
Verified Solution of Large Systems and

Global Optimization Problems

Siegfried M. Rump
Technische Informatik III
TU Hamburg-Harburg
Eißendorfer Straße 38

D-21071 Hamburg

Abstract

Recent results on the solution of large, banded or sparse systems and on global uncon-
strained optimization problems including verification of the correctness of the result
will be discussed. The computing time for the verification for large linear systems is the
same as for the decomposition, the total computational effort for verifying the global
optimum value is for well-known test examples competitive to the pure floating point
algorithms. Computational examples will be demonstrated.

1 Introduction

Numerical algorithms being executed on digital computers in finite precision usually deliver

a good approximation to the solution of the given problem, but no verified error bound.

Algorithms with result verification are part of numerical analysis. They deliver error bounds

for the computed approximate solution with the property that it is verified that a solution

exists and possibly is unique within those bounds. This statement is true despite the presence

of conversion, rounding and cancellation errors.

The tool for computing those bounds is interval analysis. It is well-known that estimating

the error of every single operation (rounding-ε) and putting all those bounds together yields,

in principle, a true error bound for the solution. However, it is also well-known that those

bounds are frequently very pessimistic, if the algorithm is executable in this way at all. For

example, if in Gaussian elimination with pivoting the pivot becomes a number with an error

bound so big that it includes 0, the execution must be stopped and no result is delivered.

On the other hand it is a fundamental and very interesting property of interval analysis

that bounding the range of a codeable function is possible without any auxiliary knowledge

about the function such as, for example, Lipschitz continuity. In the following we will show

how this property can be used to design algorithms which reduce the overestimation due

to data dependencies to a very low level. Sometimes those algorithms are even faster than

1

their floating point equivalents. We will restrict our attention to systems of equations with

dense and with sparse Jacobian and to global optimization problems. Theory and algorithms

for many other standard problems in numerical analysis have been published (see [3], [38],

[32] and the literature cited there). Many basic principles can be explained in the above

mentioned three areas; therefore we restrict our attention to those.

2 Basic principles

There are different representations for intervals of numbers, vectors and so forth. For exam-

ple, the classical notation of absolute errors is

a±∆a := { ã ∈ IR | a−∆a ≤ ã ≤ a + ∆a }.
Arithmetical operations like addition and multiplication are defined by

(a±∆a) + (b±∆b) := (a + b)± (∆a + ∆b)

(a±∆a) · (b±∆b) := a · b± (|a| ·∆b + ∆a · |b|+ ∆a ·∆b).

Notice that these estimations are always worst case estimations. For practical applications

this representation introduces an unnecessary overestimation, especially for wide intervals.

This is because the midpoint of the product or quotient of two intervals does not necessarily

coincide with the product or quotient of the midpoint. For example

(2± 1) · (4± 1) = 8± (2 + 4 + 1) = 8± 7

where taking some ã ∈ 2± 1 and b̃ ∈ 4± 1 the minimum and maximum products are 3 and

15. Therefore usually a lower bound/upper bound representation of intervals is preferred:

A = [a1, a2] := { a ∈ IR | a1 ≤ a ≤ a2 }.
Then

[1, 3] · [3, 5] = [3, 15]

with no overestimation. The basic arithmetic operations +,−, ·, / for intervals can easily be

defined where the lower and upper bound can be computed directly from the bounds of the

operands (see [3], [32]). Also, it follows that the diameter of the sum and the difference of

two intervals A and B is always equal to the sum of the diameters:

diam (A + B) = diam (A) + diam (B) and

diam (A−B) = diam (A) + diam (B).

Therefore the only possibility of diminishing diameters of intervals is the multiplication with

a small factor or dividing by a large number. We have to use this frequently in the following.

2

The most basic and fundamental principle of all interval operations is the isotonicity. This

means given two intervals A, B we have for dyadic operations ◦
∀ a ∈ A ∀ b ∈ B : a ◦ b ∈ A ◦B (2.1)

and for monadic operations σ

∀ a ∈ A : σ(a) ∈ σ(A). (2.2)

Interval operations are not restricted to the four basic operations. Transcendental operations

can be executed for intervals as well, always regarding the isotonicity (2.1) and (2.2). For

example

A = [a1, a2] ⇒ exp(A) = [exp(a1), exp(a2)]

which is clear because of the monotonicity of the exponential function. But also non-

monotonic functions like sine, sinh, Γ . . . can be executed over intervals using a power series

expansion and estimating the remainder term or by using some case distinctions. In the

practical implementation using floating point numbers on the computer proper rounding has

to be used (cf. [6], [24]).

With these observations we can already estimate the range of a function over a domain

without any further knowledge about the function. Let, for example, f(x) = ex−2x−1 and

X = [−1, 1]. Then

f(X) = { f(x) | x ∈ X } ⊆ eX − 2X − 1 = [e−1, e1]− [−2, 2]− 1 = [e−1 − 3, e1 + 1]

⊆ [−2.64, 3.72]. (2.3)

Using auxiliary knowledge we see that there is a minimum of f within X at x̃ = ln2, therefore

f(X) = f(−1)∪f(1)∪f(ln2) ⊆ [−0.39, 1.37],

where ∪ denotes the convex union. For more complicated functions such an analysis may

become involved; the more it is amazing that in (2.3) we obtained a rigorous estimation

of the range in a very simple way. However, we also see that the range can be severely

overestimated. We will see how this overestimation can be reduced and how the degree of

overestimation itself can be estimated.

These observations already lead us to a basic rule for verification algorithms, that is to use

as much floating point operations as possible and (2.4)

as few interval operations as necessary.

