=0

(Z + C ·X i) ⊆ X0 ∩ k⋂
i=0

(Z + C ·X i)

= X1 ∩ k⋂
i=1

(Z + C ·X i) = · · · = Xk ∩ (Z + C ·Xk) = Xk+1.
(7)

Now basic properties of interval analysis (Proposition (17), p. 153 in [3], see also [10]) show

diam(Xk+1) ≥ diam(Z + C ·Xk+1) ≥ diam(C ·Xk+1) ≥ |C| · diam(Xk+1).

and Perron-Frobenius Theory yields

ρ(C) ≤ 1 for all C ∈ C.

Suppose R or some M ∈ S(x̃, X) are singular. Then by definition, there is a C ∈ C with

eigenvalue 1, i.e. Cy = y for 0 6= y ∈ IRn. Let z ∈ Z fixed but arbitrary and define

h(x) := z + C · x. Then (7) yields h(Xk+1) ⊆ Xk+1, and Brouwer’s Fixed Point Theorem

implies existence of some x̂ ∈ Xk+1 ⊆ X0 with h(x̂) = x̂ = z +C · x̂. There exists 0 6= λ ∈ IR

with x̂ + λy ∈ ∂X0. Then h(x̂ + λy) = x̂ + λy, and by definition (3) we have x̂ + λy ∈ X i

for 0 ≤ i ∈ IN. This contradicts Xk+1 ⊆ int(X0), and henceforth shows regularity of R and

every matrix M ∈ S(x̃, X).

Finally, (4) and (7) show

∀ x ∈ Xk+1 : g(x) ∈ Z + C · x ⊆ Xk+1. (8)

Therefore, g is a self-mapping of the nonempty, compact and convex set Xk+1. Brouwer’s

Fixed Point Theorem implies existence of some x̂ ∈ Xk+1 with g(x̂) = x̂ = x̂−R · f(x̃ + x̂).

The regularity of R implies f(x̃ + x̂) = 0. (8) also shows x̂ = g(x̂) ∈ Xk+2 and x̂ ∈ Xk+µ for

all 1 ≤ µ ∈ IN. This proves i) and the theorem.

Computing the X i of Theorem 1 is usually inexpensive compared to calculating a new

expansion matrix. Note that for x0 ∈ X0\Xk+1 the iteration xi+1 := g(xi) may leave X0.

Nevertheless, Theorem 1 identifies in Xk+1 a subset of X0 containing a fixed point x̂ of g,

and therefore implying f(x̃ + x̂) = 0.

Summarizing this means that steps 4) and 5) of Algorithm 1 can be replaced by the following.

We also improved the overall iteration by using Z + C ·Xk, ∅ 6= Xk as a new starting value.

This is backed by proposition ii) in Theorem 1. Furthermore, the iteration in step 4) is

stopped immediately if Xk+1 = Xk.
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4) C := I −R · S(x̃, X); Y := X; l = 0;

repeat

l := l + 1;

Y ∗ := (Z + C · Y ) ∩ Y ;

if Y ∗ ⊆ int(X) then

“there exists an x̂ ∈ Y ∗ with f(x̃ + x̂) = 0”; stop;

if Y ∗ ∩X = ∅ then

“for every x̂ ∈ X holds f(x̃ + x̂) 6= 0”; l = lmax;

if Y ∗ = Y then l = lmax

else Y := Y ∗;

until l = lmax;

5) k := k + 1; X := Y · [1− eps, 1 + eps] + [−η, η];

if k ≤ kmax then calculate S(x̃, X) satisfying (0, 1) and goto 4)

Algorithm 2. Improved steps 4) and 5) for Algorithm 1.

It can be shown by means of simple examples that the so-called epsilon-inflation (introduced

in [12]) in the else-branch of step 5 in Algorithm 1 is necessary to achieve inclusion. In

the linear case eps can be arbitrarily large, because we have either no convergence or global

convergence. In this case the algorithm stops if and only if ρ(|C|) < 1 for every C ∈ C

(for details see [13]). In the nonlinear case, eps should be large enough to avoid excessive

iterations but small enough not to leave the range of attraction.

Theorem 1 allows to choose a smaller eps, because even if Y 6⊆ int(X) an inclusion can still

be achieved. There are simple examples where the use of Theorem 1 achieves a validated

inclusion, whereas the original version of Algorithm 1 does not at all. Consider the well-

known Rosenbrock function [1]

400x1(x
2
1 − x2) + 2(x1 − 1) = 0

200x1(x
2
1 − x2) = 0

with solution x̂ = (1, 1)T and

x̃ =


 0.999 99

1.000 40


 and R =


 0.4998 −0.9990

1 −2.0030


 .