This is very much in the spirit of Wilkinson, who wrote in 1971 [44]

3

“In general it is the best in algebraic computations to leave the (2.5)

use of interval arithmetic as late as possible so that it effectively

becomes an a posteriori weapon.”

For the following we need the fact that interval vectors and interval matrices can be defined

as well as operations over those. An interval vector, for example, can be regarded as the

cartesian product of the component intervals. We do not want to go into detail but refer

to the literature [3], [32]. Also, we only mention that interval operations satisfying (2.1)

and (2.2) are very effectively implementable on digital computers [21], [20], [22], [23]. These

packages written in C are available via anonymous ftp from the author’s institute.

3 Dense Systems of Equations

Let f : D ⊆ IRn → IRn, f ∈ C1 be given and define

g : D ⊆ IRn → IRn with g(x) := x−R · f(x) (3.1)

for some R ∈ IRn×n. That is we locally linearize f where the application of g represents one

step of a simplified Newton iteration. For ∅ 6= X ⊆ IRn being compact and convex and

g(X) ⊆ X (3.2)

Brouwer’s Fixed Point Theorem implies the existence of a fixed point x̂ ∈ X of g, i.e. g(x̂) =

x̂. This yields R · f(x̂) = 0 and if we can verify the regularity of R then x̂ is a zero of f

within X. Trying to verify (3.2) by means of

g(X) ⊆ X −R · f(X)
!⊆ X

does not work unless the term R · f(X) vanishes completely. Therefore we expand f around

some x̃ ∈ D using the n-dimensional Mean Value Theorem for all x ∈ D such that x̃∪x ⊆ D:

f(x) = f(x̃) + J · (x− x̃) where Ji∗ =
∂fi

∂x
(ζi), ζi ∈ x∪x̃. (3.3)

Such an expansion can be used and implemented on the computer for two reasons:

1) The partial derivatives can be computed very effectively by means of automatic differen-

tiation in a forward or backward mode (see [35], [42], [12]). In backward mode the compu-

tational costs for computing the whole Jacobian matrix is at most 5 times the costs for 1

function evaluation. This holds independently of the dimension n.

2) The unknown interior points ζi can be surpassed by replacing ζi by x∪x̃ and using

interval operations to calculate an interval matrix J(x̃∪x) containing J . In this case

f(x) ∈ f(x̃) + J(x∪x̃) · (x− x̃). (3.4)

We can use this to derive an inclusion formula. If x̃∪X ⊆ D then

4

g(x) = x−R · f(x) = x−R · {f(x̃) + J · (x− x̃)}
= x̃−R · f(x̃) + {I −R · J} · (x− x̃) (3.5)

⊆ x̃−R · f(x̃) + {I −R · J(x̃∪X)} · (X − x̃)

for all x ∈ X. The last term in (3.5) is the Krawczyk operator [26]. It can effectively be

used to check g(X) ⊆ X because

• the first part x̃−R · f(x̃) is a real vector, no overestimation occurs

• the potential overestimation in the last part is strongly diminished because

– for R ≈ J(x̃)−1 and small diameter of x̃∪X the first factor I−R ·J(x̃∪X) becomes

small and

– for x̃ ≈ x̂ the second factor X − x̃ becomes also small.

Thus the only part where overestimation may occur is the product of two small terms and

therefore very small. J(x̃∪X) can be replaced by (cf. [14], [2])

J(x̃, X)ij :=
∂fi

∂xj

(X1, . . . , Xj−1, (x̃∪X)j, x̃j+1, . . . , x̃n). (3.6)

The sharper our J the better an algorithm works. Furthermore, it is superior not to include

the solution itself but the difference to an approximate solution [37]. With Y := X − x̃ we

get from (3.5) and (3.6)

g(x)− x̃ ⊆ −R · f(x̃) + {I −R · J(x̃, X)} · Y
and therefore

−R · f(x̃) + {I −R · J(x̃, X)} · Y ⊆ Y ⇒ g(X) ⊆ X. (3.7)

This the first part. It remains to show the regularity of the matrix R. This can be done

using the following lemma [38].

Lemma 3.1. Let z ∈ IRn, C ⊆ IRn×n and X ∈ IIIRn. Then

z + C ·X ⊆ int(X) (3.8)

implies ρ(|C|) < 1 for all C ∈ C.

Applying this to (3.7) with z = −R · f(x̃) and C := I −R · J(x̃, X) yields the regularity of

R and every M ∈ J(x̃, X). This is because for C := I − A with ρ(C) < 1 a singular matrix

A would imply an eigenvalue 1 of I − A. Combining our results already yields an inclusion

theorem for systems of nonlinear equations.

Theorem 3.2. Let f : D ⊆ IRn → IRn, f ∈ C1 be given, x̃ ∈ D, X ∈ IIIRn, such that

x̃∪(x̃ + X) ⊆ D and R ∈ IRn×n. If

5

Y := −R · f(x̃) + {I −R · J(x̃, x̃ + X)} ·X ⊆ int(X) (3.9)

using J defined by (3.6), then R and every matrix M ∈ J(x̃, x̃ + X) are regular and there is

an x̂ ∈ x̃ + Y with f(x̂) = 0.

Proof. By (3.7) follows g(x̃ + X) ⊆ x̃ + X and therefore the existence of a fixed point

x̂ ∈ x̃ + X of g(x) = x − R · f(x) with g(x̂) = x̂. By lemma 3.1 follows the regularity of R

and therefore f(x̂) = 0. (3.7) implies x̂ ∈ x̃ + Y .

There are many generalizations and improvements of theorem 3.2 as well as further assertions.

For example, ⊆ int(X) can be replaced by $ which means inclusion and componentwise

inequality, the inclusion step (3.9) can be replaced by an Einzelschrittverfahren, the matrices

J can be replaced by slopes [41], [2], and more. These steps shrink the diameter of the left

hand side of (3.9) and make the condition (3.9) more likely to hold.

In order to find an interval vector X satisfying (3.9) an iteration can be applied, that is the

Y in (3.9) is used as the next X. Applying this to (3.8) it is important to perform a slight

inflation in every step, the so-called ε-inflation [37]. In the simplest case it can be defined

by

X ∈ IIIRn : X ◦ ε := X + [−ε, ε] for 0 < ε ∈ IR.

This yields the following iteration for given X0 ∈ IIIRn:

Y k := Xk ◦ ε; Xk+1 := z + C · Y k.

The remarkable about this iteration is that it produces some X := Y k satisfying (3.8) iff the

absolute value of every C ∈ C is convergent:

∃ k ∈ IN : z + C · Y k ⊆ int(Y k) if and only if ρ(|C|) < 1 for all C ∈ C.

This holds for every starting vector and was proved in [39]. The inflation is called ε-inflation

and was introduced in [37]. In practical applications, as a matter of experience there is not

too much difference between requiring ρ(C) < 1 or ρ(|C|) < 1, at least for the matrices

occuring in (3.9). The major difference compared to a residual iteration

xk+1 := xk + R · (b− Axk),

which is known to converge for every starting value if and only if ρ(I − RA) < 1, is that in

floating point computation convergence cannot be detected. An inclusion algorithm verifies

all of its results.

6

Another major improvement over theorem 3.2 is the possibility to estimate the overestimation

of the computed solution. Let F : IRk × IRn → IRn be a parametrized function then

a theorem similar to 3.2 can be given for including a zero of f(c, x) for all parameters

c ∈ C ∈ IIIRk. That is for all c̃ ∈ C the inclusion interval x̃ + Y contains one and only one

zero of fc̃(x) = f(c̃, x). The true set of zeros Σ defined by

Σ := { x ∈ x̃ + Y | ∃ c ∈ C : f(c, x) = 0 }
is usually an odd-shaped, nonconvex region in IRn. Nevertheless we can define the elongation

of the i-th component of x in Σ by

inf
x∈Σ

xi and sup
x∈Σ

xi

and ask for bounds on these quantities. These bounds can be calculated by means of an

inclusion formula like (3.9). The precise formulation for systems of nonlinear equations

requires a little bit of formalism (see [40]). Therefore we state it for linear systems.

Theorem 3.3. Let A ∈ IIIRn×n, b ∈ IIIRn be given and define

Σ(A, b) := { x ∈ IRn | ∃ A ∈ A ∃b ∈ b : Ax = b }.
Let R ∈ IRn×n, x̃ ∈ IRn, X ∈ IIIRn and

Z := R · (b−A · x̃) ∈ IIIRn, ∆ := {I −R ·A} ·X.

If

Z + ∆ ⊆ int(X)

then R and every matrix A ∈ A are regular and for every b ∈ b the unique solution of the

linear system Ax = b satisfies A−1b ∈ x̃ + Z + ∆. Moreover for all i, 1 ≤ i ≤ n

x̃i + inf(Z)i + inf(∆)i ≤ inf
x∈Σ

xi ≤ x̃i + inf(Z)i + sup(∆)i and

(3.10)

x̃i + sup(Z)i + inf(∆)i ≤ sup
x∈Σ

xi ≤ x̃i + sup(Z)i + sup(∆)i.

The bounds (3.10) are outer and inner inclusions on the solution complex Σ. The quality

is exactly the diameter of ∆, which is small if the diameters of A and X are small and

R ≈ mid(A)−1. The quality of the inner and outer inclusions is demonstrated by the

following example. Let A ∈ IRn×n with

Aij :=

(
i + j

p

)
for p = n + 1 prime.

Here

(
k

p

)
denotes the Legendre symbol

7

(
k

p

)
:=





0 if k|p
1 if k ≡ c2 mod p for some c

−1 otherwise.

The example is taken from the Gregory/Karney collection of test matrices [11]. We choose

this example to have a reproducable, dense test system. We computed the right hand side b

such that the true solution x = A−1b becomes

xi =
(−1)i+1

i
1 ≤ i ≤ n.

Next we introduce relative perturbations for the matrix and the right hand side

A := A · (1± e) and b := b · (1± e) with e := 10−5.

The computation is executed in single precision equivalent to approximately 7 decimals. We

took n = 1008.

Inner and outer inclusions for some solution components
diam(X)

diam(Y)

[0.999 873, 1.000 127] ⊆ Σ([A], [b])1 ⊆ [0.999 869, 1.000 131] 0.96980

[−0.500 127, −0.499 873] ⊆ Σ([A], [b])2 ⊆ [−0.500 131, −0.499 869] 0.96975

[0.333 206, 0.333 460] ⊆ Σ([A], [b])3 ⊆ [0.333 203, 0.333 464] 0.96978

· · ·
[−0.001 121, −0.000 867] ⊆ Σ([A], [b])1006 ⊆ [−0.001 125, −0.000 863] 0.96979

[0.000 866, 0.001 120] ⊆ Σ([A], [b])1007 ⊆ [0.000 862, 0.001 124] 0.96981

[−0.001 119, −0.000 865] ⊆ Σ([A], [b])1008 ⊆ [−0.001 123, −0.000 861] 0.96977

The numbers are to be read as follows. Take, for example, the solution component 1008.