We set X0 := Z, where −R · f(x̃) ⊆ Z is computed by replacing real by interval operations.

Then in the first iteration of steps 4, 5 (k = 0) in Algorithm 1 we have ρ(|C|) = 0.764

but Y 6⊆ X. In the following steps the spectral radius increases to 0.701, 0.828, 0.866, and
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comes to 1.02 in the 9th iteration, and increases rapidly from there on. Using Algorithm 1

no inclusion can be calculated. With the aid of Algorithm 2 we obtain

x̃ + x̂ ∈

 [0.999993, 1.000006]

[0.999982, 1.000016]


 (9)

in the 3rd iteration. The 1st iteration verifie that there is no zero in


 [0.999990, 1.000051]

[1.000165, 1.000400]


 .

Subsequent intersection narrow the inclusion (9) slightly. In other examples, the inclusion

obtained by the new Algotihm was sharper due to intersection. The approach becomes

valuable when the expansion matrix S(x̃, X) is expensive to compute.

2 Sparse nonlinear systems

For sparse systems an approximate inverse of the Jacobian or slope matrix cannot be used as a

preconditioner because, in general, it will be full. Therefore, we rewrite the inclusion formula

and use norms. Thronghout this chapter, we only use Euclidean norms. For M ∈ S(x̃, X)

and x ∈ X holds

−R · f(x̃) + {I −R ·M} · x = R · {−f(x̃) + (R−1 −M)x},

provided R is regular (which is demonstrated a posteriori). If X is symmetric to the origin

(X = −X), then the following formula with norms can be used to verify existence of a zero

of f:

r := ‖R‖ · { ‖f(x̃)‖+ ‖ (R−1 − S(x̃, X)) ·X‖ } < ‖X‖

⇒ ∃ x̂ : ‖x̃− x̂‖ ≤ r and f(x̃ + x̂) = 0.

Now R is taken to be the optimal preconditioner, namely R := mid(S(x̃, X))−1. Then ‖R‖
is equal to the inverse of the smallest singular value of mid(S(x̃, X))−1:

r∗ := σn

(
mid(S(x̃, X))

)−1 · { ‖f(x̃)‖+ ‖rad(S(x̃, X)) ·X‖ } < ‖X‖
⇒ ∃ x̂ : ‖x̂− x̃‖ ≤ r∗ and f(x̃ + x̂) = 0.

(10)

For more details see [13], where efficient techniques for estimating the smallest singular value

of a large sparse or banded matrix are described.
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If the condition in (10) is not satisfied for some X, we run into the same problem as in the

dense case: An iteration is started. However, every step is expensive because it needs to

calculate a new slope matrix. Using techniques of automatic differentiation in the backward

mode [4] this can be accomplished at the cost of 3 to 5 function evaluations. However, the

backward mode is not easy to implement. Therefore many people like to use the forward

mode because of its simplicity. Truly, implementation of the forward mode reduces to re-

placing every operator by its corresponding gradient operator. However, the costs increase

to 3n to 5n times the time for one function evaluation.

This can be reduced by observing that in (10) we only need the product of the radius of

the slope matrix or Jacobian, times a vector. In [?] an efficient way for doing this is given.

For gradients, Fischer uses ϕ(t) := f(u + t · v) with ϕ′(0) = 5f(u)T · v. That means, the

automatic differentiation process is applied to ϕ, a function in one variable, and the product

5f(u)T · v is computed directly rather than going the expensive way of computing 5f(u)

first and then multiply by v. The computational cost for differentiation of ϕ in the forward

mode is again 3 to 5 times the time for one function evaluation of f . The same method is

applicable for computing slopes.

To bound rad(S(x̃, X)) ·X, we look at one component, which writes rad(V ) ·X for V ∈ IIIRn.

Now X yields a normwise inclusion of the error, and can therefore assumed to be symmetric

to the origin: X = [−x, x] with 0 < x ∈ IRn. Then

|V X| = | n∑
i=1

ViXi| =
n∑

i=1
|Vi||Xi| =

n∑
i=1

(mid(Vi) + rad(Vi)) · xi

=
n∑

i=1
mid(Vi)xi +

∑
rad(Vi)xi = |mid(V ) ·X|+ |rad(V ) ·X|

and abbreviating rad(V ) ·X = [−y, y] we obtain

y = |V ·X| − |mid(V ) ·X|.

Now |V ·X| and |mid(V ) ·X| can be computed together using automatic differentiation in

the forward mode, and Fischer’s observation at the effort of the equivalent of 6 to 10 function

evaluations of f . This compares to 3n to 5n function evaluation without this observation.
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