Then there are linear system data A ∈ A, b ∈ b within the tolerances such that the 1008th

component of the true solution x̂ = A−1b equals the inner bounds but cannot go beyond the

outer bounds:

∃ A ∈ A ∃ b ∈ b : (A−1b)1008 = −0.001119

∃ A ∈ A ∃ b ∈ b : (A−1b)1008 = −0.000865

∀ A ∈ A ∀ b ∈ b : −0.001123 ≤ (A−1b)1008 ≤ −0.000861.

In order to estimate the quality of the inner and outer inclusions we gave in the last column

of the table the ratio of the diameters of the inner and outer inclusions. For example, the

last number means that the diameter of the inner inclusion is 96.977 % of the outer one.

The worst ratio of diameters was achieved for the 116th component. Here we have

8

Inner and outer inclusions for some solution components
diam(X)

diam(Y)

[−0.008 741, −0.008 494] ⊆ Σ([A], [b])116 ⊆ [−0.008 751, −0.008 490] 0.96967

For many practical considerations this means almost equality; we know the elongation of

the solution complex Σ up to 3 %. When changing the relative perturbation into absolute

perturbation of 10−5 the numbers above change only slightly. That means changing the zeros

in A does hardly affect the sensitivity of the system.

Finally we give a nonlinear example discussed in [1]. Consider a discretization of the bound-

ary value problem 3ẍx− ẋ2 = 0, x(0) = 0, x(1) = 20:

f1 = 3x1(x2 − 2x1) + x2
2/4,

fi = 3xi(xi+1 − 2xi + xi−1) + (xi+1 − xi−1)
2/4, for 2 ≤ i ≤ n− 1,

fn = 3xn(20− 2xn + xn−1) + (20− xn−1)
2/4.

The exact solution is x(t) = 20 · t3/4. For

n = 400, x̃i ≡ 10.0 for 1 ≤ i ≤ 400,

a fairly poor initial approximation, we performed some steps of a Newton iteration and

obtained the following inclusions:

X1 = [0.206611908273, 0.206611908274]

X2 = [0.360737510102, 0.360737510104]

X3 = [0.495574119032, 0.495574119035]

. . .

X398 = [19.9249135121276, 19.9249135121282]

X399 = [19.9624596920554, 19.9624596920557]

X400 = [19.9999823472852, 19.9999823472853]

This computation was performed in double precision equivalent to approximately 17 deci-

mals. All inclusions of the solution components coincide to at least 11 decimals. It should

be stressed that we enclosed the solution of the discretized problem, not of the continuous

problem. The latter class of problems is considered for example by Lohner [29], Nakao [31]

and Plum [34].

9

4 Sparse systems of equations

In the last example of the previous chapter the function fi only depends on the variables

xi−1, xi and xi+1. That means, the Jacobian is a tridiagonal matrix whereas its inverse is

full. Thus for such sparse systems one should look for another way to obtain an inclusion in

order to avoid a full approximate inverse R. We consider (3.9):

∀ M ∈ J(x̃, x̃ + X) ∀ x ∈ X : −R · f(x̃) + {I −R ·M} · x ∈ l.h.s. (3.9)

and replace R [≈ mid(J(x̃, x̃+X))−1] by U−1L−1, i.e. rather than computing an approximate

inverse of the midpoint of J(x̃, x̃ + X) we consider an LU -decomposition. Then we have

∀ M ∈ J(x̃, x̃ + X) ∀ x ∈ X : U−1L−1 · {−f(x̃) + (LU −M) · x} ∈ l.h.s. (3.9) (4.1)

Replacing U−1 and L−1 by a backward and a forward substitution operator, which we denote

by U\ and L\, respectively we obtain

∀ M ∈ J(x̃, x̃ + X) ∀ x ∈ X : U\{L\[−f(x̃) + (LU −M) · x]} ∈ l.h.s. (3.9).

By the basic principle of interval operations, the isotonicity, this proves the following theorem.

Theorem 4.1. Let f : D ⊆ IRn → IRn, f ∈ C1 be given, x̃ ∈ D, X ∈ IIIRn such that

x̃∪(x̃ + X) ⊆ D and regular L, U ∈ IRn×n. If

Y := U \{L \[−f(x̃) + (LU − J(x̃, x̃ + X)) ·X]} ⊆ int(X) (4.2)

with J(x̃, x̃ + X) defined by (3.6) then every matrix M ∈ J(x̃, x̃ + X) is regular and there

is a x̂ ∈ x̃ + X with f(x̂) = 0.

Proof. Follows by applying (4.1) and theorem 3.2.

If L, U are lower, upper triangular matrices, resp., banded or sparse the problem reduced

to check (4.2) which means in particular to calculate an inclusion of Σ(L, b) = { x ∈ IRn |
∃ b ∈ b : Lx = b }, b ∈ IIIRn for lower triangular L.

The obvious approach to do this by interval forward substitution does not work in general

because of tremendous overestimations. Consider a most simple example

L =




1

1 1

1 1 1

1 1 1

1 1 1
. . .




and b =




[−1, 1]

[−1, 1]

[−1, 1]
...




. (4.2a)

10

Then the inclusion X for Σ(L, b) by interval forward substitution computes to

X1 = b1 = [−1, 1]

X2 = b2 −X1 = [−1, 1]− [−1, 1] = [−2, 2]

X3 = b3 −X1 −X2 = [−1, 1]− [−1, 1]− [−2, 2] = [−4, 4] (4.3)

X4 = b4 −X2 −X3 = [−1, 1]− [−2, 2]− [−4, 4] = [−7, 7]

X5 = b5 −X3 −X4 = [−1, 1]− [−4, 4]− [−7, 7] = [−12, 12]

· · ·
Obviously X is always symmetric to the origin and tremendiously growing. It is easy to see

that X = [−x, x] were x is the solution of




1

−1 1

−1 −1 1

−1 −1 1

−1 −1 1

. . .




· x =




1

1

1

1
...




(4.4)

The matrix in (4.4) is Ostrowski’s comparison matrix 〈L〉 (cf. [32]). The true solution

complex Σ(L, b) computes to L−1 ·b, a formula which, however, is not suitable for numerical

computations since L−1 is again full. For the true solution complex we obtain

Σ(L, b) = L−1b =




[−1, 1]

[−2, 2]

[−2, 2]

[−3, 3]

[−4, 4]

[−4, 4]

. . .




.

The overestimation of the X computed by (4.3) compared to the true solution complex

Σ(L, b) = L−1b is equal to ‖〈L〉−1‖∞ / ‖L−1‖∞. For small values of n this is

n 10 20 30 40 50 60 70 80 90 100

‖〈L〉−1‖∞ / ‖L−1‖∞ 2e1 1e3 1e5 1e7 1e9 1e11 1e13 1e15 1e17 1e19
(4.5)

demonstrating the exponential behaviour of the overestimation. This way of trying to solve

the problem contradicts drastically our basic rules for interval computations (2.4), (2.5).

11

For important classes of matrices such as M -matrices the approach is suitable. However,

the behaviour shown above is typical for general matrices. Next we discuss a procedure for

enclosing Σ(L, b) for a general banded or sparse lower triangular matrix L.

Let L ∈ IRn×n lower triangular with nonzero diagonal elements, b ∈ IIIRn be given.

Then

∀ b ∈ b : ‖L−1b‖2 ≤ ‖L−1‖2 · ‖b‖2 = σn(L)−1 · ‖b‖2 ≤ σn(L)−1 · ‖ |b| ‖2 (4.6)

where σn(L) denotes the smallest singular value of L and

|b| ∈ IRn with |b|i := max{ |b|i | b ∈ b }.
That means finding a lower bound for the smallest singular value of L solves our problem of

bounding Σ(L, b) = {L−1b | b ∈ b }. There are a number of very good condition estimators

[8], [13] producing good approximation for the smallest singular value and the condition

number of a matrix.

By the principle of their construction they deliver upper bounds for σn where we need lower

bounds. Those can be obtained as follows.

σn(L)2 is the smallest eigenvalue of LLT . If for some 0 < λ̃ ∈ IR we can prove that LLT − λ̃I

is positive semidefinite this implies

σn(L) ≥ λ̃1/2.

LLT − λ̃I is positive semidefinite if its Cholesky decomposition GGT = LLT − λ̃I exists

with nonnegative diagonal elements. This means the true, real Cholesky decomposition, not

a floating point decomposition. The existence could be verified by performing an interval

Cholesky decomposition, that is replacing the real operations by its corresponding interval

operations. If all diagonal elements stay nonnegative (i.e. are intervals do not containing neg-

ative elements) the basic principle of interval analysis, the isotonicity, implies the existence

of Cholesky factors within the computed interval factors.

However, this contradicts our main principles (2.4), (2.5). Most simple examples show

tremendous overestimations like in (4.5). This is the typical behaviour for general matrices

L. Therefore we perform a floating point Cholesky decomposition G̃G̃T ≈ LLT − λ̃I and

estimate its error by perturbation bounds for eigenvalues of symmetric matrices. We use the

following consequence of a result by Wilkinson [43], p. 101–102.

Lemma 4.1. Let B and B+E be n×n symmetric matrices and denote the smallest, largest

eigenvalue of a real symmetric matrix by λn, λ1, respectively. Then for 1 ≤ i ≤ n

12

λi(B) + λn(E) ≤ λi(B + E) ≤ λi(B) + λ1(E).

Setting B := LLT − λ̃I and E := G̃G̃T −B implies that the matrix B +E = G̃G̃T (which is,

of course, not computed) with G̃ ∈ IRn×n is positive semidefinite. Therefore we can conclude

0 ≤ λn(LLT − λ̃I) + ‖E‖ ⇔ λn(LLT) ≥ λ̃− ‖E‖
and if λ̃ ≥ ‖E‖ then

σn(L) = λn(LLT)1/2 ≥ (λ̃− ‖E‖)1/2.

This holds for any consistent matrix norm, like all p-norms. Summarizing we have the

following lemma.

Lemma 4.2. Let L ∈ IRn×n, G̃ ∈ IRn×n, λ̃ ∈ IR

E := G̃G̃T − (LLT − λ̃I).

If λ̃ ≥ ‖E‖ for some consistent matrix norm then

σn(L) ≥ (λ̃− ‖E‖)1/2.

For the application of lemma 4.2 we need a floating point decomposition G̃ of LLT − λ̃I but

a verified estimation on E. This can be performed in one step. We define recursively for

1 ≤ i, j ≤ n

rij :=
j∑

ν=1
LiνLjν −

j−1∑
ν=1

GiνGjν and Gij := rij / Gjj and

rii :=
j∑

ν=1
L2

iν −
i−1∑
ν=1

G2
iν − λ̃2 and Gii := r

1/2
ii .

These are the exact formulas for computing the Cholesky decomposition G of LLT − λ̃I.

Now we calculate rij and rii by interval computations and the G̃ij and G̃ii by a floating point

division and square root using the midpoint of rij and rii, respectively. Then

Eij ∈ rij − G̃ijG̃jj and Eii ∈ rii − G̃2
ii

where these operations are again performed using interval arithmetic. If we have a precise

scalar product available [27], [28] the rij and rii can be calculated precisely. In other words

the computation of G̃ and E can be performed simultaneously and without overestimation.

An approximate value λ̃ is easily obtained via inverse power iteration because the resulting

linear systems can be solved by backward or forward substitution.

If we apply the same procedure to the solution of a linear system with U and use (4.6) with

L replaced by U then we can effectively apply theorem 4.1 to obtain a verified inclusion

for systems of nonlinear equations. The main point is that the computing time for banded

13

J(x̃, x̃ + X) and therefore banded L and U increases linearly with n: If J(x̃, x̃ + X) is of

lower, upper bandwidth p, q, resp. then

L · U costs n · (p + q) ·min(p, q)

estimating σ(L) costs n · p2

estimating σ(U) costs n · q2.

Therefore, and this is the main point, the computing cost grows linearly with n. There

are two other approaches known in the literature for treating large systems with banded or

sparse matrices. The first [25], [9] uses interval forward and backward substitution. It is

therefore by the principle of the approach restricted to H-matrices (see the example at the

beginning of this chapter). The second approach [4] uses a so called singleton method which

effectively computes an inverse of L and U . Therefore the computing time n2p and n2q is

quadratically growing with n compared to linear growing np2 and nq2 of our method.

Let us consider some examples. In all examples the r.h.s. b is computed such that the true

solution x̂ satisfies x̂i = (−1)i+1/i. For Ax = b with A = 0.1 · LLT and the matrix L from

(4.2a) which caused so much trouble we get the following results.

n cond σmin(A) ‖x̂− x̃‖∞/‖x̃‖∞
10 000 1.22E+08 2.72E-04 3.39E-17

20 000 4.87E+08 1.36E-04 1.35E-16

50 000 3.04E+09 5.44E-05 8.47E-16

100 000 1.22E+10 2.72E-05 3.39E-15

500 000 3.04E+11 5.44E-06 8.47E-14

1 000 000 1.22E+12 2.72E-06 3.39E-13

Table 4.1. A = 0.1 · LLT , L defined by (4.2a)

The factor 0.1 is introduced in order to make the factors of the LU -decomposition not

exactly representable on the machine. Some sparse systems from the Harwell testcases gave

the following results.

14

Matrix n p q profile cond ‖A− L̃Ũ‖2 ‖x̂− x̃‖∞/‖x̃‖∞
gre 216 216 14 36 876 2.7e+02 3.1e-15 7.9e-27

gre 343 343 18 49 1435 2.5e+02 5.6e-15 2.4e-26

gre 512 512 24 64 2192 3.8e+02 7.4e-15 6.8e-26

west0167 167 158 20 507 2.8e+06 1.6e-16 4.6e-22

west0381 381 363 153 2157 2.0e+06 1.1e-15 8.8e-25

bcsstk08 1074 590 590 7017 6.1e+06 1.6e-16 6.6e-23

bcsstk14 1806 161 161 32630 4.3e+04 1.8e-15 1.8e-25

Table 4.2. Harwell test cases

In both cases we computed an approximate solution x̃ and bounded the componentwise

maximum relative error of x̃. The computation has been performed in double precision

equivalent to approximately 17 decimal places. The fact that we enclose the difference of x̃

and the exact solution x̂ yields in the second example even more accuracy than the precision

in use.

5 Global optimization

We will shortly sketch inclusion methods for global optimization and give some examples.

Let the problem

Min{ f(x) | x ∈ X }, X ∈ IIIRn

be given. Our only assumption on f is the existence of an inclusion function F : IIIRn → IIIRn

with

Y ∈ IIIRn, Y ⊆ X ⇒ f(Y) := { f(y) | y ∈ Y } ⊆ F (Y) := [F (Y), F (Y)].

With these assumptions a branch-and-bound strategy for the computation of verified bounds

for the global optimum value f ∗ := Min{ f(x) | x ∈ X } and the global optimum points

X∗ := {x∗ ∈ X | f(x∗) = f ∗ } can be applied. Such methods are given in [15], [30], [36]

using interval approaches and in [16], [33]. In the following we will describe a new and

very interesting approach presented by Jansson [17], [18] and Jansson, Knüppel [19]. The

algorithm does not require derivatives.

The computation of verified bounds for X∗ may be time consuming. However, if sharp

bounds are known on f ∗ and some x̃ ∈ X is known with f(x̃) ≈ f ∗ then this is frequently

sufficient for practical applications. Therefore Jansson developed a procedure for computing

sharp bounds F ∗ and F
∗

for the optimal value f ∗ with

15

F ∗ ≤ f ∗ ≤ F
∗

and delivers an approximation x̃ ∈ X with

F ∗ ≤ f(x̃) ≤ F
∗
.

The method works without derivatives. It uses essentially the following two observations:

I) Local descent methods need a reasonably good starting point

II) A box Y ⊆ X with estimated range F (Y) = [F (Y), F (Y)] and F (Y) > f(x̃) for

some already computed x̃ ∈ X cannot contain a global optimum point.

The strategy is now to combine advantages of pure floating point local descent methods with

the interval estimation of the range of a function. First the initial box X is subdivided into

X1, X2 with X1∪X2 = X where the X i, i ∈ {1, 2} with the smaller lower bound on f(X i) is

further subdivided. Here the heuristic is used that the box with the smaller lower bound on

the range of values contains smaller function values. This works very good in practice. The

other box is put into a list. After subdividing few times a local descent method is started

for the remaining box with midpoint as a starting point. In the examples Brent’s algorithms

[7] was used as a local descent method.

Now the two observations can benefit mutually from each other. According to I) the local

descent method needs a good starting point. Therefore the interval subdividing strategy is

used to derive a smaller starting box in order to obtain an improved starting value. So the

interval method does help the floating point method. On the other hand, if the local descent

method finds a good approximation f(x̃) all boxes Y with greater lower bound on the range

of f over Y can be deleted from the list. Thus the floating point method helps by reducing

the list.

Combining this with an elaborate strategy for avoiding unnecessary subdivisions calls to

the local descent method yields remarkable results. We mention in the following some test

results, for more than 50 examples known from the literature see [19].

In [10] some test examples have been given for comparison of global optimization methods.

In order to have a fair comparison all times are given in Standard Unit Time (STU) where 1

unit are 1000 evaluations of the Shekel function S5 at (4,4,4,4). On a SUN-4 one unit STU

is about 0.2 sec.

In the following table different algorithms are compared using the test examples in [10]. The

numbers in the upper half are from [5].

16

method GP BR H3 H6 S5 S7 S10

Törn 4 4 8 16 10 13 15

De Biase 15 14 16 21 23 20 30

Price 3 4 8 46 14 20 20

Branin - - - - 9 8.5 9.5

Boender et al. 1.5 1 1.7 4.3 3.5 4.5 7

Jansson 0.45 0.45 5.65 6.45 0.70 0.80 0.90

f ∗, F
∗

3 0.397887 -3.86278 -3.32237 -10.1532 -10.4049 -10.5364

F ∗ 3 0.397887 -4.34853 -4.17324 -10.2008 -10.6772 -10.8517

Table 5.1. Comparison of floating point and verification algorithms

In the lower two lines the global optimum value f ∗ as well as the computed lower bound

F ∗ are given. In all cases the computed approximation f(x̃) coincides to at least 6 decimal

figures with the global optimum value and the verified upper bound F
∗
.

The following problem is to find the matrix within a set of matrices M(x), x ∈ X having

the largest distance to the next singular matrix in the 2-norm. That is

f(x) := min
x∈X

−σmin(M(x)).

In our example it is

M(x) =




2 sin πx1 sin πx1 sin πx2 sin πx1x2 cos πx1x2

sin πx1 2 sin 4πx2 cos π(1− x1) cos π(1− x2) cos πx1

sin πx2 cos π(1− x1) 2 cos 5πx1x2 cos πx1 cos πx2

sin πx1x2 cos π(1− x2) cos πx1 2 sin πx2 sin π(1− x1)

cos πx1x2 cos πx1 cos πx2 sin π(1− x1) 2 sin 4πx1




0 ≤ xi ≤ 1, for i = 1, 2.

For that example the following result is obtained

STU F ∗ f ∗, F
∗

278 -2.00159 -1.67555

397 -1.71291 -1.67555

The two computing times are for different parameter settings of the algorithm. A graph of

−f(x) is given below.

17

Finally we consider Griewank’s function

fG(x) :=
n∑

i=1

x2
i

d
−

n∏

i=1

cos
xi√

i
+ 1

with X = [−600, 600]n, d = 4000

in n dimensions. For dimension n = 2 the function looks like as slightly arched egg carton

with several 1000 local minima in the given domain X. The global optimum is f ∗ = 0. The

results known to us are

NRF STU

Griewank 1981 6600∗ -

Snyman, Fatti (1987) 23399 90

* global minimum not found

Table 5.2. Known results for Griewank’s function (n = 10)

n NRF NIF STU F ∗ F
∗

10 417 421 4.3 0 1.31 · 10−14

50 743 1601 48.1 0 2.25 · 10−14

Table 5.3. Results of the verification algorithm for Griewank’s function

Acknowledgement. The author wants to thank the referee for many helpful remarks.

18

References

[1] J.P. Abbott and R.P. Brent. Fast Local Convergence with Single and Multistep Methods

for Nonlinear Equations. Austr. Math. Soc. 19 (Series B), pages 173–199, 1975.

[2] G. Alefeld. Intervallanalytische Methoden bei nichtlinearen Gleichungen. In S.D. Chat-

terji et al., editor, Jahrbuch Überblicke Mathematik 1979, pages 63–78. Bibliographisches

Institut, Mannheim, 1979.

[3] G. Alefeld and J. Herzberger. Introduction to Interval Computations. Academic Press,

New York, 1983.

[4] F.L. Alvarado. Practical Interval Matrix Computations. talk at the conference “Nu-

merical Analysis with Automatic Result Verification”, Lafayette, Louisiana, February

1993.

[5] C. Boender, A.R. Kan, G. Timmer, and L. Stongie. A Stocastic Method for Global

Optimization. Mathematical Programming 22, pages 125–140, 1982.

[6] K.D. Braune. Hochgenaue Standardfunktionen für reelle und komplexe Punkte und In-

tervalle in beliebigen Gleitpunktrastern. Dissertation, Universität Karlsruhe, 1987.

[7] R.P. Brent. Algorithms for Minimization without Derivatives. Prentice-Hall Inc., En-

glewood Cliffs, New Jersey, 1973.

[8] A.K. Cline, A.R. Conn, and C. van Loan. Generalizing the LINPACK Condition Esti-

mator. Numerical Analysis, No. 909, 1982.

[9] D. Cordes and E. Kaucher. Self-Validating Computation for Sparse Matrix Problems. In

Computer Arithmetic: Scientific Computation and Programming Languages. B.G. Teub-

ner Verlag, Stuttgart, 1987.

[10] L.C.W. Dixon and G.P. Szegö (eds.). Towards Global Optimization. North-Holland,

Amsterdam, 1975.

[11] R.T. Gregory and D.L. Karney. A Collection of Matrices for Testing Computional

Algorithms. John Wiley & Sons, New York, 1969.

[12] A. Griewank. On Automatic Differentiation, volume 88 of Mathematical Programming.

Kluwer Academic Publishers, Boston, 1989.

[13] W. Hager. Condition Estimates. SIAM J. Sci. and Stat. Comp., 5:311–316, 1984.

[14] E.R. Hansen. On Solving Systems of Equations Using Interval Arithmetic. Math.

Comput. 22, pages 374–384, 1968.

19

[15] E.R. Hansen. Global Optimization using Interval Analysis. Marcel Dekker, New York,

1992.

[16] R. Horst and H. Tuy. Global Optimization. Springer-Verlag, Berlin, 1990.

[17] C. Jansson. A Global Minimization Method: The One-Dimensional Case. Technical

Report 91.2, Forschungsschwerpunkt Informations- und Kommunikationstechnik, TU

Hamburg-Harburg, 1991.

[18] C. Jansson. A Global Optimization Method Using Interval Arithmetic. In L. Atanassova

and J. Herzberger, editors, Computer Arithmetic and Enclosure Methods, IMACS, pages

259–267. Elsevier Science Publishers B.V., 1992.

[19] C. Jansson and O. Knüppel. A Global Minimization Method: The Multi-dimensional

case. Technical Report 92.1, Forschungsschwerpunkt Informations- und Kommunika-

tionstechnik, TU Hamburg-Harburg, 1992.

[20] R.B. Kearfott, M. Dawande, K. Du, and C. Hu. INTLIB: A portable Fortran-77 ele-

mentary function library. Interval Comput., 3(5):96–105, 1992.

[21] R. Klatte, U. Kulisch, M. Neaga, D. Ratz, and Ch. Ullrich. PASCAL-XSC —

Sprachbeschreibung mit Beispielen. Springer, 1991.

[22] O. Knüppel. BIAS — Basic Interval Arithmetic Subroutines. Technical Report 93.3,

Forschungsschwerpunkt Informations- und Kommunikationstechnik, Inst. f. Informatik

III, TU Hamburg-Harburg, 1993.

[23] O. Knüppel. PROFIL — Programmer’s Runtime Optimized Fast Interval Library. Tech-

nical Report 93.4, Forschungsschwerpunkt Informations- und Kommunikationstechnik,

TUHH, 1993.

[24] W. Krämer. Inverse Standardfunktionen für reelle und komplexe Intervallargumente

mit a priori Fehlerabschätzung für beliebige Datenformate. Dissertation, Universität

Karlsruhe, 1987.

[25] W. Krämer. Verified Solution of Eigenvalue Problems with Sparse Matrices. Proceedings

of 13th World Congress on Computation and Applied Mathematics, pages 32–33, 1991.

[26] R. Krawczyk. Newton-Algorithmen zur Bestimmung von Nullstellen mit Fehler-

schranken. Computing, 4:187–201, 1969.

[27] U. Kulisch. Grundlagen des numerischen Rechnens (Reihe Informatik 19). Bibli-

ographisches Institut, Mannheim, Wien, Zürich, 1976.

20

[28] U. Kulisch and W.L. Miranker. Computer Arithmetic in Theory and Practice. Academic

Press, New York, 1981.

[29] R. Lohner. Einschließung der Lösung gewöhnlicher Anfangs- und Randwertaufgaben

und Anordnungen. PhD thesis, University of Karlsruhe, 1988.

[30] R.E. Moore. On Computing the Range of Values of a Rational Function of n Variables

over a Bounded Region. Computing 16, pages 1–15, 1976.

[31] M.R. Nakao. A Numerical Verification Method for the Existence of Weak Solutions for

Nonlinear Boundary Value Problems. Journal of Mathematical Analysis and Applica-

tions, 164:489–507, 1992.

[32] A. Neumaier. Interval Methods for Systems of Equations. Encyclopedia of Mathematics

and its Applications. Cambridge University Press, 1990.

[33] P.M. Pardalos and J.B. Rosen. Constrained Global Optimization: Algorithms and

Applications. Springer Lecture Notes Comp. Sci. 268, Berlin, 1987.

[34] M. Plum. Numerical existence proofs and explicit bounds for solutions of nonlinear

elliptic boundary value problems. Computing, 49(1):25–44, 1992.

[35] L.B. Rall. Automatic Differentiation: Techniques and Applications. In Lecture Notes

in Computer Science 120. Springer Verlag, Berlin-Heidelberg-New York, 1981.

[36] H. Ratschek and J. Rokne. New Computer Methods for Global Optimization. John

Wiley & Sons (Ellis Horwood Limited), New York (Chichester), 1988.

[37] S.M. Rump. Kleine Fehlerschranken bei Matrixproblemen. PhD thesis, Universität

Karlsruhe, 1980.

[38] S.M. Rump. Solving Non-Linear Systems with Least Significant Bit Accuracy. Com-

puting, 29:183–200, 1982.

[39] S.M. Rump. New Results on Verified Inclusions. In W.L. Miranker and R. Toupin,

editors, Accurate Scientific Computations, pages 31–69. Springer Lecture Notes in Com-

puter Science 235, 1986.

[40] S.M. Rump. Rigorous Sensitivity Analysis for Systems of Linear and Nonlinear Equa-

tions. Math. of Comp., 54(10):721–736, 1990.

[41] J.W. Schmidt. Die Regula-Falsi für Operatoren in Banachräumen. Angew. Math. Mech.,

41:61–63, 1961.

[42] B. Speelpennig. Compiling fast partial derivatives of functions given by algorithms.

Urbana, Illinois, 1980.

21

[43] J.H. Wilkinson. The Algebraic Eigenvalue Problem. Oxford Univerity Press, Oxford,

1969.

[44] J.H. Wilkinson. Modern Error Analysis. SIAM Rev. 13, pages 548–568, 1971.

22

